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ABSTRACT 
 
Selective sweeps are thought to play a significant role in shaping patterns of variability 

across genomes; accurate predictions of their effects are, therefore, important for 

understanding these patterns.  A commonly used model of selective sweeps assumes that 

alleles sampled at the end of a sweep, and that fail to recombine with wild-type haplotypes 

during the sweep, coalesce instantaneously, leading to a simple expression for sweep 

effects on diversity. It is shown here that there can be a significant probability that a pair of 

alleles sampled at the end of a sweep coalesce during the sweep before a recombination 

event can occur, reducing their expected coalescent time below that given by the simple 

approximation. Expressions are derived for the expected reductions in pairwise neutral 

diversities caused by both single and recurrent sweeps in the presence of such within-sweep 

coalescence, although the effects of multiple recombination events during a sweep are only 

treated heuristically. The accuracies of the resulting expressions were checked against the 

results of simulations. For even moderate ratios of the recombination rate to the selection 

coefficient, the simple approximation can be substantially inaccurate. The selection model 

used here can be applied to favorable mutations with arbitrary dominance coefficients, to 

sex-linked loci with sex-specific selection coefficients, and to inbreeding populations. Using 

the results from this model, the expected differences between the levels of variability on X 

chromosomes and autosomes with selection at linked sites are discussed, and compared 

with data on a population of Drosophila melanogaster. 
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Maynard Smith and Haigh (1974) introduced the concept of hitchhiking into population 

genetics, showing how the spread of a favorable mutation reduces the level of neutral 

variability at a linked locus. Nearly twenty years later, it was shown that selection against 

recurrent deleterious mutations can also reduce variability, by the hitchhiking process known 

as background selection (Charlesworth et al. 1993). It is, therefore, preferable to use the term 

“selective sweep” (Berry and Kreitman 1993) for the hitchhiking effects of favorable 

mutations. There is now a large theoretical and empirical literature on both types of 

hitchhiking, recently reviewed by Walsh and Lynch (2018) and Stephan (2019). With 

sufficiently weak selection, recurrent partially recessive deleterious mutations can also 

increase, rather than reduce, variability at linked sites, because fluctuations in their 

frequencies due to genetic drift create associative overdominance (Zhao and Charlesworth 

2016; Becher et al. 2020; Gilbert et al. 2020). The expected effects of all three processes on 

pairwise diversity at a neutral site can be described by the same general formula (Zhao and 

Charlesworth 2016), which is a consequence of the Price-Robertson equation for the change 

in the mean of a trait induced by its additive genetic covariance with fitness (Robertson 1968; 

Price 1970). 

 These theoretical studies have provided the basis for methods for inferring the nature and 

parameters of selection from population genomic data, recently reviewed by Booker et al. (2017). 

Several recent studies have concluded that the level of DNA sequence variability in a species is 

often much smaller than would be expected in the absence of selection (Corbett-Detig et al. 2015; 

Elyashiv et al. 2016; Campos et al. 2017; Comeron 2017), especially for synonymous sites in 

coding sequences, reflecting both the effects of both selective sweeps and background selection 

(BGS). However, estimates of the parameters involved differ substantially among different studies. 

There is also an ongoing debate about the extent to which the level of genetic variability in a 

species is controlled by classical genetic drift, reflecting its population size, or by the effects of 

selection in removing variability. The possibility that the effects of selective sweeps dominate over 

drift was originally raised by Maynard Smith and Haigh (1974), and later advocated by (Kaplan et 

al. (1989) and Gillespie (2002); see Kern and Hahn (2018) and Jensen et al. (2019) for recent 

discussions of this question. 

 The model of Maynard Smith and Haigh (1974) assumed that the trajectory of the 

selectively favored allele was purely deterministic. Kaplan et al. (1989) developed a representation 

of the dual processes of recombination and coalescence during a sweep, which allowed for 

stochastic effects on the frequency of the selected allele when it is either rare or very common. 
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This approach enabled calculations of the effect of a sweep on both pairwise diversity and the site 

frequency spectrum, but did not provide simple formulae. Explicit formulae for the effect of a 

sweep on pairwise diversity that removed the assumption of a purely deterministic trajectory were 

derived by Stephan et al. (1992) using diffusion equations. Barton (1998, 2000) developed an 

alternative approach using a combination of branching processes and diffusion equations, from 

which the properties of a post-sweep sample of n alleles could be calculated. Kaplan et al. (1989), 

Stephan et al. (1992), Wiehe and Stephan (1993), Barton (2000), Kim and Stephan (2000) and 

Gillespie (2002) also analyzed the effects of recurrent selective sweeps, treating coalescent events 

caused by classical genetic drift and by sweeps as competing exponential processes. All of these 

approaches assumed either a haploid population or an autosomal locus with semi-dominant fitness 

effects. 

 A great simplification in such calculations was achieved by the following approximation, 

proposed by Barton (1998, 2000) and extended by Durrett and Schweinsberg (2004) – see also 

Coop and Ralph (2012). This approach is based on two assumptions. The first is that the fixation of 

a favorable mutation happens so fast that non-recombinant alleles at a linked neutral site, sampled 

after the completion of the sweep, coalesce at such a high rate that their coalescence time is 

negligible relative to that under neutrality. The second is that linkage is sufficiently tight that at 

most a single recombination event occurs during the sweep, placing a neutral site onto a wild-type 

background with which it remains associated throughout the sweep. These assumptions mean that 

the gene genealogy for a set of alleles sampled immediately after a sweep, and that failed to 

recombine onto the wild-type background, has a “star-like” shape. The reduction in diversity and 

site frequency spectrum at the neutral site can then be calculated in a straightforward fashion 

(Barton 2000; Durrett and Schweinsberg 2004; Kim 2006; Weissman and Barton 2012; Coop and 

Ralph 2012). This approximation provides the basis for detecting recent sweeps in the popular 

programs SweepFinder (Nielsen et al. 2005) and Sweed (Pavlidis et al. 2013). It can readily be 

incorporated into models of recurrent selective sweeps (Barton 2000; Weissman and Barton 2012; 

Berg and Coop 2015; Elyashiv et al. 2016; Campos et al. 2017; Campos and Charlesworth 2019), 

which has stimulated the development of methods for  estimating the parameters of recurrent 

sweeps from population genomic data (Elyashiv et al. 2016; Campos et al. 2017; Campos and 

Charlesworth 2019). 

