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Abstract

Machine learning provides a probabilistic framework for metabolic pathway inference from genomic se-
quence information at different levels of complexity and completion. However, several challenges includ-
ing pathway features engineering, multiple mapping of enzymatic reactions and emergent or distributed
metabolism within populations or communities of cells can limit prediction performance. Here, we present
triUMPF, triple non-negative matrix factorization (NMF) with community detection for metabolic pathway
inference, that combines three stages of NMF to capture myriad relationships between enzymes and path-
ways within a graph network followed by community detection to extract higher order structure based on
the clustering of vertices sharing similar statistical properties. We evaluated triUMPF performance using
experimental datasets manifesting diverse multi-label properties, including Tier 1 genomes from the BioCyc
collection of organismal Pathway/Genome Databases and low complexity microbial communities. Resulting
performance metrics equaled or exceeded other prediction methods on organismal genomes with improved
prediction outcomes on multi-organism data sets.
Availability and implementation: The software package, and installation instructions are published on
github.com/triUMPF
Contact: shallam@mail.ubc.ca

1 Introduction

Pathway reconstruction from genomic sequence information is an essential step in describing the metabolic
potential of cells at the individual, population and community levels of biological organization ([3, 17,
12]). Resulting pathway representations provide a foundation for defining regulatory processes, modeling
metabolite flux and engineering cells and cellular consortia for defined process outcomes ([23, 11]). The
integral nature of the pathway prediction problem has prompted both gene-centric e.g. mapping annotated
proteins onto known pathways using a reference database based on sequence homology, and heuristic or
rule-based pathway-centric approaches including PathoLogic ([16]) and MinPath ([33]). In parallel, the
development of trusted sources of curated metabolic pathway information including the Kyoto Encyclopedia
of Genes and Genomes (KEGG) [15] and MetaCyc [7] provides training data for the design of more flexible
machine learning (ML) algorithms for pathway inference. While ML approaches have been adopted widely in
metabolomics research ([5, 29]) they have gained less traction when applied to predicting pathways directly
from annotated gene lists.

Dale and colleagues conducted the first in-depth exploration of ML approaches for pathway prediction
using Tier 1 (T1) organismal Pathway/Genome Databases (PGDB) ([6]) from the BioCyc collection ran-
domly divided into training and test sets ([8]). Features were developed based on rule-sets used by the
Pathologic algorithm in Pathway Tools to construct PGDBs ([16]). Resulting performance metrics indicated
that standard ML approaches rivaled the performance of Pathologic with the added benefit of probability
scores ([8]). More recently Basher and colleagues developed multi-label based on logistic regression for
pathway prediction (mlLGPR), a multi-label classification approach to metabolic pathway inference that
uses logistic regression and feature vectors based on the work of Dale and colleagues to predict metabolic
pathways from genomic sequence information at different levels of complexity and completion ([3]).

Although mlLGPR performed effectively on organismal genomes, pathway prediction outcomes for multi-
organismal data sets were less optimal due in part to missing or noisy feature information. In an effort to
grapple with this problem, Basher and Hallam evaluated the use of representational learning methods to
learn a neural embedding-based low-dimensional space of metabolic features based on a three-layered net-
work architecture consisting of compounds, enzymes, and pathways ([2]). Learned feature vectors improved
pathway prediction performance on organismal genomes and motivated the use of graphical models for
multi-organismal features engineering.

Here we describe triple non-negative matrix factorization (NMF) with community detection for metabolic
pathway inference (triUMPF) combining three stages of NMF to capture relationships between enzymes and
pathways within a network ([10]) followed by community detection to extract higher order network structure
([9]). Non-negative matrix factorization is a data reduction and exploration method in which the original
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and factorized matrices have the property of non-negative elements with reduced ranks or features ([10]).
In contrast to other dimension reduction methods, such as principal component analysis ([4]), NMF both
reduces the number of features and preserves information needed to reconstruct the original data ([32]).
This has important implications for noise robust feature extraction from sparse matrices including data sets
associated with gene expression analysis and pathway prediction ([32]).

Figure 1: The set of complete metabolic pathways extracted from MetaCyc (A) and their discovered communities
(B). Zoomed in region of the pathway-pathway and community-community interactions, C and D respectively.
Nodes are metabolic pathways or communities for A,C and B,D respectively. Edges correspond to number of
shared enzymatic reactions or shared pathways for the pathway and community nodes respectively.

For pathway prediction, triUMPF uses three graphs, one representing associations between pathways
and enzymes indicated by enzyme commission (EC)) numbers ([1]), one representing interactions between
enzymes and another representing interactions between pathways. The two interaction graphs adopt the
subnetworks concept introduced in BiomeNet ([27]) and MetaNetSim ([14]), where a subnetwork is a linked
series of connected nodes (e.g. reactions and pathways). In the literature, a subnetwork is commonly referred
to as a community ([25]), which defines a set of densely connected nodes within that subnetwork. Community
detection is performed on both interaction graphs to identify subnetworks as shown in Fig. 1A, where a
metabolic pathway network, extracted from MetaCyc, is represented as interactions among pathways. The
detected pathway communities are illustrated in Fig. 1B. Similar to Fig. 1, enzyme interactions are used to
create the enzyme network, which is used to detect enzyme communities.

We evaluated triUMPF paramater sensitivity, robustness and prediction performance in relation to other
inference methods including Pathologic, MinPath and mlLGPR on a set of T1 PGDBs and low complexity
microbial communities including symbiont genomes encoding distributed metabolic pathways for amino acid
biosynthesis [20], genomes used in the Critical Assessment of Metagenome Interpretation (CAMI) initiative
[26], and whole genome shotgun sequences from the Hawaii Ocean Time Series (HOTS) [28].
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2 Definitions and Problem Formulation

Here, the default vector is considered to be a column vector and is represented by a boldface lowercase letter
(e.g., x) while matrices are represented by boldface uppercase letters (e.g., X). The Xi matrix indicates
the i-th row of X and Xi,j denotes the (i, j)-th entry of X while, for a vector, xi denotes an i-th cell of x.
The transpose of X is denoted as X> and the trace of it is symbolized as tr(X). The Frobenius norm of

X is defined as ||X||F =
√∑

i∈n
∑

j∈m X2
i,j . Occasional superscript, X(i) (or x(i)), suggests an index to a

sample, a power, or a current epoch during a learning period. We use calligraphic letters to represent sets
(e.g., E) while we use the notation |.| to denote the cardinality of a given set. With these notations in mind,
we introduce several concepts integral to the problem formulation.

Metabolic pathway inference from genomic sequence information at different levels of complexity and
completion requires a trusted source of labeled pathway information in which the set of ordered reactions
within and between cells is linked to substrates and products (compounds or metabolites). This information
can be represented in graphs corresponding to reactome and pathway-level interactions. In this study, we
use MetaCyc, a multi-organism member of the BioCyc collection of Pathway/Genome Databases (PGDB)
as the trusted source for reactome and pathway information [6]. MetaCyc contains only experimentally
validated metabolic pathways across all domains of life. To simplify computational complexity, we consider
the reaction and pathway graphs to be undirected.

Definition 2.1. Reaction Graph Topology. Let the reaction graph be represented by an undirected
graph G(rxn) = {C,Z(c)}, where C is a set of c metabolites and Z(c) represents r′ links between compounds.
Each link indicates a reaction, derived from a set of biochemical reactions R of size r′. Then, the reaction
graph topology is defined by a matrix Ω(c) ∈ Zr′×c

≥0 , where each entry Ω
(c)
i,j is a binary value of 1 or 0,

indicating either the compound j is a substrate/product in a reaction i or not involved in that reaction,
respectively.

Definition 2.2. Pathway Graph Topology. Let G(path) = {R,Z ′(r)} be an undirected graph, where R
is presented in Definition 2.1, and Z ′(r) represents a set of t′ links between reactions. Then, the pathway
graph topology is defined by a matrix Ω(r) ∈ Zt×r′

≥0 , where each entry Ω
(r)
i,j is either 0 or a positive integer,

corresponding the absence or the frequency of the reaction j in pathway i, respectively. And, t is the number
of pathways in a set T .

Note that reactions in G(path) may be annotated as a spontaneous reaction or a reaction catalyzed by
one or more enzymes, enzymatic reaction and classified by an enzyme commission number (EC) ([21]).
In addition, a number of enzymes referred to as promiscuous enzymes can participate in more than one
pathway. Given this information we associate EC numbers to pathways and formulate three graphs, one
representing associations between pathways and enzymes indicated by enzyme commission (EC)) numbers
M ∈ Zt×r

≥0 , one representing interactions between enzymes B ∈ Zr×r
≥0 and another representing interactions

between pathways A ∈ Zt×t
≥0 (see Supp. Section 1). After determining relationships within each graph, we

define a multi-label metabolic pathway dataset.

Definition 2.3. Multi-label Pathway Dataset ([3]). A general form of pathway dataset is characterized
by S = {(x(i),y(i)) : 1 < i 6 n} consisting of n examples, where x(i) is a vector indicating the abundance
information corresponding to each enzymatic reaction. An enzymatic reaction, in turn, is denoted by
e, which is an element of a set of enzymatic reactions E = {e1, e2, ..., er}, having r possible reactions.

The abundance of an enzymatic reaction i, for example e
(i)
l , is defined as a

(i)
l (∈ R≥0). The class labels

y(i) = [y
(i)
1 , ..., y

(i)
t ] ⊆ {−1,+1}t is a pathway label vector of size t that represents the total number of

pathways, which are derived from a set of labeled metabolic pathway Y. The matrix form of x(i) and y(i)

are symbolized as X and Y, respectively.

The input space is assumed to be encoded as r-dimensional feature vector and is symbolized as X = Rr.
Furthermore, each example in S is considered to be drawn independent, identically distributed (i.i.d) from
an unknown distribution D over X × 2|Y|.

Problem Statement 1. Metabolic Pathway Prediction. Given: i)- Pathway-EC matrix M, ii)- a
Pathway-Pathway interaction matrix A, iii)- an EC-EC interaction matrix B, and iv)- a dataset S, the goal
is to efficiently reconstruct pathway labels for a hitherto unseeen instance x∗.

3 The triUMPF Method

In this section, we provide a description of triUMPF components, presented in Fig 2, including: i)- de-
composing the pathway EC association matrix , ii)- subnetwork or community reconstruction, and iii)- the
multi-label learning process.

3.1 Decomposing the Pathway EC Association Matrix

Inspired by the idea of non-negative matrix factorization (NMF), we decompose the P2E association matrix to
recover low-dimensional latent factor matrices ([10]). Unlike previous application of NMF to biological data
sets ([22]), triUMPF incorporates learned embeddings into the matrix decomposition process. Formally, given
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Figure 2: A workflow diagram showing the proposed triUMPF method, where the model takes two graph
topology, corresponding Pathway-Pathway interaction and EC-EC interaction, and a dataset to detect pathway
and EC communities while, simultaneously, decomposing Pathway-EC association information to produce a
constrained low rank matrix. Afterwards, a set of pathways is detected from a newly annotated genome or
metagenome.
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the non-negative M standard NMF decomposes the matrix into the two low-rank matrices, i.e. M ≈WH>,
where W ∈ Rt×k stores the latent factors for pathways while H ∈ Rr×k, known as the basis matrix, can be
thought of as latent factors associated with ECs and k � t, r. We extend standard NMF by incorporating
the two constraints: i)- interactions within ECs or pathways and ii)- interactions between pathways and ECs.
For this, we apply the pathway2vec framework ([2]) to extract features in the form of continuous vectors, for
each EC and pathway while incorporating interaction constraints. This set of features can then be used to
obtain the following minimization objective function:

J fact(W,H,U,V) = min
W,H,U,V

||M−WH>||2F + λ1||W −PU||2F

+ λ2||H−EV||2F + λ3||U−V||2F
+ λ4(||W||2F + ||H||2F + ||U||2F + ||V||2F )

s.t. {W,H,U,V} ≥ 0

(3.1)

where λ∗ are regularization hyperparameters. The leftmost term is the well-known squared loss function
that penalizes the deviation of the estimated entries in both W and H from the true association matrix
M. The second term corresponds to the relative differences of latent matrix W from the pathway features
P ∈ Rt×m, learned using pathway2vec framework, where the matrix U ∈ Rm×k absorbs different scales of
matrices W and P. Similarly, the third term indicates the squared loss of H from E ∈ Rr×m, which denotes
the feature matrix of ECs, and their differences are captured by V ∈ Rm×k. In the fourth term, we minimize
the differences between factors U and V, capturing the shared prominent features for the low dimensional
coefficients.

3.2 Subnetwork or Community Reconstruction

Graph abstraction is a process of reducing a set of linked nodes into a more compact form, such as isolating
densely connected nodes that possess similar properties or functions. The task of discovering distinct group
of nodes is known as the community detection problem ([25, 19]). Motivated by this work, we use community
detection to guide the learning process for pathways on the two adjacency matrices A and B, indicating
P2P and E2E associations, respectively. For example, Fig. 1 shows 90 communities in pathway network,
where the intra-group of nodes, within a community, interacts with each other more frequently than with
those outside the group.

The two matrices A and B represent first-order proximity, capturing pairwise proximity among their
related vertices ([30]). However, as discussed in ([25]), the first-order proximity is inadequate to fully
characterize distant relationships among pathways or ECs. As such, higher-order, in particular second and
third order, proximity is pursued, which can be obtained using the formula ([19]):

Aprox =
∑
i∈lp

ωiA
l, Bprox =

∑
i∈le

γiB
l

(3.2)

where Aprox and Bprox are polynomials of order lp and le, respectively, and ω and γ are weights associated
to each term. Using these higher order matrices, we invoke NMF to recover communities.

Formally, let T ∈ Rm×p be a non-negative community representation matrix of size p communities for
pathways, where the j-th column in T:,j denotes the representation of community j. The pathway community
indicator matrix is denoted by C ∈ Rt×p conditioned on tr(C>C) = t, where each entry Ci,l and Cj,l encodes
the probability that pathways i and j generates an edge belonging to a community l. The probability of

i and j belonging to the same community can be assessed as: Âprox
i,j = (PiC:,lT

>
l,i)
>(PjC:,lT

>
l,j). Similar

discussion follows for the non-negative representation matrix R ∈ Rm×v and the EC community indicator
matrix K ∈ Rr×v of v communities, conditioned on tr(K>K) = r. Unfortunately, due to the constraints
emphasized on C and K, it is not straightforward to analytically derive an expression, instead, we resort
to much more tractable solution provided in ([30]), and relax the condition to be an orthogonal constraint,
resulting in the following objective function:

J comm(C,K) = min
C,K
||Aprox −PTC>||2F

+ ||Bprox −ERK>||2F
+ α||C>C− I||2F + β||K>K− I||2F
+ λ5(||C||2F + ||K||2F )

s.t. {C,K} ≥ 0

(3.3)

where I denotes an identify matrix, λ5 is a regularization hyperparameter while α and β are both positive
hyperparameters. The value of these hyperparameters is usually set to a large number, e.g. 109 in this work,
for adjusting the contribution of corresponding terms. The obtained communities in Eq 3.3 are directly
linked to the underlying graph topologies, i.e., Aprox and Bprox. Because our primary goal is to explore
communities from data, based on these graph structures we extend the formula by merging data into the
community detection process in the next section.
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#EC #Compound #Pathway |V| |E|
MetaCyc (uec) 6378 13689 2526 22593 33353
M 3650 – 2526 – 8576
A – – 2526 – 9938
B 3650 – – – 35629

Table 1: Characteristics of MetaCyc database and the three association matrices. MetaCyc (uec) denotes
enzymatic reactions where links among enzymatic reactions are removed. The “–” indicates non applicable
operation.

3.3 Multi-label Learning Process

We now bring together the NMF and community detection steps with multi-label classification for pathway
prediction. The learning problem must obey rules mandated by M while being lenient towards the dataset
S, which should provide enough evidence to generate representations of communities among pathways and
ECs, as suggested by Aprox and Bprox. We present a weight term Θ ∈ Rt×r that enforces X to be close
enough to both Y and M. We also introduce two auxiliary terms L ∈ Rn×m, which capture correlations
between X and Y and Z ∈ Rr×r, enforcing the pathway coefficients associated with M resulting in the
following objective function:

J path(T,R,Θ,L,Z) = min
T,R,Θ,L,Z

∑
i∈n

∑
k∈t

log
(

1 + e−y
(i)
k

Θ
ᵀ
k
x(i)
)

+ ||X− LRK>||2F + ||Y − LTC>||2F
+ ρ||Θ− ZHW>||2F
+ λ5(||T||2F + ||R||2F )

+ λ6(||Θ||2,1 + ||L||2F + ||Z||2F )

s.t. {T,R} ≥ 0

(3.4)

where λ5, λ6, and ρ are regularization hyperparameters, and ||.||2,1 represents the sum of the Euclidean
norms of columns of a matrix introduced to emphasize sparseness. Notice that we do not restrict the terms
L and Z to be non-negative. Both the second and the third terms in Eq. 3.4, are needed to discover pathway
and EC communities, i.e., C and K, respectively.

The Eqs 3.1, 3.3, and 3.4 are jointly non-convex due to non-negative constraints on the original and the
approximation factorized matrices, implying the solutions to triUMPF are only unique up to scalings and
rotations ([32]). Hence, we adopt an alternating optimization algorithm to solve each objective function
simultaneously, which is provided in Supp. Section 2.

4 Experimental Setup

Here, we describe the experimental framework used to demonstrate triUMPF pathway prediction perfor-
mance across multiple datasets spanning the genomic information hierarchy ([3]). triUMPF was implemented
in the Python programming language (v3). Unless otherwise specified all tests were conducted on a Linux
server using 10 cores of Intel Xeon CPU E5-2650.

4.1 Association Matrices

MetaCyc was used to obtain the three association matrices, P2E (M), P2P, (A), and E2E (B). Some of the
properties for each matrix are summarized in Table 1. All three matrices are extremely sparse. For example,
M contains 2526 pathways, having an average of four EC associations per pathway, leaving more than 3600
columns with zero values.

4.2 Pathway and Enzymatic Reaction Features

The pathway and EC features, indicated by P and E, respectively, were obtained using pathway2vec ([2]).
The following settings were applied to learn pathway and EC features: the embedding method was “cm2v”
while the meta-path scheme was “ECTCE”, the number of sampled path instances was 100, the walk length
is 100, the embedding dimension size was m = 128, the neighborhood size was 5, the size of negative samples
was 5, and the used configuration of MetaCyc was “uec”, indicating links among ECs are being trimmed.
The pattern “ECTCE” describes two-level interactions between enzymatic reactions (E) with compounds
(C) and compounds with pathways (T).
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4.3 Description of Datasets

We evaluated triUMPF performance using a corpora of 10 experimental datasets manifesting diverse multi-
label properties, including manually curated organismal genomes and low complexity microbial communities
including symbiont genomes encoding distributed metabolic pathways for amino acid biosynthesis ([20]),
Critical Assessment of Metagenome Interpretation (CAMI) initiative low complexity dataset consisting of
40 genomes ([26]) and whole genome shotgun sequences from the Hawaii Ocean Time Series (HOTS) at
25m, 75m, 110m (sunlit) and 500m (dark) ocean depth intervals ([28]). General statistics about the datasets
are summarized in Supp. Table 1. For training we used BioCyc (v20.5 tier 2 & 3) ([6]) consisting of 9255
PGDBs (Pathway/Genome Databases) constructed using Pathway Tools v21 ([16]). Less than 1460 trainable
pathways were recoverable from this version of BioCyc. To offset this limit, we concatenated EC features to
the original input EC space to leverage correlations among ECs during training (see Supp. Section 4).

4.4 Parameter Settings

For training, unless otherwise indicated, the learning rate was set to 0.0001, batch size to 50, number of
epochs to 10, number of components k = 100, number of pathway and EC communities to p = 90 and
v = 100, respectively. The higher-order proximity for Aprox and Bprox were set lp = 3 and le = 1 and
their associated weights fixed as ω = 0.1 and γ = 0.3, respectively. The α and β were fixed to 109. For the
regularized hyperparameters λ∗, we performed 10-fold cross-validation on a subsampled of BioCyc data and
found the settings λ1:5 = 0.01, λ6 = 10, and ρ = 0.001 to be optimum on T1 golden datasets. Hence, we
recommend these configurations for triUMPF trained using MetaCyc.