 This approach is likely to be accurate for favorable mutations that are sufficiently strongly 

selected that their time to fixation is short compared with the expected neutral coalescent time of 

2Ne	generations (where Ne	is the effective population size), especially when the ratio of the 
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recombination rate to the selection coefficient is small. Recent population genomic analyses 

suggest, however, that there may be important contributions from relatively weakly selected 

favorable mutations, which can take as long as 10% or more of the neutral coalescent time	to 

become fixed (Sella et al. 2009; Keightley et al. 2016; Chen et al. 2020). In such cases, the time to 

coalescence during the sweep cannot necessarily be neglected, and the assumption that a pair of 

non-recombined alleles are identical in state leads to an overestimate of diversity at the end of the 

sweep, especially with very low rates of recombination. In contrast, coalescence during the sweep 

competes with recombination, so that calculating the probability that one of a pair of alleles 

recombines onto the wild-type background without including the probability that they have 

escaped prior coalescence underestimates the effect of a sweep (Barton 1998). More generally, 

when the assumption that the duration of a sweep is negligible compared with the neutral 

coalescent time is invalid, the mean coalescent time of a pair of alleles cannot accurately be 

calculated simply from the probability that they escape recombination onto the wild-type 

background. 

 The present paper describes a general analytical model of selective sweep effects on the 

mean time to coalescence of a pair of alleles at a linked neutral locus (which determines the 

expected pairwise neutral diversity), for the case of weak selection at a single locus, where the 

selection coefficient is sufficiently small that a differential equation can used instead of a 

difference equation. This is based on a recent study of the expected time to fixation of a favorable 

mutation in a single population (Charlesworth 2020), which provided a general framework for 

analyzing both autosomal and sex-linked inheritance with arbitrary levels of inbreeding and 

dominance.  

 The resulting formulae, which include a heuristic treatment of multiple recombination 

events, enable predictions of the effects on diversity of both a single sweep and recurrent selective 

sweeps, and allow for the action of BGS as well as sweeps. Hartfield and Bataillon (2020) have 

recently presented similar results for an autosomal locus with coalescence during a sweep, in the 

case of a single sweep in the absence of BGS, but without modelling multiple recombination 

events. Only hard sweeps will be considered here, although it is straightforward to extend the 

models to soft sweeps by the approach of Berg and Coop (2015) and Hartfield and Bataillon 

(2020). The validity of the approximations is tested against computer simulations, including those 

of Campos and Charlesworth (2019) and Hartfield and Bataillon (2020). For the sake of brevity, 

these papers will be referred to as CC and HB, respectively. 
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Methods 

Simulating the effect of a single sweep  

The algorithm described by Equations 27 of Tajima (1990) was used to calculate the effects of a 

sweep on pairwise diversity at a neutral locus with an arbitrary degree of linkage to a selected 

locus with two alleles, A1 and A2, where A2 is the selectively favored allele. A Wright-Fisher 

population with constant size N was assumed. The equations provide three coupled, forward-in- 

time recurrence relations for the expected diversities at the neutral locus for pairs of alleles 

carrying either A1 or A2, and for the divergence between A1 and A2 alleles. These are conditioned 

on a given generation-by-generation trajectory of allele frequencies at the selected locus, and 

assume an infinite sites model of mutation and drift (Kimura 1971).  

 The initial conditions for a simulation run were that a single A2 allele was introduced into 

the population, with zero expected pairwise diversity at the associated neutral locus; the expected 

pairwise diversity among A1	alleles and the divergence between A1 and A2 were equal to those for 

an equilibrium population in the absence of selection, q = 4Nu, where u is the neutral mutation 

rate. Since only diversities relative to q are of interest here, q was set to 0.001 in order to satisfy 

the infinite sites assumption for the neutral locus. The expected change in the frequency q of A2	
in a given generation for an assigned selection model was calculated using the standard discrete-

generation selection formulation (see the section Theoretical Results for details of the models of 

selection). Binomial sampling using the frequency after selection and 2N as parameters was used 

to obtain the value of q in the next generation. Equations 27 of Tajima (1990) were applied to the 

old value of q in order to obtain the state of the neutral locus in the new generation.  

 This procedure was repeated generation by generation until A2 was lost or fixed; only 

runs in which A2 was lost were retained, and the value of the pairwise diversity among A2	alleles 

at the time of its fixation was determined. This gives the expected diversity after a sweep 

conditional on a given trajectory, so that an estimate of the overall expected diversity relative to 

q  can be found by taking the mean over a large number of replicate simulations. It was found 

that 100 replicates were sufficient to produce a standard error of 2% or less of the mean. The 

value of N was chosen so that the selection coefficient s for a given value of the scaled selection 

parameter g =	2Ns was sufficiently small that terms of order s2 could be neglected, to satisfy the 

assumptions of the model described in the Theoretical Results section. 

 

Recurrent sweeps: simulation methods 
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For checking the theoretical predictions concerning recurrent sweeps, the simulation results 

described in CC were used. These involved groups of linked autosomal genes separated by 2 

kilobases of selectively neutral intergenic sequence, with all UTR sites and 70% of 

nonsynonymous (NS) sites subject to both positive and negative selection, and the same 

selection parameters for 5´and 3´ UTRs (see Figure 1 of CC). There were 5 exons of 300 

basepairs (bp) each, interrupted by 4 introns of 100bp. The lengths of the 5´and 3´ UTRs 

were 190bp and 280bp, respectively. The selection coefficients for favorable and deleterious 

mutations at the NS and UTR sites, and the proportions of mutations at these sites that were 

favorable, were chosen to match the values inferred by Campos et al. (2017) from the relation 

between the synonymous diversity of a gene and its rate of protein sequence evolution. Both 

favorable and deleterious mutations were assumed to be semidominant.  

 Five different rates of reciprocal crossing over (CO) were used to model 

recombination, which were chosen to be multiples of the approximate standard autosomal 

recombination rate in Drosophila melanogaster, adjusted by a factor of ½ to take into 

account the absence of recombinational exchange in males (Campos et al. 2017): 0.5	x	10-8,	1	

x	10-8,	1.5	x	10-8,	2	x	10-8	and	2.5	x	10-8	cM/Mb, respectively, where 10-8 is the mean rate 

across the genome.  