5 Experimental Results and Discussion

Four consecutive tests were performed to ascertain the performance of triUMPF including parameter sensi-
tivity, network reconstruction, visualization, and metabolic pathway prediction effectiveness.

5.1 Parameter Sensitivity

Experimental setup. The impact of seven hyperparameters (k, p, v, lp, le, ω and γ) was evaluated in
relation to reconstruction cost of the associated matrices (M, Aprox, and Bprox). The reconstruction cost
(or error) defines the sum of mean squared errors accounted in the process of transforming the decomposed
matrices into its original form where lower cost entails the decomposed low dimensional matrices were able
to better capture the representations of the original matrix. We specifically evaluated the effects of varying
the following parameters: i)- the number of components k ∈ {20, 50, 70, 90, 120}, ii)- the community size of
pathway p ∈ {20, 50, 70, 90, 100} and EC v ∈ {20, 50, 70, 90, 100}, iii)- the higher-order proximity lp and le
∈ {1, 2, 3}, and iv)- weights of the polynomial order ω and γ ∈ {0.1, 0.2, 0.3}. We used the full matrix M,
for each test, however, for community detection, we used BioCyc data that is divided into training (80%),
validation (5%) and test sets (15%). The final costs for community detection are reported based on the test
set after 10 successive trials. In addition, we contrast triUMPF with the standard NMF for monitoring the
reconstruction costs of M by varying k values.
Experimental results. Supp. Fig. 1 shows the effect of rank k on triUMPF performance. In general, we
observe that the performance is steady with the increase of k. This is in contrast to standard NMF where
the reconstruction cost decreases as the number of features increases. This is expected because, unlike
standard NMF, triUMPF exploits two types of correlations to recover M: i)- within ECs or pathways and
ii)- betweenness interactions, hence, serving as additional regularizers. As observed from Supp. Fig. 1,
higher k values result in improved outcomes. Consequently, we selected k = 100 for performing downstream
testing.

For community detection, we observed optimal results with respect to pathway community size at p = 20
under parameter settings k = 100 and v = 100, as shown in Supp. Fig. 2a. However, because Aprox is
so sparse, we suggest that this low rank may not correspond to the optimum community size. As with all
methods of community detection triUMPF is sensitive to community size and requires empirical testing.
There, we tested settings between p = 20 and p = 100 and observed a decrease in performance under
parameter settings k = 100 and v = 100 with p = 90 providing a balance between cost and increased
community size. A similar result was observed for EC community size at v = 100 under parameter settings
p = 90 and k = 100 in Fig. Supp. Fig. 2a.

Finally, we show the effect of changing polynomial orders, and their weights on triUMPF performance.
From Supp. Fig. 2c, we see that the reconstruction error progressively increases with varying higher orders
for all the three weights ω. However, for the same reasons described above, we prefer more long distances
with less weight to preserve community structure, and remarkably, when ω = 0.1 triUMPF performance was
relatively stable after the second order. The same conclusion can be drawn for le and its associated weights
γ in Supp. Fig. 2d.

Based on these results, triUMPF performance (under MetaCyc v21) is stable while minimizing cost under
the following parameter settings: k = 100, p > 90, e > 90, lp = 3, ω = 0.1, le = 1, and γ = 0.3.
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5.2 Network Reconstruction

Experimental setup. We next examined the robustness of triUMPF when exposed to noise. Links were
randomly removed from M, A, and B according to ε ∈ {20%, 40%, 60%, 80%}. We used the partially linked
matrices to refine parameters while comparing the reconstruction cost against the full association matrices
M, A and B. Specifically for M, we varied components of M according to k ∈ {20, 50, 70, 90, 120} along
with ε. For all experiments, BioCyc was used for training using the hyperparameters described in Section
4.4.
Experimental results. Supp. Fig. 3a indicate that by progressively increasing noise ε to M, the recon-
struction cost increases when k is low. As more features are incorporated the cost at all noise levels steadily
decreases up to k = 100. This tendency indicates that both pathway and EC features (P and E contain
useful correlations that contribute to the resilience of triUMPF’s performance when M is perturbed.

For Aprox and Bprox, as shown in Supp Figs 3b and 3c, the costs are reduced in the presence of noise,
which is not surprising as the reconstruction of associated communities are constrained on both data and
Aprox and Bprox. These results are directly linked to the sparseness of both matrices, as previously described
in ([9]). The pathway graph network, depicted in Fig. 1, indicates that many pathways constitute islands
with no direct links, while some pathways are densely connected. For community detection, it is sufficient
to group nodes that are densely connected, while links between communities can remain sparse. The same
line of reasoning follows for the EC network.

5.3 Visualization

Experimental setup. Recall that community detection was used to guide the learning process using
BioCyc T2 &3. Under circumstances where BioCyc T2 &3 are excluded from Eq. 3.4, triUMPF identifies
pathway communities from A defined according to MetaCyc. However, when trained with BioCyc T2 &3
connected pathways may be distributed across multiple communities. This happens due to the heterogeneous
nature of the BioCyc collection and presents an opportunity to evaluate the statistical properties of pathway
communities in relation to both taxonomic and functional diversity within the training set.

To explore these properties in more detail, we visualized MetaCyc and BioCyc communities associated
with the tricarboxylic acid (TCA) cycle. The TCA cycle represents a series of reactions central to cellular
metabolism and can be found in different forms called pathway variants in aerobic and anaerobic organismal
genomes. We then visualized the impact of community detection on pathway prediction by comparing
metabolic networks predicted for E. coli K-12 substr. MG1655 (TAX-511145), uropathogenic E. coli str.
CFT073 (TAX-199310), and enterohemorrhagic E. coli O157:H7 str. EDL933 (TAX-155864) using both
PathoLogic (taxonomic pruning) and triUMPF. All experiments were conducted based on the settings in
Section 4.4.

(a) Communities from MetaCyc (b) Communities from BioCyc

Figure 3: TCA cycle and associated pathways. Pathway communities visualized with and without training using
BioCyc T2 &3. (a) MetaCyc communities and (b) BioCyc communities detected using triUMPF. Nodes coloured
black indicate the TCA cycle (TCA) while dark grey nodes indicate associated pathways. Remaining pathway
communities not associated with the TCA cycle are indicated in light grey. PWY-7180: 2-deoxy-α-D-ribose
1-phosphate degradation; PWY-6223: gentisate degradation I.
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(a) PathoLogic (taxonomic pruning) (b) triUMPF

Figure 4: A three way set difference analysis of pathways predicted for E. coli K-12 substr. MG1655 (TAX-
511145), E. coli str. CFT073 (TAX-199310), and E. coli O157:H7 str. EDL933 (TAX-155864) using (a)
PathoLogic (taxonomic pruning) and (b) triUMPF.

Experimental results. Fig. 3a shows pathway communities obtained using MetaCyc, where pathways
associated with the TCA cycle grouped together in the graph according to Aprox. For example, the pyruvate
decarboxylation to acetyl CoA pathway that converts pyruvate to acetyl-CoA as input to the TCA cycle was
identified in the same TCA community. In contrast, triUMPF trained using BioCyc T2 &3 assigned TCA
associated pathways to several distinct communities as exhibited in Fig. 3b. For example, the pathways 2-
deoxy-α-D-ribose 1-phosphate degradation that produces inputs to glycolysis (D-glyceraldehyde-3-phosphate)
and TCA cycle (acetyl-coA), and gentisate degradation I that produces inputs to the TCA cycle (fumarate
and pyruvate) were not grouped in the same TCA community. Closer inspection of the training data
indicated that these pathways appear together in 250 organismal genomes altering the statistical association
of pathway occurrences in the network. In this light, pathway communities reflect less the MetaCyc pathway
ontology and more the statistical properties of the network itself. This aspect of triUMPF can be leveraged
to improve pathway prediction outcomes.

To demonstrate this, we compared pathways predicted for the T1 gold standard E. coli K-12 substr.
MG1655 (TAX-511145) using Pathologic and triUMPF. Supp. Fig.4a shows the results, where both methods
inferred 202 true-positive pathways (green-colored) in common out of 307 expected true-positive pathways
(using EcoCyc as a common frame of reference). In addition, PathoLogic uniquely predicted 39 (magenta-
colored) true-positive pathways while triUMPF uniquely predicted 16 true-positives (purple-colored). This
difference arises from the use of taxonomic pruning in Pathologic which improves the recovery of taxo-
nomically constrained pathways and limits false-positive identification. With taxonomic pruning enabled,
Pathologic inferred 79 false-positive pathways, and over 170 when pruning was disabled. In contrast triUMPF
which does not use taxonomic feature information inferred 84 false-positive pathways. This improvement
over Pathologic with pruning disabled reinforces the idea that pathway communities improve the precision
of pathway prediction with limited impact on overall recall. Based on these results it is conceivable to
train triUMPF on subsets of organismal genomes resulting in more constrained pathway communities for
pangenome analysis. For more information on how community properties impact triUMPF performance see
Supp. Section 6.

To evaluate triUMPF performance on closely related organismal genomes, we performed pathway predic-
tion on E. coli str. CFT073 (TAX-199310), and E. coli O157:H7 str. EDL933 (TAX-155864) and compared
results to the E. coli K-12 reference strain ([31]). Both CFT073 and EDL933 are pathogens infecting the
human urinary and gastrointestinal tracts, respectively. Previously, Welch and colleagues described exten-
sive genomic mosaicism between these strains and K-12, defining a core backbone of conserved metabolic
genes interspersed with genomic islands encoding common pathogenic or niche defining traits ([31]). Nei-
ther CFT073 nor EDL933 genomes are represented in the BioCyc collection of organismal pathway genome
databases. A total of 335 and 319 unique pathways were predicted by PathoLogic and triUMPF, respec-
tively. The resulting pathway lists were used to perform a set-difference analysis with K-12 (Fig. 4). Both
methods predicted more than 200 pathways encoded by all three strains including core pathways like the
TCA cycle (Supp. Fig. 4). CFT073 and EDL933 were predicted to share a single common pathway (TCA
cycle IV (2-oxoglutarate decarboxylase)) by triUMPF. However this pathway variant has not been previously
identified in E. coli and is likely a false-positive prediction based on known taxonomic range. Both Pathologic
and triUMPF predicted the aerobactin biosynthesis pathway involved in siderophore production in CFT073
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consistent with previous observations ([31]). Similarly, four pathways (e.g. L-isoleucine biosynthesis III and
GDP-D-perosamine biosynthesis) unique to EDL933 were inferred by both methods.