 The simulations were run with and without BGS acting on both NS and UTR sites, 

and with and without non-crossover associated gene conversion events. Cases with gene 

conversion assumed a rate of initiation of conversion events of 1	x	10-8 cM/Mb for autosomes 

(after correcting for the lack of gene conversion in males), and a mean tract length of 440 bp, 

with an exponential distribution of tract lengths.    

 

Recurrent sweeps at multiple sites: numerical predictions based on analytical formulae 

A single gene is considered in the analytical models, so that a linear genetic map can be 

assumed, because there is a negligible frequency of double crossovers. The CO contribution 

to the frequency of recombination between a pair of sites separated by z basepairs is rcz, 

where z	 is the physical distance between the neutral and selected sites and rc		is the CO rate 

CO per bp. 

 An important point regarding the cases with gene conversion should be noted here. 

CC stated that, because the simulation program they used (SLiM 1.8) modeled gene 

conversion by considering only events that are initiated on one side of a given nucleotide site, 

the rate of initiation of a gene conversion tract covering this site is one-half of that used in the 
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standard formula for the frequency of recombination caused by gene conversion; see 

Equation 1 of Frisse et al. (2001).  However, this statement is incorrect, because it overlooks 

the fact that the standard model of gene conversion assumes that there are equal probabilities 

of a tract moving towards and away from the site. If tracts are constrained to move in one 

direction, the net probability that a tract started at a random point moves towards a given site 

is the same as in the standard formula, for a given probability of initiation of a tract.  
 Since no derivation of the formula of Frisse et al. (2001) appears to have been given, 

one is provided in Section S1 of File S1, which makes this point explicit (Equation S5 is 

equivalent to the formula in question). Gene conversion tract lengths are assumed to be 

exponentially distributed, with a mean tract length of dg, and a probability of initiation rg. It 

follows that the effective rates of initiation of gene conversion events (rg) used in the 

theoretical calculations in CC should have been twice the values that were used. Diversity 

values were thus under-estimated by these calculations, because there was more 

recombination than was included in the predictions. The correct theoretical results for sweep 

effects are presented here. 
 The effects of selective sweeps on neutral sites within a gene were obtained by 

summing the expected effects of substitutions at each NS and UTR site in the gene on a given 

neutral site (synonymous site), assuming that every third basepair in an exon is a neutral site, 

with the other two (NS) sites being subject to selection, as described by Campos et al. (2017). 

This differs from the SLiM procedure of randomly assigning selection status to exonic sites, 

with a probability ps	of being under selection (ps	=	0.7 in the simulations used in CC). To 

correct for this, the overall rate of NS substitutions per NS site was adjusted by multiplication 

by 0.7	x	1.5. Furthermore, to correct for the effects of interference among co-occurring 

favourable mutations in reducing their probabilities of fixation, their predicted rates of 

substitution were multiplied by a factor of 0.95, following the procedure in CC. 

 In order to speed up the computations, mean values of the variables used to calculate 

the effects of sweeps on neutral diversity were calculated by thinning the neutral sites by 

considering only a subset of them, starting with the first codon at the 5´end of the gene. For 

the results reported here, 10% of all neutral sites were used to calculate the values of the 

variables. Comparisons with results from using all sites showed a negligible effect of using 

this thinning procedure. 

 Background selection effects on diversity for autosomes and X chromosomes for 

genes in regions with different CO rates were calculated as described in sections S9 and S10 
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of File S1 of CC, which included estimates of the effects of BGS caused by selectively 

constrained non-coding sequences as well as coding sequences, derived from (Charlesworth 

2012). If gene conversion was absent, the correction factors for gene conversion used to 

calculate these effects were omitted.  

 No new data or reagents were generated by this research. Details of some of the 

mathematical derivations are described in the Supplementary Information, File S1. The codes 

for the computer programs used to implement the analytical models described below will be 

made available in the Supplementary Information, File S2, on Figshare on acceptance. The 

detailed statistics for the results of the computer simulations were provided in Files S2-S3 of 

Campos and Charlesworth (2019).  

 

The effect of a single sweep on expected nucleotide site diversity 

Theoretical results 

The aim of this section is obtain an expression for the mean coalescent time at a neutral site 

linked to a selected locus, at the time of fixation of the selectively favored allele; under the 

infinite sites model, this yields the expected pairwise diversity at the neutral site. All times 

are expressed on the coalescent timescale of 2Ne generations, where Ne is the neutral 

effective population size for the genetic system under consideration (autosomal or X-linked 

loci, random mating or partial inbreeding). If we use Ne0 to denote the value of Ne for a 

randomly mating population with autosomal inheritance, Ne for a given genetic system can be 

written as kNe0, where k	depends on the details of the system in question (Wright 1931,1969; 

Crow and Kimura 1970; Charlesworth and Charlesworth 2010).	For example, with an 

autosomal locus in a partially inbreeding population with Wright’s fixation index	F		>	0,	we 

have	k	≈1/(1+F)	under a wide range of conditions	(Pollak 1987; Nordborg 1997; Laporte 

and Charlesworth 2002).	In	addition,	following Kim and Stephan (2000) and CC, if BGS is 

operating, it is assumed that, for purely neutral processes, Ne can replaced by the quantity 

B1Ne, where B1	measures the effect of BGS on the mean neutral coalescent time of a pair of 

alleles. The effect of BGS on the fixation probabilities of favorable mutations is likely to be 

somewhat less than that for neutral processes, so that a second coefficient,B2,		should ideally 

be used as a multiplier of Ne, where B2 = B1/l	(l	≤	1).	As discussed in CC, B1	can be 

determined analytically for a given genetic model, whereas B2 usually requires simulations, 

so it is often more convenient to use B1	for both purposes, although this procedure introduces 

some inaccuracies.  
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 As has been discussed in previous treatments of sweeps, there are two stochastic 

phases during the spread of a favorable mutation, A2,	in competition with a wild-type allele, 

A1. A detailed analysis of these stochastic phases for the general model of selection used here 

is given by Charlesworth (2020). In the first phase, the frequency of A2 is so low that it is 

subject to random fluctuations that can lead to the loss of A2 from the population. Provided 

that the product of Ne and the selection coefficient for homozygotes for the favorable allele 

(s) is >> 1, a mutation that survives this phase will enter the deterministic phase, where it has 

a negligible probability of loss, and in which its trajectory of allele frequency change is well 

approximated by the deterministic selection equation (Equation 6 below). When A2 reaches a 

frequency close to 1, A1	is now vulnerable to stochastic loss, so that there is a second 

stochastic phase. Formulae for the frequencies  of A2 at the boundaries of the two stochastic 

phases, q1 and q2,,are given by Charlesworth (2020), together with expressions for the 

durations of the stochastic and deterministic phases. For mutations with intermediate levels of 

dominance, q1, 1 – q2	and the durations of the two stochastic phases are all of the order of 

1/(2Nes), measured on the coalescent timescale of 2Ne generations.  

 If q2	is close to 1, A2 has only a small chance of encountering an A1	allele, so that 

there is a negligible chance that a neutral site in a haplotype carrying A2	will recombine onto 

an  background recombination during the final stochastic phase. In addition, the rate of 

coalescence within haplotypes carrying A2 is then close to the neutral value, and so does not 

greatly affect the mean time to coalescence of a pair of alleles sampled after the end of the 

sweeep compared with neutral expectation. Under these conditions, the second stochastic 

phase has little effect on the mean coalescent time of the alleles compared with neutral 

expectation. Provided that the duration of the first stochastic phase on the coalescent time 

scale is << 1 (i.e. q1	is close to 0), this phase will also have a minimal impact on the mean 

coalescent time of such a pair of alleles. Accurate approximations for the effect of a single 

sweep on diversity can, therefore, usually be obtained by treating the the beginning and end 

of the deterministic phase as equivalent to that for the sweep as a whole, as discussed by 

Charlesworth (2020).  

 The general framework presented in HB can then be used to determine the effect of a 

sweep on pairwise diversity, extended to include a more general model of selection as well as 

the possibility of BGS effects, and using analytical expressions for probabilities of 

coalescence and recombination during the sweep rather than numerical evaluations. This 

approach assumes that all evolutionary forces are weak (i.e., second order terms in changes in 
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allele frequencies and linkage disequilibrium can be neglected), so that a continuous time 

scale approximation to a discrete generation model can be applied. 

 Let Td be the duration of the deterministic phase, defined as the period between 

frequencies q1	and q2 as given by Charlesworth (2020). With BGS, the terms in Ne in the 

relevant expressions are each to be multiplied by B2, as was done in CC. For a pair of haplotypes 

that carry the favorable allele A2	at the end of the sweep,	the rate of coalescence at a time T back 

from this time point is [B1q(T)]–1, where q(T) is the frequency of A2	at time T. The rate at which 

a linked neutral site recombines from A2	onto the wild-type background at time T is r[1	–	q(T)] 	

=rp(T), where r = 2Ner is the scaled recombination rate and r  is the absolute recombination 

rate between the selected and neutral loci. With inbreeding and/or sex-linkage, r	differs from its 

random mating autosomal value, r0, such that r =	cr0, where c	is a function of the genetic system 

and mating system. For example, with autosomal inheritance with partial inbreeding,	c	≈	1	–	2F 

+f, where f is the joint probability of identity by descent at a pair of neutral loci (Roze 2009; 

Hartfield and Bataillon 2020). Unless both r0	and 1	–	F  are sufficiently large that their second-

order terms cannot be neglected, we have c	≈	1	–	F  (Nordborg 1997; Charlesworth and 

Charlesworth 2010, p.381). The exact value of f is determined by the mating system; in the case 

of self-fertilization, Equation 1 of HB gives an expression for f as a function of r0	and the rate of 

self-fertilization, which is used in the calculations presented here.  

 Under these assumptions, the probability density function (p.d.f.) for a coalescent event at 

time T for a pair of alleles sampled at the end of the sweep is: 

 

                                     𝑘L(𝑇) = [𝐵P𝑞(𝑇)]RP𝑃TL(𝑇)𝑃TU(𝑇)																													    (1) 
 
 
where Pnc(T) is the probability of no coalescence by timeT in the absence of recombination, and 

Pnr(T) is the probability that neither allele has recombined onto the wild-type background by 

timeT, in the absence of coalescence.  

 Similarly, the p.d.f. for the event that one of the two sampled haplotypes recombines onto 

the wild-type background at time T	(assuming that r is sufficiently small that simultaneous 

recombination events can be ignored) is given by: 

 

                                                 𝑘U(𝑇) = 2𝜌𝑝(𝑇)𝑃TL(𝑇)𝑃TU(𝑇)	                              (2) 
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We therefore have: 

																																																																		𝑃TL(𝑇) = exp − ∫ [𝐵P𝑞(𝜏)]RP	d𝜏
\
] 																															(3) 

 
																																																																		𝑃TU(𝑇) = exp − 2𝜌 ∫ 𝑝(𝜏)	d𝜏\

] 																																				(4) 
 
  

 The net probability that the pair of sampled alleles coalesce during the deterministic 

phase of the sweep is given by: 

 																																																												𝑃LP = ∫ 𝑘L(𝑇)	d𝑇																																														
\^
] (5a) 

 

If it is assumed that haplotypes that have neither recombined nor coalesced during the 

sweep coalesce with probability one at the start of the sweep, there is an additional 

contribution to the coalescence probability, given by: 

 

                                                  𝑃L_	 = 𝑃TL(𝑇 )𝑃TU(𝑇 )                                       (5b) 

 

The net probability of coalescence caused by the sweep is thus: 

  

                                             𝑃L	 = 	𝑃LP	 + 	𝑃L_																																																																		(5c)	

 

These equations are simple in form, but getting explicit formulae is made difficult by 

the non-linearity of the equation for the rate of change of q under selection. Following 

Charlesworth (2020), for the case of weak selection (when terms of order s2 can be ignored) 

we can write the forward-in-time selection equation as: 

																																																						𝑞̇b𝑇cd ≈ 𝛾𝑝b𝑇cd𝑞b𝑇cdf𝑎 + 𝑏𝑞b𝑇cdi																											(6) 

  

where tildes are used to denote time measured from the start of the sweep; g =	2Nes is the 

scaled selection coefficient for A2A2, assigning a fitness of 1 to A1A1 and an increase in 

relative fitness of s to A2A2. Here, a and b depend on the dominance coefficient h and 

fixation index F, the genetic and mating systems, and the sex-specificity of fitness effects 

(Glémin 2012; Charlesworth 2020). For example, for an autosomal locus, the weak selection 

approximation gives a	=	F	+	(1	–	F)h and b	=	(1	–	F)(1	–	2h). 
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 For a > 0 and a +	b	>	0, corresponding to intermediate levels of dominance, 

integration of Equation 6 yields the following expression for the expectation of the duration 

of the deterministic phase, Td (Charlesworth 2020): 

 

                    𝑇 ≈ 𝛾RP{𝑎RP ln nop(qrsot)
ot(qrsop)

u + (𝑎 + 𝑏)RP ln nvt(qrsop)
vp(qrsot)

u}              (7) 

  

Similar expressions are available for the cases when a	=	0 (complete recessivity) or a	+	b	=	

0 (complete dominance), as described by Charlesworth (2020).  