Given the lack of cross validation standards for CFT073 and EDL933 we were unable to determine which
method inferred fewer false-positive pathways across the complete set of predicted pathways. Therefore, to
constrain this problem on a subset of the data, we applied GapMind ([24]) to analyze amino acid biosynthetic
pathways encoded in the genomes of the K-12, CFT073 and EDL933 strains. GapMind is a web-based appli-
cation developed for annotating amino acid biosynthetic pathways in prokaryotic microorganisms (bacteria
and archaea) where each reconstructed pathway is supported by a confidence level. After excluding path-
ways that were not incorporated in the training set a total of 102 pathways were identified across the three
strains encompassing 18 amino acid biosynthetic pathways and 27 pathway variants with high confidence
(Supp. Table 3). PathoLogic inferred 49 pathways identified across the three strains encompassing 15 amino
acid biosynthetic pathways and 17 pathway variants while triUMPF inferred 51 pathways identified across
the three strains encompassing 16 amino acid biosynthetic pathways and 19 pathway variants including
L-methionine biosynthesis in K-12, CFT073 and EDL933 that was not predicted by PathoLogic. Neither
method was able to predict L-tyrosine biosynthesis I (see Supp. Materials).

5.4 Metabolic Pathway Prediction

Experimental setup. Pathway prediction potential of triUMPF was evaluated using the parameter
settings described in Section 4.4. The sensitivity of ρ was initially determined across a range of values
{10, 1, 0.1, 0.01, 0.001, 0.0001} using BioCyc as a training set. triUMPF performance on T1 golden datasets
was compared to three additional prediction methods including: i)- MinPath version 1.2 ([33]), which uses
integer programming to recover a conserved set of pathways from a list of enzymatic reactions; ii)- Patho-
Logic version 21 ([16]), which is a symbolic approach that uses a set of manually curated rules to predict
pathways; and iii)- mlLGPR which uses supervised multi-label classification and rich feature information
to predict pathways from a list of enzymatic reactions ([3]). In addition to testing on T1 golden datasets,
triUMPF performance was compared to both Pathologic and mlLGPR on symbiont ([20]), CAMI low com-
plexity data ([26]), and HOTS multi-organismal datasets ([28]). The following metrics were used to report
on performance of pathway prediction algorithms including: average precision, average recall, average F1
score (F1), and Hamming loss as described in ([3]).
Experimental results. Supp. Fig. 8 shows the inverse effect in predictive performance on T1 golden
datasets when decreasing the ρ before reaching a performance plateau at ρ = 0.001. The hyperparameter
ρ in Eq. 3.4 controls the amount of information propagation from M to pathway label coefficients Θ. This
suggests, in practice, lesser constraints should be emphasized on Θ, while not neglecting associations between
EC numbers and pathways indicated in M. Having obtained the optimum value of ρ, we compared triUMPF
performance to that of MinPath, PathoLogic and mlLGPR. As shown in Supp. Table 4, triUMPF achieved
competitive performance against the other methods in terms of average precision with optimal performance
on EcoCyc (0.8662). However, with respect to average F1 scores, it under-performed on HumanCyc and
AraCyc, yielding average F1 scores of 0.4703 and 0.4775, respectively.

To evaluate triUMPF performance on distributed metabolic pathways we used the reduced genomes of
the mealybug symbionts Moranella (GenBank NC-015735) and Tremblaya (GenBank NC-015736) ([20]).
Collectively the two symbiont genomes encode intact biosynthetic pathways for 9 essential amino acids.
Pathologic, mlLGPR, and triUMPF were used to predict pathways on individual symbiont genomes and
a composite genome consisting of both, and resulting amino acid biosynthetic pathway distributions were
determined as illustrated in Supp. Fig. 9. Both triUMPF and PathoLogic predicted 6 of the expected amino
acid biosynthetic pathways on the composite genome while mlLGPR predicted 8 pathways. The pathway for
phenylalanine biosynthesis (L-phenylalanine biosynthesis I ) was excluded from analysis because the associ-
ated genes were reported to be missing during the ORF prediction process. False positives were predicted for
individual symbiont genomes in Moranella and Tremblaya using both methods although pathway coverage
was reduced in relation to the composite genome.

To evaluate triUMPF performance on more complex multi-organismal genomes we used the CAMI low
complexity ([26]) and HOTS datasets ([28]) comparing resulting pathway predictions to both Pathologic
and mlLGPR. For CAMI low complexity triUMPF achieved an average F1 score of 0.5864 in comparison
to 0.4866 for mlLGPR which is trained with more than 2500 labeled pathways (Supp. Table 5). Similar
results were obtained for HOTS (see Supp. Section 7.5). Among a subset of 180 selected water column
pathways, PathoLogic and triUMPF predicted a total of 54 and 58 pathways, respectively, while mlLGPR
inferred 62. From a real world perspective none of the methods predicted pathways for photosynthesis
light reaction nor pyruvate fermentation to (S)-acetoin although both are expected to be prevalent in the
water column. Perhaps, the absence of specific ECs associated with these pathway limits rule-based or ML
prediction. Indeed, closer inspection revealed that the enzyme catabolic acetolactate synthase was missing
from the pyruvate fermentation to (S)-acetoin pathway, which is an essential rule encoded in PathoLogic
and represented as a feature in mlLGPR for predicting that pathway. triUMPF failed to detect this pathway
due to constraints enforced in the meta-level network interactions.
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6 Conclusion

In this paper, we describe triUMPF, a novel ML approach for metabolic pathway inference that combines
three stages of NMF to capture relationships between enzymes and pathways within a network followed by
community detection to extract higher order network structure. First, a Pathway-EC association (M) matrix,
obtained from MetaCyc, is decomposed using the NMF technique to learn a constrained form of the pathway
and EC factors, capturing the microscopic structure of M. Then, we obtain the community structure (or
mesoscopic structure) jointly from both the input datasets and two interaction matrices, Pathway-Pathway
interaction and EC-EC interaction. Finally, the consensus relationships between the community structure
and data, and between the learned factors from M and the pathway labels coefficients are exploited to
efficiently optimize metabolic pathway parameters.

We evaluated triUMPF performance based using a corpora of experimental datasets manifesting diverse
multi-label properties, including manually curated organismal genomes, synthetic microbial communities
and low complexity microbial communities, comparing pathway prediction outcomes to other prediction
methods including PathoLogic ([16]) and mlLGPR ([3]). In the process of benchmarking, we observed that
the BioCyc collection suffers from a class imbalance problem ([13]) where some pathways infrequently occur
across PGDBs. This results in a significant sensitivity loss on T1 golden data, where triUMPF tended
to predict more frequently observed pathways while missing more infrequent pathways. One potential
approach to solve this class-imbalance problem is subsampling the most informative PGDBs for training,
hence, reducing false-positives ([18]).

Despite the observed class imbalance problem, triUMPF improved pathway prediction precision without
the need for taxonomic rules or EC features to constrain metabolic potential. From an ML perspective this
is a promising outcome considering that triUMPF was trained on a reduced number of pathways relative
to mlLGPR. Future development efforts will explore subsampling approaches to improve sensitivty and the
use of constrained taxonomic groups for pangenome and multi-organismal genome pathway inference.
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Ivan Gregor, Stephan Majda, Jessika Fiedler, Eik Dahms, et al. Critical assessment of metagenome
interpretation—a benchmark of metagenomics software. Nature methods, 14(11):1063, 2017.

[27] Mahdi Shafiei, Katherine A Dunn, Hugh Chipman, Hong Gu, and Joseph P Bielawski. Biomenet: A
bayesian model for inference of metabolic divergence among microbial communities. PLoS Comput Biol,
10(11):e1003918, 2014.

[28] Frank J Stewart, Adrian K Sharma, Jessica A Bryant, John M Eppley, and Edward F DeLong. Com-
munity transcriptomics reveals universal patterns of protein sequence conservation in natural microbial
communities. Genome biology, 12(3):R26, 2011.

[29] David Toubiana, Rami Puzis, Lingling Wen, Noga Sikron, Assylay Kurmanbayeva, Aigerim Soltabayeva,
Maria del Mar Rubio Wilhelmi, Nir Sade, Aaron Fait, Moshe Sagi, et al. Combined network analysis
and machine learning allows the prediction of metabolic pathways from tomato metabolomics data.
Communications Biology, 2(1):214, 2019.

[30] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. Community preserving
network embedding. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[31] Rodney A Welch, V Burland, GIII Plunkett, P Redford, P Roesch, D Rasko, EL Buckles, S-R
Liou, A Boutin, Jeremiah Hackett, et al. Extensive mosaic structure revealed by the complete
genome sequence of uropathogenic escherichia coli. Proceedings of the National Academy of Sciences,
99(26):17020–17024, 2002.

[32] Zi Yang and George Michailidis. A non-negative matrix factorization method for detecting modules in
heterogeneous omics multi-modal data. Bioinformatics, 32(1):1–8, 2015.

[33] Yuzhen Ye and Thomas G Doak. A parsimony approach to biological pathway reconstruction/inference
for genomes and metagenomes. PLoS Comput Biol, 5(8):e1000465, 2009.

12

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.27.119826doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.119826
http://creativecommons.org/licenses/by/4.0/


Supplementary - Metabolic pathway inference using non-negative

matrix factorization with community detection

Abdur Rahman M. A. Basher, Ryan J. McLaughlin, and Steven J. Hallam

May 27, 2020

Here, we provide additional terminologies (Section 1) the analytical expression of each individual triUMPF
parameters (Section 2). We then describe the characteristics of different datasets used in testing (Section 3).
Finally, additional experimental results, including adding EC features, network reconstruction and visualization,
and pathway prediction, are provided (Sections 4, 5, 6, & 7). Consult the primary text for the symbol definitions
and the problem formulation.