 Using Equation 6, we can write T as a monotonic function of q, T(q), substituting q 

for T	and using the relation dT = 𝑞̇RPdq. Equations 5a, 3 and 4 then become: 

 

                                𝑃LP	 = 	∫ [𝐵P	𝑞̇𝑞]RP𝑃TL
op
ot

(𝑞)𝑃TU(𝑞)	d𝑞                             (8a) 

																																																	𝑃TL(𝑞) = exp − ∫ 𝑥̇RP[𝐵P𝑥]RP
op
o d𝑥                                 (8b) 

  																						𝑃TU(𝑞) = exp−2ρ∫ 𝑥̇RP(1 − 𝑥)op
o d𝑥                             (8c) 

   

 Substituting q1	for q in Equations 5b and 5c, Equation 5b can be written as: 

  

																																																														𝑃L_	 = 𝑃TL(𝑞P)𝑃TU(𝑞P)                                           (8d)  

  

  The net expected pairwise coalescence time associated with the sweep, Ts, includes a 

contribution from the case when no coalescence occurs until the start of the sweep, given by 

the product of Pc2 and Td, and a contribution from coalescent events that occur during the 

sweep, denoted by Tc. We have: 

 

																																																																		𝑇z = 𝑃L_𝑇 + 𝑇L	                                                (9a) 

where 

           𝑇L	 = ∫ 𝑞̇RP[𝐵P𝑞]RP𝑇(𝑞)𝑃TL
op
ot

(𝑞)𝑃TU(𝑞)	d𝑞	                   (9b) 

 

and T(q) is the time to coalescence at frequency q of A2, given by Equations A1. 
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Results with only a single recombination event: The possibility of recombination back onto 

the background of A2, examined in CC, is ignored for the present, as is the possibility of a 

second recombination event from A2	onto A1. From Equation 2, the probability of at least one 

recombination event is given by: 

 

																																																														𝑃U = 2𝜌 ∫ 𝑞̇RP𝑝𝑃TL
op
ot

(𝑞)𝑃TU(𝑞)	d𝑞                    (10) 

 

Using Equations 6, 10a and A1-A3, Pr can be expressed explicitly in terms of r, g, a and b, 

but has to be evaluated numerically.  

 The net expected pairwise coalescence time in the presence of BGS under this set of 

assumptions is given by B1Pr		+Ts. Under the infinite sites model (Kimura 1971), the 

expected reduction in pairwise nucleotide site diversity for alleles sampled at the end of the 

sweep, relative to its value in the absence of selection (q ), is given by: 

 

																																																																										−∆𝜋 = 𝐵P(1 − 𝑃U) – 𝑇z                       (11a) 

 

 Equation 9 of HB for the case of a hard sweep is equivalent to Equation 11a without 

the term in	Ts. In addition, if Ts and the probability of coalescence during the sweep are both 

negligible, it is easily seen that Pr		≈ 1 – Pnr(Td), yielding result for the star phylogeny 

approximation (Barton 1998, 2000; Durrett and Schweinsberg 2004; Weissman and Barton 

2012) :                     

																																																																																−∆𝜋 ≈ 𝐵P𝑃TU(𝑇 )                         (11b) 

    

 Explicit formulae for the components of the above equations, using Equation 6, are 

given in the Appendix. In the case of an autosomal locus with random mating and semi-

dominant selection (h	=	0.5), substitution of these formulae into Equation 11c yield the 

following convenient formula, which has been used in inferences from population genomic 

data, as mentioned in the introduction section:  

                                                           −∆𝜋 ≈ 𝐵P𝛾R}~/�                         (11c)      

 

The importance of coalescence during a sweep: These results bring out the potential 

importance of considering coalescence during a sweep, as opposed to the coalescence of non-

recombined alleles at the start of a sweep. Consider the case with incomplete dominance (a	≠	
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0). The probability of no coalescence during the sweep conditional on no recombination, 

Pnc(q1), is given by Equation A2a with q	=	q1, where q1 ≈ (2ag)–1 (Charlesworth 2020). 

Somewhat surprisingly, for large g this expression becomes independent of a and g, provided 

that a –2 >> g, and approaches e	–2 ≈ 0.135, so that the probability of coalescence during a 

sweep in the absence of recombination is approximately 0.865 (see the Appendix). With low 

rates of recombination, there is thus a high probability of coalescence during the sweep itself, 

in contrast to what is assumed in Equations 11b and 11c. If such a coalescent event is not 

preceded by a recombination event, the mean coalescent time will thus be smaller than 

predicted by these Equations.  

 This raises the question of the magnitude of Ts in the more exact treatment. While 

Equation 9 can only be evaluated exactly by numerical integration, a rough estimate of Ts for 

the case of no recombination can be obtained as follows (this is the maximum value, as the 

terms involving the probability of no recombination must decrease with the frequency of 

recombination). By the above result for Pnc(q1),	the first term in Equation 9 is approximately 

e	–2Td. The second term is equivalent to the mean coalescent time associated with events 

during the sweep; by the argument presented in section S3 of File S1 in CC, this is 

approximately equal to the harmonic mean of 1/q between q1	and q2. Equation S10 of CC for 

this quantity can be generalized as shown in the Appendix, with the result that the expected 

coalescent time associated with the sweep (Tc) is approximately ½Td for large g, yielding Ts ≈ 

0.635Td.  
 Tables 1 and S1 compare the results from numerical integrations with this 

approximation; as expected from the assumptions made in deriving this approximation, it is 

most accurate when g is large and a	is not too close to 1. Overall, for low frequencies of 

recombination, Ts is a non-negligible fraction of Td,	but decreases towards zero with 

increasing rates of recombination, as would be expected. 

  

Multiple recombination events: Finally, the problem of multiple recombination events needs 

to be considered. In principle, this problem can be dealt with on the lines of Equation 10, but 

this involves multiple integrals of increasing complexity as more and more possible events 

are considered. The following heuristic argument can be used instead. A first approximation 

is to assume that, if the frequency of recombination is sufficiently high, multiple 

recombination events are associated with a coalescent time equal to that of an unswept 

background, B1. In contrast, a single recombinant event is associated with a mean coalescent 
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time of B1	+Td, since the recombinant cannot coalesce with the non-recombinant haplotype 

until the end of the sweep. If the probability of a single recombinant event is denoted by Prs,	
Equation 11a is replaced by: 

 

                                  −∆𝜋 = 𝐵P(1 − 𝑃U)	–	𝑇z	–	𝑃Uz𝑇 																							(12) 

 

 Prs is given by the probability of a recombination event that is followed by no further 

recombination events. This event requires both the recombinant A1 haplotype (whose rate of 

recombination at an A2	frequency of x is rx) and the non-recombinant A2 haplotype (whose 

rate of recombination is r[1	–	x]) to fail to recombine. 

 We thus have: 

 

           		𝑃Uz = 2𝜌∫ 𝑞̇RP𝑝𝑃TL
op
ot

(𝑞)𝑃TU(𝑞)𝑃TU(𝑞P, 𝑞)	d𝑞                  (13a) 

 

where Pnr(q1,	q),	is	the probability of no further recombination after an A2	frequency of q, 

given by:   

           								𝑃TU(𝑞P, 𝑞) = exp−ρ∫ 𝑥̇RP{(1 − 𝑥) +o
ot

𝑥}	d𝑥																	 

																																																					= exp−ρ	[𝑇(𝑞P) − 𝑇(𝑞)]																	                      (13b) 

  

 However, Equation 12 ignores the fact that there is a time-lag until the initial 

recombination event, whose expectation, conditioned on the occurrence of the initial 

recombination event, is denoted by Tr. This lag contributes to the time to coalescence of 

multiple recombinant alleles, causing the reduction in diversity to be smaller than predicted 

by Equation 12b. The probability of multiple recombination events is (Pr		–	Prs),	so that a 

better approximation is to deduct	(Pr		–	Prs)Tr from the left-hand side of Equation 12, giving: 

 

                       −∆𝜋 = 𝐵P(1 − 𝑃U)	–	𝑇z	–	𝑃Uz𝑇 	– (𝑃U − 𝑃Uz)𝑇U																			(14a) 

where  

                        𝑇U = 2𝜌𝑃URP ∫ 𝑞̇RP𝑝𝑇(𝑞)𝑃TL
op
ot

(𝑞)𝑃TU(𝑞)	d𝑞                  (14b) 

 

The integral for Tr		can be expressed in terms of r, g, a and b, on the same lines as for 

Equation 10.  
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 Equations 14 are likely to overestimate the effect of recombination on the sweep 

effect, as complete randomization of the sampled pair of haplotypes is unlikely to be 

achieved, whereas Equation 11a clearly underestimates it; Equation 12 should produce an 

intermediate prediction. The correct result should thus lie between the predictions of 

Equation 11 and Equation 14. When the ratio of the rate of recombination to the selection 

coefficient, r/s, is << 1, all three expressions agree, and predict a slightly smaller sweep 

effect than Equation 9 of HB. 

          

Comparisons with simulation results 

Numerical results for Equations 11 can be obtained by numerical integration of the formulae 

given in the Appendix. For speed of computation, Simpson’s Rule with n	+	1 points was 

used here; this method approximates the integral of a function by a weighted sum of discrete 

values of the integrand over n equally spaced subdivisions of the range of the function 

(Atkinson 1989).  It was found that n	=	200 usually gave values that were close to those for a 

more exact method of integration; for the results in the figures in this section, n	=	2000 was 

used. Background selection effects are ignored here, so that B1 and B2 are set to 1. Simulation 

results for hard sweeps for an autosomal locus with random mating were obtained using the 

algorithm of Tajima (1990) (see the Methods section), providing a basis for comparison with 

the predictions based on Equations 11a and 14 (denoted by C1 and C2, respectively), and on 

the star phylogeny approximation that ignores coalescence of non-recombined alleles during 

the sweep, Equation 11b (NC). The results are shown in Figure 1, with the reduction in 

diversity observed at the end of the sweep, –Dp, on a log10 scale, plotted against r/s on a log2 

scale, with values of r/s	increasing by a factor of two from 0.04	to	1.28. Figure S1 of File S1 

shows the same results on linear plots with r/s from 0 = 0.32, with the addition of the values 

of –Dp for r/s	=	0. Since C1 and Equations 9 of HB, which ignore the term in Ts	in Equation 

11a, gave very similar results, only the former are shown here.  

 One feature that is worth noting is that, with no recombination, the simulations and 

C1/C2 formulae (which are identical and exact in this case) predict –Dp values that are 

substantially less than one, especially with the lower strengths of selection. The NC 

approximation predicts a complete reduction in diversity, since the probability of coalescence 

is one and the duration of the sweep is ignored (this can be seen most clearly in the linear 

plots in Figure S1). In contrast, NC underestimates –Dp  when the recombination rate is high 

compared with the selection coefficient; even for r/s as small as 0.16 there can be a very 
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large ratio of the simulation value to the NC value, although the simulation value of –Dp is 

then usually quite small (10% or less) for this value of r/s. For example, with g = 250, h = 

0.5 and r/s =	0.16, the simulation value of –Dp was 0.0959 (s.e. 0.0019), whereas the NC 

value was 0.0293. Conversely, C1 tends to overestimate Dp for the higher values of r/s, 

reflecting the fact that it does not allow for multiple recombination events.    

 Overall, C2 agrees quite well with most of the simulation results, especially for h = 

0.5, but tends to underestimate –Dp for h	=	0.9,	especially for large r/s,	presumably because 

the relatively long period which A2 spends at high frequencies means that a substantial 

proportion of multiple recombination events involve a return of a recombined neutral site 

back onto the A2 background, For much larger r/s values than are shown here, C2 can 

become negative, indicating that it over-corrects for multiple recombination events, but –Dp 

is then very small, so the effect is probably not biologically important. As has been found 

previously (Teshima and Przeworski 2006; Ewing et al. 2011; Hartfield and Bataillon 2020), 

–Dp increases with h for low values of r/s, but the values for each h converge as r/s 
increases.  