1 Definitions

Here, we formulate three graphs, one representing associations between pathways and enzymes indicated by
enzyme commission (EC)) numbers, one representing interactions between enzymes and another representing
interactions between pathways.

Definition 1.1. Pathway-EC Association (P2E). Let G′,(path) = {E ,Z(r)} be a subgraph of G(path), such
that E ⊂ R with r � r′ enzymatic reactions. Then, the Pathway-EC association is defined as a matrix
M ∈ Zt×r

≥0 , where each row corresponds to a pathway, and each column represent an EC, such that Mi,j ≥ 1 if
an EC j is in pathway i and 0 otherwise.

Typically, the association matrix M is extremely sparse. Using reaction and pathway graph topology, we
build interaction adjacency matrices as follows.

Definition 1.2. EC-EC Interaction (E2E). Given G′(rxn) ⊂ G(rxn), we define an EC-EC interaction matrix
B ∈ Zr×r

≥0 such that an entry Bi,j is a binary value encoding an interaction between two ECs i and j iff they

both share a compound, i.e., Ω
(c)
i,k ∧ Ω

(c)
j,k = 1 where k ∈ C.

Definition 1.3. Pathway-Pathway Interaction (P2P). Given G(path), we define a Pathway-Pathway in-
teraction matrix A ∈ Zt×t

≥0 such that an entry Ai,j is a binary value indicating an interaction between pathways
i and j iff there exists a reaction k ∈ R where it’s associated compounds are either substrate or product in both
i and j pathways.
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2 Optimization Algorithm Derivation

In this section, we derive the optimization for triUMPF’s objective function:

J =J fact(W,H,U,V) + J comm(C,K) + J path(T,R,Θ,Z,L) (2.1)

where,

J fact(W,H,U,V) = min
W,H,U,V

||M−WH>||2F + λ1||W −PU||2F + λ2||H−EV||2F

+ λ3||U−V||2F + λ4(||W||2F + ||H||2F + ||U||2F + ||V||2F )

s.t. {W,H,U,V} ≥ 0

J comm(C,K) = min
C,K
||Aprox −PTC>||2F + ||Bprox −ERK>||2F + α||C>C− I||2F

+ β||K>K− I||2F + λ5(||C||2F + ||K||2F )

s.t. {C,K} ≥ 0

J path(T,R,Θ,L,Z) = min
T,R,Θ,L,Z

∑
i∈n

∑
k∈t

log
(

1 + e−y
(i)
k Θᵀ

kx
(i)
)

+ ||X− LRK>||2F

+ ||Y − LTC>||2F + ρ||Θ− ZHW>||2F + λ5(||T||2F + ||R||2F )

+ λ6(||Θ||2,1 + ||L||2F + ||Z||2F )

s.t. {T,R} ≥ 0

(2.2)

where M ∈ Zt×r
≥0 is the Pathway-EC association matrix, W ∈ Rt×k stores the latent factors for pathways,

and H ∈ Rr×k, known as the basis matrix, can be thought of as latent factors associated with ECs. The pathway
and EC features are represented by P ∈ Rt×m and E ∈ Rr×m, respectively. Both U ∈ Rm×k and V ∈ Rm×k

are linear transformation matrices. Aprox ∈ Zt×t
≥0 and Bprox ∈ Zr×r

≥0 are two higher order Pathway-Pathway
and EC-EC interaction matrices. The pathway and EC community representation matrices are denoted by
T ∈ Rm×p and R ∈ Rm×v, respectively, while their associated community indicator matrices are symbolized as
C ∈ Rt×p and K ∈ Rr×v, respectively. L ∈ Rn×m and Z ∈ Rr×r are the two auxiliary matrices and Θ ∈ Rt×r

is the weight matrix.
The objective function in Eq. 2.2 is non-convex due to multiple non-negative constraints. Numerous algo-

rithms have been proposed to optimize the objective function, including alternating non-negative least squares
[7] and hierarchical alternating least squares [3]. Here, we employ the original algorithm for NMF which was
introduced in [9] and consists of simple multiplicative update rules (with auxiliary variables) that are based on
the gradient descent technique [5]. Beginning with random positive initialization, element-wise updates of Eq
2.1 w.r.t W, H, U, V, C, K, T, R, Θ, Z, and L at each iteration are applied until convergence. The gradient
descent aims to search for a local minima of the cost function by moving in the direction of its steepest descent.
By introducing Lagrangian multipliers (auxiliary variables), which are ψ, φ, ϕ, %, ζ, $, κ, and ξ to enforce the
constraints for W, H, U, V, C, T, R, K, respectively, Eq. 2.2 can be reformulated as:

J fact(W,H,U,V) = min
W,H,U,V

tr
(

(M−WH>)>(M−WH>)
)

+ λ1tr
(

(W −PU)>(W −PU)
)

+ λ2tr
(

(H−EV)>(H−EV)
)

+ λ3tr
(

(U−V)>(U−V)
)

+ λ4

(
tr(W>W) + tr(H>H) + tr(U>U) + tr(V>V)

)
+ tr(ψW) + tr(φH) + tr(ϕU) + tr(%V)

(2.3)

J comm(C,K) = min
C,K

tr
(

(Aprox −PTC>)>(Aprox −PTC>)
)

+ tr
(

(Bprox −ERK>)>(Bprox −ERK>)
)

+ αtr
(

(C>C− I)>(C>C− I)
)

+ βtr
(

(K>K− I)>(K>K− I)
)

+ λ5

(
tr(C>C) + tr(K>K)

)
+ tr($C) + tr(ξK)

(2.4)
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J path(T,R,Θ,L,Z) = min
T,R,Θ,L,Z

∑
i∈n

∑
k∈t

log
(

1 + e−y
(i)
k Θᵀ

kx
(i)
)

+ tr
(

(X− LRK>)>(X− LRK>)
)

+ tr
(

(Y − LTC>)>(Y − LTC>)
)

+ ρtr
(

(Θ− ZHW>)>(Θ− ZHW>)
)

+ λ5

(
tr(T>T) + tr(R>R)

)
+ λ6

(
||Θ||2,1 + tr(L>L) + tr(Z>Z)

)
+ tr(ζT) + tr(κR)

(2.5)

where tr(.) denotes the trace of a matrix. Using the addition property of the transpose, (X+Y)> = X>+Y>,
and its multiplication property, (XY)> = Y>X>, we can expand the trace of the first term as

tr
(

(M−WH>)>(M−WH>)
)

=tr
(
M>M−M>WH> −W>HM + HW>WH>

)
(2.6)

By expanding the remaining terms in Eq. 2.3 and using the trace of a sum of matrix property, tr(X + Y) =
tr(X) + tr(Y), we obtain the following formula:

J fact(W,H,U,V) = min
W,H,U,V

tr(M>M)− tr(M>WH>)− tr(W>HM) + tr(HW>WH>)

+ λ1

(
tr(W>W)− tr(W>PU)− tr(U>P>W) + tr(U>P>PU)

)
+ λ2

(
tr(H>H)− tr(H>EV)− tr(V>E>H) + tr(V>E>EV)

)
+ λ3

(
tr(U>U)− 2tr(U>V) + tr(V>V)

)
+ λ4

(
tr(W>W) + tr(H>H) + tr(U>U) + tr(V>V)

)
+ tr(ψW) + tr(φH) + tr(ϕU) + tr(%V)

(2.7)

Similar to the process of getting Eq. 2.7, we expand the Eq. 2.4 as:

J comm(C,K) = min
C,K

tr(Aprox>Aprox)− tr(Aprox>PTC>)− tr(CT>P>Aprox) + tr(CT>P>PTC>)

+ tr(Bprox>Bprox)− tr(Bprox>ERK>)− tr(KR>E>Bprox) + tr(KR>E>ERK>)

+ α
(
tr(C>CC>C)− 2tr(C>C) + t

)
+ β

(
tr(K>KK>K)− 2tr(K>K) + r

)
+ λ5

(
tr(C>C) + tr(K>K)

)
+ tr($C) + tr(ξK)

(2.8)

Expand the Eq. 2.5, we obtain the following:

J path(T,R,Θ,L,Z) = min
T,R,Θ,L,Z

∑
i∈n

∑
k∈t

log
(

1 + e−y
(i)
k Θᵀ

kx
(i)
)

+ tr(X>X)− tr(X>LRK>)− tr(KR>L>X) + tr(KR>L>LRK>)

+ tr(Y>Y)− tr(Y>LTC>)− tr(CT>L>Y) + tr(CT>L>LTC>)

+ ρ
(
tr(Θ>Θ)− tr(Θ>ZHW>)− tr(WH>Z>Θ) + tr(WH>Z>ZHW>)

)
+ λ5

(
tr(T>T) + tr(R>R)

)
+ λ6

(
||Θ||2,1 + tr(L>L) + tr(Z>Z)

)
+ tr(ζT) + tr(κR)

(2.9)

As explained earlier, the objective functions in Eqs 2.7, 2.8, and 2.9, are not convex with respect to all
parameters combined. Instead in NMF, W, H, U, V, C, K, T, R, Θ, L, and Z are individually optimized in
an iterative process, where we update one matrix at a time while keeping the remaining matrices fixed. This
ensures that each subproblem converges to the local minima. This methods is called block-coordinate descent.
Hence, the update of parameters occur in the following four alternate optimization steps for J fact: i)- the basis
matrix W, representing pathway factors, ii)- the latent coefficient matrix H, representing EC factors, iii)- the
linear transformation U, and iv)- the other linear transformation V. For J comm, we alternate between the
community indicator matrix C for pathways and the other community indicator matrix K for ECs. Finally, we
optimize, alternatively, the two community representation matrices T and R for pathways and ECs, respectively,
the two auxiliary matrices L and Z, and the input weight matrix Θ. The three sub-objective functions, J fact,
J comm, and J path are run simultaneously in a divide and conquer strategy. Detailed rules for updating all the
variables are outlined below.
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1. Update the basis matrix W. To update the feature matrix W, we fix H, U and V. Then, the
objective function in Eq. 2.7 w.r.t W is reduced to, after dropping min for brevity:

J fact(W) =− tr(M>WH>)− tr(W>HM) + tr(HW>WH>)

+ λ1

(
tr(W>W)− tr(W>PU)− tr(U>P>W)

)
+ λ4tr(W>W) + tr(ψW)

(2.10)

where ψ is the Lagrange multiplier for the constraint W ≥ 0. For computing the gradient of this equation,
we use the following properties with respect to X:

∇Xtr(X>X) =2X

∇Xtr(XY) =Y>

∇Xtr(X>Y) =Y

∇Xtr(X>YX) =(Y + Y>)X

∇Xtr(XYX>) =X(Y> + Y)

∇Xtr(YXZ) =Y>Z>

∇Xtr(YX>Z) =ZY

(2.11)

By computing the gradient of the cost function in Eq. 2.10 w.r.t W to 0, we have:

ψ =2MH− 2W(H>H +Q) + 2λ1PU (2.12)

where Q = (λ1 + λ4). Following the Karush-Kuhn-Tucker (KKT) condition for the nonnegativity of W,
we have the following equation:

2
(
MH−W(H>H +Q) + λ1PU

)
k,j

Wj,k = ψj,kWj,k = 0 (2.13)

Given an initial value of W, the successive updating rule of W is:

W←W ◦ MH + λ1PU

W(H>H +Q)
(2.14)

The iterative update rules in Eq. 2.14 is transformed into multiplicative update rules, which cannot
generate negative elements since all values are positive and only multiplications and divisions are involved
at each iteration [8].

2. Update the latent coefficient matrix H. The feature matrix H is updates as described above in
which W, U and V are fixed to obtain the objective function for Eq. 2.7 w.r.t H as:

J fact(H) =− tr(M>WH>)− tr(W>HM) + tr(HW>WH>)

+ λ1

(
tr(H>H)− tr(H>EV)− tr(V>E>H)

)
+ λ4tr(H>H) + tr(φH)

(2.15)

Taking the derivative of the cost function in Eq. 2.15 w.r.t H to 0 and using the gradient properties in
Eq. 2.11, we obtain the following:

φ =2M>W − 2H(W>W +Q) + 2λ1EV (2.16)

where Q = (λ1 + λ4). With the KKT complementary condition for the nonnegativity of H, we have:

2
(
M>W −H(W>W +Q) + λ1EV

)
j,k

Hj,k = φj,kHj,k = 0 (2.17)

The multiplicative updates after some algebraic manipulation w.r.t parameter H:

H←H ◦ M>W + λ1EV

H(W>W +Q)
(2.18)

3. Update the linear transformation U. Suppose that W, H and V are fixed, then Eq. 2.7 w.r.t U is
reduced to:

J fact(U) =λ1

(
− tr(W>PU)− tr(U>P>W) + tr(U>P>PU)

)
+ λ3

(
tr(U>U)− 2tr(U>V)

)
+ λ4tr(U>U) + tr(ϕU)

(2.19)
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Then we take the derivative of above formula with respect to the transformation matrix U to 0:

ϕ =2λ1P
>W − 2(λ1P

>P +D)U + 2λ3V (2.20)

where D = (λ3 + λ4). Formulating the above equation based on Karush–Kuhn–Tucker conditions for the
nonnegativity of U results in:

2
(
λ1P

>W − (λ1P
>P +D)U + λ3V

)
j,k

Uj,k = ϕj,kUj,k = 0 (2.21)

Then, the parameter U is updated according to:

U←U ◦ λ1P
>W + λ3V

(λ1P>P +D)U
(2.22)

4. Update the linear transformation V. To update the linear transformation matrix V, that W, H and
U are fixed, then the transformation matrix V is updated such that the error is minimized:

J fact(V) =λ2

(
− tr(H>EV)− tr(V>E>H) + tr(V>E>EV)

)
+ λ3

(
− 2tr(U>V) + tr(V>V)

)
+ λ4tr(V>V) + tr(%V)

(2.23)

Taking the derivative of this error with respect to V to 0 and after some manipulations, we have:

% =2λ2E
>H− 2(λ2E

>E +D)V + 2λ3U (2.24)

where D = (λ3 +λ4). Following the Karush–Kuhn–Tucker conditions for the nonnegativity of V, we have:

2
(
λ2E

>H− (λ2E
>E +D)V + λ3U

)
j,k

Vj,k = %j,kVj,k = 0 (2.25)

As usual, the parameter V is updated according:

V←V ◦ λ2E
>H + λ3U

(λ2E>E +D)V
(2.26)

5. Update the community indicator matrix C for pathways. In a similar process, we fix K, and
update C. The matrix C is updated such that the error is minimized:

J (C) =− tr(Aprox>PTC>)− tr(CT>P>Aprox) + tr(CT>P>PTC>)

+ α
(
tr(C>CC>C)− 2tr(C>C)

)
+ λ5tr(C>C) + tr($C)

− tr(Y>LTC>)− tr(CT>L>Y) + tr(CT>L>LTC>)

(2.27)

Taking the derivative of this error with respect to C to 0, we have:

$ =2Aprox>PT + 2Y>LT + 4αC− 2C(T>P>PT + T>L>LT + 2αC>C + λ5) (2.28)

Again, we follow the Karush–Kuhn–Tucker conditions for the nonnegativity of C

2
(
Aprox>PT + Y>LT + 2αC−C(T>P>PT + T>L>LT + 2αC>C + λ5)

)
j,k

Cj,k = $j,kCj,k = 0

(2.29)

The parameter C is updated according:

C←C ◦ Aprox>PT + Y>LT + 2αC

C(T>P>PT + T>L>LT + 2αC>C + λ5)
(2.30)

6. Update the community indicator matrix K for ECs. Once the parameter C is updated, we use it
to update K. The matrix K is updated such that the error is minimized:

J (K) =− tr(Bprox>ERK>)− tr(KR>E>Bprox) + tr(KR>E>ERK>)

+ β
(
tr(K>KK>K)− 2tr(K>K)

)
+ λ5tr(K>K) + tr(ξK)

− tr(X>LRK>)− tr(KR>L>X) + tr(KR>L>LRK>)

(2.31)
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Taking the derivative of this error with respect to K to 0, we have:

ξ =2Bprox>ER + 2X>LR + 4βK− 2K(R>E>ER + R>L>LR + 2βK>K + λ5) (2.32)

Using the Karush–Kuhn–Tucker conditions for the nonnegativity of K, we obtain:

2
(
Bprox>ER + X>LR + 2βK−K(R>E>ER + R>L>LR + 2βK>K + λ5)

)
j,k

Kj,k = ξj,kKj,k = 0

(2.33)

The parameter K is updated according:

K←K ◦ Bprox>ER + X>LR + 2βK

K(R>E>ER + R>L>LR + 2βK>K + λ5)
(2.34)

7. Update the community representation matrix T for pathways. By fixing the parameters C, R,
and K, we update T. The matrix T is updated such that the error is minimized:

J (T) =− tr(Aprox>PTC>)− tr(CT>P>Aprox) + tr(CT>P>PTC>)− tr(Y>LTC>)

− tr(CT>L>Y) + tr(CT>L>LTC>) + λ5tr(T>T) + tr(ζT)
(2.35)

Taking the derivative of this error with respect to T to 0, we have:

ζ =2P>AproxC + 2L>YC− 2(P>CC>P + λ5)T− 2L>LTC>C (2.36)

Using the Karush–Kuhn–Tucker conditions for the nonnegativity of T, we obtain:

2
(
P>AproxC + L>YC− (P>CC>P + λ5)T− L>LTC>C

)
j,k

Tj,k = ζj,kTj,k = 0 (2.37)

The parameter T is updated according:

T←T ◦ P>AproxC + L>YC

(P>CC>P + λ5)T + L>LTC>C
(2.38)

8. Update the community representation matrix R for EC features. By fixing the parameters C,
T, and K, we update R. The matrix R is updated such that the error is minimized:

J (R) =− tr(Bprox>ERK>)− tr(KR>E>Bprox) + tr(KR>E>ERK>)− tr(X>LRK>)

− tr(KR>L>X) + tr(KR>L>LRK>) + λ5tr(R>R) + tr(κR)
(2.39)

Taking the derivative of this error with respect to R to 0, we have:

κ =2E>BproxK + 2L>XK− 2(E>KK>E + λ5)R− 2L>LRK>K (2.40)

Using the Karush–Kuhn–Tucker conditions for the nonnegativity of R, we obtain:

2
(
E>BproxK + L>XK− (E>KK>E + λ5)R− L>LRK>K

)
j,k

Rj,k = κj,kRj,k = 0 (2.41)

The parameter R is updated according:

R←R ◦ E>BproxK + L>XK

(E>KK>E + λ5)R + L>LRK>K
(2.42)

9. Update the weight matrix Θ. By fixing the other parameters, we update Θ. The matrix Θ is updated
such that the error is minimized:

J path(Θ) =
∑
i∈n

∑
k∈t

log
(

1 + e−y
(i)
k Θᵀ

kx
(i)
)

+ ρ
(
tr(Θ>Θ)− tr(Θ>ZHW>)

− tr(WH>Z>Θ)
)

+ λ6||Θ||2,1
(2.43)

where f(.) is a non-lniear sigmoid function, i.e., f(x) = σ(x) = 1
1+e−x . This choice can be generalized to

any non-linear functions. By transforming X with σ(.) and Θ, our method enables pathway prediction.
Taking the derivative of this error with respect to Θ to 0, we have:

∇ΘJ path(Θ) =
1

n

∑
i∈n

∑
k∈t

(
−y

(i)
k x(i)

1 + ey
(i)
k Θ>k x(i)

)
+ 2ρ(Θ− ZHW>) + λ6tr(

Θ

2||Θ||2
) (2.44)
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Due to non-closed form of the above equation, we use iterative gradient descent approach with a defined
learning rate η. Hence, the general update rule for Θ becomes:

Θi+1 ←Θi − η ◦ ∇ΘJ path(Θi) (2.45)

10. Update the auxiliary matrix L. By fixing the rest of parameters in J path, the matrix L is updated
such that the error is minimized:

J path(L) =− tr(X>LRK>)− tr(KR>L>X) + tr(KR>L>LRK>)− tr(Y>LTC>)