 Tables 1 and S1 show details of some of the relevant variables, obtained by numerical  

integration. They confirm the conclusion that there can be a substantial probability of 

coalescence during the sweep, as given by Pc1 in Equation 8a; this probability decreases 

much more slowly with r/s than does the probability of no recombination in the absence of 

coalescence (Pnr). In parallel with this behavior of Pc1, the unconditional probability of no 

recombination, 1	–	Pr	,		decreases much more slowly with r/s	than Pnr. This explains why the 

NC approximation for the reduction in diversity performs rather poorly at high r/s values. 

The results also show that the probability of a single recombination event (Prs, given by 

Equation 13a) becomes very small compared with the probability of at least one 

recombination event (Pr, given by Equation 10a) as	r/s increases, so that neglecting the 

effects of multiple recombination events leads to errors in predicting sweep effects on 

diversity. For high values of r/s, the conditional mean times to coalescence and to the first 

recombination event are both small relative to the duration of the sweep, implying that these 

events must occur quite soon if they are to occur at all. 

 To illustrate the approximations further, both Tajima and HB simulation values of –

Dp for an autosomal locus in a randomly mating population with three difference dominance 

coefficients and g = 500, together with the theoretical predictions, are shown in Figure S2. 
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These confirm the general conclusions from Figure 1, despite the fact that the HB simulation 

results seem to be considerably noisier than the Tajima results, sometimes showing a non-

monotonic relation between –Dp and the recombination rate. 

 Figure 2 displays results for selfing rates of 0.5 and 0.95, corresponding to F	values of 

0.3333 and 0.9048, respectively. The reduction in diversity is plotted against the scaled 

recombination rate for an autosomal locus with outbreeding; the scaled effective 

recombination rate with inbreeding is much smaller than this, as described above. Here, only 

the HB simulation results are shown, as the Tajima method cannot give an exact 

representation of the system with non-random mating. As before, C1 and the approximation 

given by Equations 9 of HB mostly give very similar predictions, whereas C2 predicts 

smaller effects that agree slightly less well with the simulations at the higher recombination 

rates. However, for S = 0.95, especially with h = 0.5, the simulations yield considerably 

larger sweep effects at relatively high recombination rates than any of the theoretical 

predictions. This presumably reflects the fact that random variation among individuals in the 

occurrence of selfing versus outcrossing events means that individuals sampled in a given 

generation differ in the numbers of generations of selfing in their ancestral lineages, and 

hence in the extent to which recombination and selection have interacted to cause departures 

from neutral expectations (Kelly 2007). This is not taken into account in the formula used to 

correct for the effects of selfing on the effective rate of recombination (Equation 1 in HB). 

	

Inaccuracy of the NC approximation:  Given the widespread use of the star phylogeny 

assumption in methods for detecting recent sweeps and inferring the parameters of positive 

selection, described in the introduction, it is disconcerting that the NC approximation  is 

systematically somewhat inaccurate with respect to pairwise diversity at relatively large 

values of r/s. Some insights into this effect can be obtained from examining an 

approximation for the case of autosomal inheritance with h	=	0.5 and random mating, which 

is derived in the Appendix.  

 If we write R	=	4r/s and a =	2/g, and assume that R		>	1 and g >>	1, the reduction 

in diversity after a sweep is close to one minus the probability of recombination during the 

sweep, as given by Equation 11a with Ts = 0. From Equation A7, we have: 

 

											−∆𝜋 ≈ 1 − 𝑒�𝛾R� − 𝑒�𝛾R�𝛼𝑅{2[(𝑅 − 1)(𝑅 + 1)]RP − ∑ [𝑖(𝑅 + 𝑖)]RP�
��_ }				 (15) 
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 This series converges quite slowly when R is large, but the formula agrees well with 

the results of numerical integration even for r/s as low as	0.4, provided that g is sufficiently 

large. It tends to break down for high values of R  (> 10), especially for relatively small g.  

Equation 15 implies that, paradoxically, larger values of g  lead to smaller values of the 

diversity reduction for a given r/s, as can be seen as follows. For large g,  1	– eag –a	≈	

a ln(g)	for large g, which is nearly proportional to a .	In addition, the term in braces is 

positive for sufficiently large R	,	and its product with aeag –a	 is also nearly proportional to a.  

 This effect can be seen in Figures 1 and S1.	A doubling of	g		results in substantially 

smaller values of the diversity reduction for a given value of	r/s,	as expected from the above 

properties of Equation 15. This applies to both the C1 and C2 predictions, as well as the 

simulations. Thus, contrary what is predicted by the NC approximation, the effect of a sweep 

on diversity is negatively related to the scaled strength of selection, for a given value of r/s. 
The intuitive interpretation of this finding is that weaker selection prolongs the duration of a 

sweep, allowing more opportunity for coalescence versus recombination.   

  

The effects of recurrent selective sweeps on nucleotide site diversity 

Theoretical results 

The approach of CC for determining the effects of recurrent sweeps, which was based on the 

NC approximation, can be modified to apply to the more general case considered here. It is 

assumed that adaptive substitutions occur at a total rate w per 2Ne generations, such that the 

times between substitutions follow an exponential distribution with rate parameter w (this 

rate includes any effects of BGS in reducing the probability of fixation of favorable 

mutations). By summing up over all relevant nucleotide sites that contribute to the effect of 

sweeps at a focal neutral site, weighting each selected site by its rate of adaptive substitution 

(which may differ according to the class of site subject to selection), and then dividing by w, 

we can define expected values of Pr	,	Pr	s,	Ts	,Tr and Td for a given neutral site (expected 

values are denoted by overbars in what follows). 

 As a first step, it is useful to note that	Equation	8	of	CC for the expected nucleotide 

site diversity immediately after a substitution, p0, is equivalent to: 

 

 																																																				𝜋] ≈ 	𝑃�U𝜋P                                                 (16) 
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where	p1	is the expected nucleotide site diversity at the time of the initiation of a new 

substitution. Both p0	and p1	are measured relative to the neutral diversity q, and hence are 

equivalent to mean pairwise coalescent times relative to the neutral value, 2Ne. This 

expression assumes that there is at most a single recombination event, and that a pair of 

alleles that have been separated by recombination onto the A1 and A2 backgrounds have a 

coalescent time equivalent to that for a pair of alleles that are sampled at the start of the 

sweep.  