− tr(CT>L>Y) + tr(CT>L>LTC>) + λ6tr(L>L)
(2.46)

Taking the derivative of this error with respect to L to 0, we have:

∇LJ path(L) = 2(LTC>CT> + LRK>KR> −YCT> −XKR> + λ6L) (2.47)

The parameter L is updated according:

Li+1 ←Li − η ◦ ∇LJ path(Li) (2.48)

11. Update the auxiliary matrix Z. By fixing the rest of parameters in J path, the matrix Z is updated
such that the error is minimized:

J path(Z) =− ρtr(Θ>ZHW>)− ρtr(WH>Z>Θ) + ρtr(WH>Z>ZHW>) + λ6tr(Z>Z) (2.49)

Taking the derivative of this error with respect to Z to 0, we have:

∇ZJ path(Z) = 2(ρZHW>WH> − ρΘWH> + λ6Z) (2.50)

The parameter Z is updated according to gradient descent approach as:

Zi+1 ←Zi − η ◦ ∇ZJ path(Zi) (2.51)

3 Dataset Characteristics

We report the performance of triUMPF using i)- T1 golden dataset consisting of six PGDBs from the BioCyc
collection (biocyc) including EcoCyc (v21), HumanCyc (v19.5), AraCyc (v18.5), YeastCyc (v19.5), LeishCyc
(v19.5), and TrypanoCyc (v18.5), ii)- low complexity data from Moranella (GenBank NC-015735) and Tremblaya
(GenBank NC-015736) symbiont genomes encoding distributed metabolic pathways for amino acid biosynthesis
([10]), iii)- the Critical Assessment of Metagenome Interpretation (CAMI) initiative low complexity dataset
(edwards.sdsu.edu/research/cami-challenge-datasets/), consisting of 40 genomes ([12]), and iv)- whole genome
shotgun sequences from the Hawaii Ocean Time Series (HOTS) at 25m, 75m, 110m (sunlit) and 500m (dark)
ocean depth intervals downloaded from the NCBI Sequence Read Archive under accession numbers SRX007372,
SRX007369, SRX007370, SRX007371 ([13]). T1 PGDBs were refined to include only those pathways that cross-
intersect with the MetaCyc database (v21) ([1]). Training data was obtained from BioCyc (v20.5 T2 & 3) ([2]),
consisting of 9255 Pathway/Genome Databases (PGDBs) with 1463 distinct pathway labels constructed using
the Pathway Tools software ([6]). The detailed characteristics of the datasets are summarized in Table 1. For
each dataset S, we use |S| and L(S) to represent the number of instances and pathway labels, respectively. In
addition, we also present some characteristics of the multi-label datasets, which are denoted as:

1. Label cardinality (LCard(S) = 1
n

∑i=n
i=1

∑j=t
j=1 I[Yi,j 6= −1]), where I is an indicator function. It denotes

the average number of pathways in S.

2. Label density (LDen(S) = LCard(S)
L(S) ). This is simply obtained through normalizing LCard(S) by the

number of total pathways in S.

3. Distinct label sets (DL(S)). This notation indicates the number of distinct pathways in S.

4. Proportion of distinct label sets (PDL(S) = DL(S)
|S| ). It represents the normalized version of DL(S), and

is obtained by dividing DL(.) with the number of instances in S.

The notations R(S), RCard(S), RDen(S), DR(S), and PDR(S) have similar meanings for the enzymatic reac-
tions E in S. Finally, PLR(S) represents a ratio of L(S) to R(S).
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Dataset |S| L(S) LCard(S) LDen(S) DL(S) PDL(S) R(S) RCard(S) RDen(S) DR(S) PDR(S) PLR(S) Domain
AraCyc 1 510 510 1 510 510 2182 2182 1 1034 1034 0.2337 Arabidopsis

thaliana
EcoCyc 1 307 307 1 307 307 1134 1134 1 719 719 0.2707 Escherichia

coli K-
12 sub-
str.MG1655

HumanCyc 1 279 279 1 279 279 1177 1177 1 693 693 0.2370 Homo sapi-
ens

LeishCyc 1 87 87 1 87 87 363 363 1 292 292 0.2397 Leishmania
major
Friedlin

TrypanoCyc 1 175 175 1 175 175 743 743 1 512 512 0.2355 Trypanosoma
brucei

YeastCyc 1 229 229 1 229 229 966 966 1 544 544 0.2371 Saccharomyces
cerevisiae

Symbiotic 3 119 39.6667 0.3333 59 19.6667 304 101.3333 0.3333 130 43.3333 0.3914 Composed
of
Moranella
and Trem-
blaya

CAMI 40 6261 156.5250 0.0250 674 16.8500 14269 356.7250 0.0250 1083 27.0750 0.4388 Simulated
micro-
biomes
of low
complexity

HOT 4 2178 311.1429 0.1429 781 111.5714 182675 26096.4286 0.1429 1442 206.0000 0.0119 Metagenomic
Hawaii
Ocean
Time-series
(10m, 75m,
110m, and
500m)

BioCyc 9255 1804003 194.9220 0.0001 1463 0.1581 8848714 956.1009 0.0001 2705 0.2923 0.2039 BioCyc
version
20.5 (tier 2
& 3)

Table 1: Characteristics of the experimental datasets. The notations |S|, L(S), LCard(S), LDen(S), DL(S),
and PDL(S) represent: number of instances, number of pathway labels, pathway labels cardinality, pathway
labels density, distinct pathway labels set, and proportion of distinct pathway labels set for S, respectively. The
notations R(S), RCard(S), RDen(S), DR(S), and PDR(S) have similar meanings for the enzymatic reactions
E in S. PLR(S) represents a ratio of L(S) to R(S). The last column denotes the domain of S.

4 Incorporating EC Features

For pathway prediction, the EC features are concatenated into each example i according to:

x̃(i) = x(i) ⊕ 1

r
x(i)E (4.1)

where ⊕ indicates the vector concatenation operation, E ∈ Rr×m corresponds the feature matrix of ECs
and m = 128. The addition of features results in a dimension of size r + m, where r = 3650. We expect
by incorporating enzymatic reactions features into the original r dimensional example x(i), the modified x̃(i)

summarizes informative characteristics, which are likely to be useful in the prediction task.

4.1 Parameter Sensitivity

Fig. 1 shows the effect of rank k on triUMPF performance. In general, we observe that the performance is
static across k values. This is in contrast to standard NMF where the reconstruction cost decreases as the
number of features increases. This is expected because, unlike standard NMF, triUMPF exploits two types
of correlations to recover M: i)- within ECs or pathways and ii)- betweenness interactions, hence, serving as
additional regularizers. As observed from Fig. 1, higher k(k = 100) values result in improved outcomes.

5 Network Reconstruction

In this section, we examined the robustness of triUMPF when exposed to noise. As indicated in the main
manuscript, links were randomly removed from M, A, and B according to ε ∈ {20%, 40%, 60%, 80%}. We
used the partially linked matrices to refine parameters while comparing the reconstruction cost against the
full association matrices M, A and B. Specifically for M, we varied components of M according to k ∈
{20, 50, 70, 90, 120} along with ε. For all experiments, BioCyc was used for training using the hyperparameters
described in the paper Section 3.4.
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Figure 1: Sensitivity of components k based on reconstruction cost.

Fig. 3a shows that, in general, by progressively increasing noise ε to M, the reconstruction cost increases
when k is low. As more features are incorporated the cost at all noise levels steadily decreases up to k = 100.
This tendency indicates that both pathway and EC features (P and E contain useful correlations that contribute
to the resilience of triUMPF’s performance when M is perturbed. For Aprox and Bprox, as shown in Supp
Figs 3b and 3b, the costs are reduced in the presence of noise, which is not surprising as the reconstruction of
associated communities are constrained on both data and Aprox and Bprox. These results are directly linked
to the sparseness of both matrices, as previously described in ([4]). For community detection, it is sufficient to
group nodes that are densely connected, while links between communities can remain sparse. The same line of
reasoning follows for the EC network.

6 Visualization

We compared the Pathologic predicted pathways with triUMPF’s results on MG1655 where its true pathways
can be obtained from golden T1 EcoCyc. Fig. 4 shows pathways predicted from MG1655 4a, CFT073 4b, and
EDL933 4c by both Pathologic (taxonomic pruning) and triUMPF methods. Since true pathways of MG1655
can be obtained from golden T1 EcoCyc, we have extra color coding for nodes.

Table 2 outlines the top 5 community indices with their associated pathways as predicted by triUMPF for
the Escherichia coli K-12 substr. MG1655 (TAX-511145). Since the pathway information of this species is
encoded in EcoCyc, it is possible to determine the true pathways (indicated by the “Status” column in the
table) by mapping the predicted pathways onto EcoCyc. As can be seen, pathways in Table 2 were inferred as
a consequence of communities.

Fig. 5 shows 18 amino acid pathways predicted by triUMPF and PathoLogic (taxonomic pruning) according
to GapMind [11] for the three strains where each reconstructed pathway is supported by a confidence level. We
excluded pathways that were not incorporated in the training set. This resulted in a total of 102 pathways
identified across the three strains encompassing 18 amino acid biosynthetic pathways and 27 pathway variants
with high confidence (Table 3). In contrast, PathoLogic inferred 49 pathways identified across the three strains
encompassing 16 amino acid biosynthetic pathways and 17 pathway variants while triUMPF inferred 51 pathways
identified across the three strains encompassing 17 amino acid biosynthetic pathways and 19 pathway variants
including L-methionine biosynthesis in K-12, CFT073 and EDL933 that was not predicted by PathoLogic.
Neither method was able to predict L-tyrosine biosynthesis I.

We also analyzed pathways using non taxonomic pruning option for PathoLogic. Fig. 6 shows that Patho-
Logic infers more pathways that may not correspond to prokaryotes. To validate this observation, we invoked
GapMind [11] to analyze 18 amino acid biosynthesis pathways. Based on GapMind results, PathoLogic in-
ferred 56 pathways identified across the three strains encompassing 15 amino acid biosynthetic pathways and 21
pathway variants, including L-proline biosynthesis II (from arginine) pathway that is known only for eukaryotes.
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Figure 2: Sensitivity of community size and higher order proximity with weights based on reconstruction cost.

7 Metabolic Pathway Prediction

Here, we investigate the effectiveness of triUMPF for the pathway prediction task on T1 golden datasets,
Symbiont [10], CAMI low complexity data [12], and HOTS datasets [13].

7.1 Impact of ρ

Fig. 8 shows the inverse effect in predictive performance on T1 golden datasets when decreasing the ρ before
reaching a performance plateau at ρ = 0.001. This suggests, in practice, lesser constraints should be emphasized
on Θ, while not neglecting associations between EC numbers and pathways indicated in M.

7.2 Pathway Prediction from Golden data

For this case study, we compare the performance of triUMPF on 6 benchmark datasets, as described in Section 3,
against the other pathway prediction algorithms using four evaluation metrics: Hamming loss, average precision,
average recall, and average F1 score. As shown in Table 4, triUMPF achieved competitive performance against
the other methods in terms of average precision. In particular, triUMPF yielded 0.8662 (average precision) on
EcoCyc. However, w.r.t. average F1 scores, it underperformed on HumanCyc and AraCyc, yielding average
F1 scores of 0.4703 and 0.4775, respectively. This is due to the limited number of pathway labels available for
training.
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Figure 3: Link prediction results by varying noise levels ε ∈ {20%, 40%, 60%, 80%} based on reconstruction cost.

(a) TAX-511145 (b) TAX-199310 (c) TAX-155864

Figure 4: Pathway community networks for related T1 and T3 organismal genomes. Pathway communities
for (a) E. coli K-12 substr. MG1655 (TAX-511145), (b) E. coli str. CFT073 (TAX-199310), and (c) E. coli
O157:H7 str. EDL933 (TAX-155864) based on community detection. Nodes colored in dark grey indicate
pathways predicted by PathoLogic; lime pathways predicted by triUMPF; salmon pathways predicted by both
PathoLogic and triUMPF; red expected pathways not predicted by both PathoLogic and triUMPF; magenta
expected pathways predicted only by PathoLogic; purple expected pathways predicted solely by triUMPF;
and green expected pathways predicted by both PathoLogic and triUMPF. light-grey indicates pathways not
expected to be encoded in either organismal genome. The node sizes reflect the degree of associations between
pathways.

7.3 Predicted Pathways from Symbiont data

We analyze pathways from each individual genome and their combinations. Fig. 9 shows that both triUMPF and
PathoLogic predicted 6 pathways on combined genomes, which again attests the novelty of triUMPF method.
For the phenylalanine pathway (L-phenylalanine biosynthesis I ), genes were reported to be missing during the
ORF prediction process, henceforth, we excluded this pathway from outputs. However, both methods inferred
some false-positive pathways. For example, Both methods predicted L-tryptophan biosynthesis pathway in both
Moranella and combined, despite it was reported that this pathway requires a set of genes from both Tremblaya
and Moranella ([10]), hence, this pathway should not be recovered for Moranella.

7.4 Pathway Prediction from CAMI data

In this section, we contrast triUMPF with mlLGPR (using elastic net penalty with reaction and pathway
evidence features) on CAMI low complexity dataset. From Table 5, we observe that triUMPF outperformed
mlLGPR, achieving an average F1 score of 0.5864 in compare to 0.4866 for mlLGPR. This is outstanding, given
the fact triUMPF was trained on a reduced number of labels.
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Figure 5: Comparison of predicted pathways for E. coli K-12 substr. MG1655 (TAX-511145), E. coli str. CFT073
(TAX-199310), and E. coli O157:H7 str. EDL933 (TAX-155864) datasets between PathoLogic (taxonomic
pruning) and triUMPF. Red circles indicate that neither method predicted a specific pathway while green
circles indicate that both methods predicted a specific pathway. Lime circles indicate pathways predicted solely
by mlLGPR and gray circles indicate pathways solely predicted by PathoLogic.The size of circles corresponds
the associated coverage information.
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Community Index MetaCyc Pathway ID MetaCyc Pathway Name Status

67

PWY0-1182 trehalose degradation II (trehalase) true
PWY-6910 hydroxymethylpyrimidine salvage true
HOMOSER-THRESYN-PWY L-threonine biosynthesis true
PUTDEG-PWY putrescine degradation I true
PWY-6611 adenine and adenosine salvage V true
FERMENTATION-PWY mixed acid fermentation true
ENTNER-DOUDOROFF-PWY Entner-Doudoroff pathway I true

34

ASPARAGINESYN-PWY L-asparagine biosynthesis II true
PWY-5340 sulfate activation for sulfonation true
PWY-6618 guanine and guanosine salvage III true
PWY0-1314 fructose degradation true
PWY-7181 pyrimidine deoxyribonucleosides degradation true
PWY0-1299 arginine dependent acid resistance true
PWY0-42 2-methylcitrate cycle I true

9

NAGLIPASYN-PWY lipid-A-precursor biosynthesis (E. coli) true
PWY-7221 guanosine ribonucleotides de novo biosynthesis true
KDOSYN-PWY Kdo transfer to lipid IVA I (E. coli) true
PWY0-1309 chitobiose degradation true
PPGPPMET-PWY ppGpp biosynthesis true
PWY-6608 guanosine nucleotides degradation III true
PWY-5656 mannosylglycerate biosynthesis I false

47

PLPSAL-PWY pyridoxal 5’-phosphate salvage I true
PWY0-1313 acetate conversion to acetyl-CoA true
PYRUVDEHYD-PWY pyruvate decarboxylation to acetyl CoA true
PWY-4381 fatty acid biosynthesis initiation (bacteria and plants) true
PWY0-662 PRPP biosynthesis true

81

HISTSYN-PWY L-histidine biosynthesis true
PWY-6147 6-hydroxymethyl-dihydropterin diphosphate biosynthesis I true
PWY-7176 UTP and CTP de novo biosynthesis true
PWY-6932 selenate reduction false

Table 2: Top 5 communities with pathways predicted by triUMPF for Escherichia coli K-12 substr. MG1655
(TAX-511145). The last column asserts whether a pathway is present in or absent (a false-positive pathway)
from EcoCyc.

7.5 Predicted Pathways from HOTS data

We applied triUMPF to infer a set of pathways from HOT metegenomics data. The results are presented in
Fig. 10. Among selected 80 pathways, PathoLogic and triUMPF retrieved a total of 54 and 58 pathways,
respectively, while mlLGPR detected 62 pathways. Again this results demonstrate the novelty of triUMPF
which is trained on a reduced number of pathways. However, all energy pathways, namely photosynthesis light
reaction and pyruvate fermentation to (S)-acetoin, are not recovered although they are abundant along the
water columns. Perhaps, the absence of some ECs associated with those pathways is the prime reason for not
detecting them. Indeed it is the case, for example, the enzyme catabolic acetolactate synthase (EC-2.2.1.6) is
reported to be missing for pyruvate fermentation to (S)-acetoin pathway.
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Figure 6: A three way set analysis of predicted pathways for E. coli K-12 substr. MG1655 (TAX-511145), E.
coli str. CFT073 (TAX-199310), and E. coli O157:H7 str. EDL933 (TAX-155864) predicted by (a) PathoLogic
(without taxonomic pruning) and (b) triUMPF.

Methods
Hamming Loss ↓

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.0610 0.0633 0.1188 0.0424 0.0368 0.0424
MinPath 0.2257 0.2530 0.3266 0.2482 0.1615 0.2561
mlLGPR 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590
triUMPF 0.0435 0.0954 0.1560 0.0649 0.0443 0.0776

Methods
Average Precision Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.7230 0.6695 0.7011 0.7194 0.4803 0.5480
MinPath 0.3490 0.3004 0.3806 0.2675 0.1758 0.2129
mlLGPR 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455
triUMPF 0.8662 0.6080 0.7377 0.7273 0.4161 0.4561

Methods
Average Recall Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.8078 0.8423 0.7176 0.8734 0.8391 0.7829
MinPath 0.9902 0.9713 0.9843 1.0000 1.0000 1.0000
mlLGPR 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914
triUMPF 0.7590 0.3835 0.3529 0.3319 0.7126 0.6229

Methods
Average F1 Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.7631 0.7460 0.7093 0.7890 0.6109 0.6447
MinPath 0.5161 0.4589 0.5489 0.4221 0.2990 0.3511
mlLGPR 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768
triUMPF 0.8090 0.4703 0.4775 0.4735 0.5254 0.5266

Table 4: Predictive performance of each comparing algorithm on 6 benchmark datasets. For each
performance metric, ‘↓’ indicates the smaller score is better while ‘↑’ indicates the higher score is better.
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Figure 7: Comparison of predicted pathways for E. coli K-12 substr. MG1655 (TAX-511145), E. coli str.
CFT073 (TAX-199310), and E. coli O157:H7 str. EDL933 (TAX-155864) datasets between PathoLogic (with-
out taxonomic pruning) and triUMPF. Red circles indicate that neither method predicted a specific pathway
while green circles indicate that both methods predicted a specific pathway. Lime circles indicate pathways
predicted solely by mlLGPR and gray circles indicate pathways solely predicted by PathoLogic.The size of
circles corresponds the associated coverage information.

16

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.27.119826doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.119826
http://creativecommons.org/licenses/by/4.0/


10 1 0.1 0.01 0.001 0.0001
ρ

20

40

60

80

100

A
ve

ra
ge

F1
-S

co
re

AraCyc
EcoCyc

HumanCyc
LeishCyc

TrypanoCyc
YeastCyc

Figure 8: Effect of ρ based on average F1 score using golden datasets.

Figure 9: Comparative study of predicted pathways for symbiotic data between PathoLogic, mlLGPR, and
triUMPF. The size of circles corresponds the associated abundance information.

Metric mlLGPR triUMPF
Hamming Loss (↓) 0.0975 0.0436
Average Precision Score (↑) 0.3570 0.7027
Average Recall Score (↑) 0.7827 0.5101
Average F1 Score (↑) 0.4866 0.5864

Table 5: Predictive performance of mlLGPR and triUMPF on CAMI low complexity data.
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Figure 10: Comparative study of predicted pathways for HOT DNA samples. The size of circles corresponds
the associated abundance information.
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