 If we apply the argument leading to Equation 11a to take into account the lag time to 

coalescence of a pair of alleles separated by recombination, we obtain the C1 approximation:  

 

                                      							𝜋] ≈ 𝑃�U𝜋P + 𝑇�z																											(17) 

 

 If we use the approach of Equations 14 for modeling multiple recombination events, 

we obtain the C2 approximation: 

 

               												𝜋] ≈ 𝑃�U𝜋P + 𝑇�z	+	𝑃Uz𝑇������� + (𝑃U − 𝑃Uz)𝑇U���������������																		(18) 
  

 A somewhat more accurate expression can be found by noting that, under the 

assumption that multiple recombination events cause randomization between A1 and A2 

haplotypes, so that coalescence occurs at rate B1–1, diversity will increase from its value at 

the start of a sweep over a time interval that is approximately the same as the difference 

between the sweep duration and the time of the first recombination event (see Equation 8b of 

the Appendix); this overestimates the time available for the increase in diversity, since a time 

greater thanTr is required for randomization to occur.  

 These  expressions enable us to find the expected diversity, p, for a pair of alleles 

sampled at a random point in time. This is done by assuming that such a time point falls 

between two sweeps, and that the length of the interval T separating the two sweeps follows 

an exponential distribution with parameter w. Conditional on T, the time t from a random 

sample to the first of the two sweeps is a uniform variate on the interval T, with p.d.f. equal to 

1/T. The expected diversity at time t (on the coalescent timescale) is given by the equivalent 

of Equation 9 in CC: 

 

                 1 − 𝜋(𝜏)(𝐵P𝜃)
RP ≈ [1 − 𝜋](𝐵P𝜃)RP]exp	(−𝐵PRP𝜏)                      (19) 
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 The overall expected diversity is thus given by: 

  

  1 − 𝜋(𝐵P𝜃)
RP ≈ [1 − 𝜋](𝐵P𝜃)RP]𝜔 ∫ 𝑇RPexp	(−𝜔𝑇) ∫ exp(−𝐵PRP𝜏) d𝜏	d𝑇

\
]

�
]     (20)                     

 

  This expression is identical with Equation 10 of CC, so that their Equations 12 for p 

can be used, but with a more precise interpretation of the meaning of p.  

 

Comparisons with simulation results 

 The accuracy of Equations A10-A13 was tested using the simulation results from Figure 4 and 

Table S6 in CC. These simulations modeled a group of 70 linked genes with properties similar to 

those of typical D. melanogaster autosomal genes, and provided values of the mean nucleotide 

site diversity at synonymous sites under the assumption that they are selectively neutral. The 

genetic model and parameters of the simulations are summarized in the Methods section of this 

paper; full details are given in CC. The effect of BGS on the rate of substitutions of favourable 

mutations for a given parameter set was calculated here by multiplying the rate in the absence of 

sweeps by the value of B1 for neutral sites obtained from simulations; use of B2 instead of B1 
made little difference. The corresponding theoretical predictions were obtained for a single gene 

with the structure described in the Methods section, on the assumption that sweep effects decay 

sufficiently fast with distance from the selected site that each gene can be treated independently; 

this is probably not entirely accurate for the lowest rate of crossing over studied here.  

 Equations A10-13 can be applied in two ways. First, the mean values of the relevant 

quantities across all neutral sites can be determined, and substituted into these equations, the 

procedure used in CC for the older method of predicting recurrent sweep effects. Second, the 

values of these statistics for individual neutral sites can be used to predict p, and the mean of p 

taken across all neutral sites in a gene, as described in the Methods section. The latter procedure 

is more accurate statistically, and is used here for the C2 predictions; in practice, the two 

methods yield similar results for the parameter sets used here. 

 Figure 3 shows the reductions in neutral diversity per gene obtained from the simulation 

results (red bars), the C2 predictions using Equations A10-A13 (blue bars), the predictions from 

Equations 12 of CC (black bars) that use the NC approximation, and the NC-based formula for 

recurrent sweep effects that assumes competing exponential processes of coalescence due to drift 

and selection (Equation 7 of CC) (white bars). For the last two calculations, the NC assumption 
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with the deterministic sweep duration (Td) was used to calculate the effect of a sweep, using the 

first method described above for estimating the mean effect over neutral sites. Further details of 

the calculations are given in the Methods section.  

 The most notable point is that, as was also found by CC, the last method is consistently 

the least accurate, especially at low CO rates in the presence of gene conversion but without 

BGS. In the absence of gene conversion, the predictions from Equation 12 of CC and Equations 

A10-13 generally have a similar level of accuracy. However, in the presence of gene conversion, 

the latter predictions perform the best, and provide fairly accurate predictions except for the 

lowest CO rate. This comparative failure of predictions based on the NC approach presumably 

reflects the fact that it considerably underestimates the effects of sweeps in the presence of 

recombination, as was seen in Figure 1. Given that gene conversion is pervasive in genomes, and 

contributes substantially to recombination rates over short physical distances, the approach 

developed here should provide the most accurate predictions of recurrent sweep effects, despite 

its heuristic basis. The inaccuracy of the predictions based on the competing exponential process 

model, introduced by Kaplan et al. (1989) and further analyzed by Stephan et al. (1992), Kim 

and Stephan (2000) and Gillespie (2002), is probably due to the fact that it treats sweeps as point 

events, allowing too much opportunity for drift-induced coalescent events between sweeps (CC, 

p.293).  

 

X chromosomes versus autosomes 

Introduction 

There has been considerable interest in comparing the properties of variability of sequences on X 

or Z chromosomes with those on autosomes (A), since these may shed light on questions such as 

the relative importance of BGS versus selective sweeps in shaping genome-wide patterns of 

variability, and on the causes of the apparently faster rates of adaptive evolution on the X or Z 

chromosome (Charlesworth et al. 2018; Wilson Sayres 2018). It therefore seems worth revisiting 

this question in the light of the models of selective sweeps developed here, which can easily be 

applied to sex-linked loci. The findings extend those of Betancourt et al. (2004), who considered 

only the case of selection acting equally on the two sexes and used the equivalent of the NC 

model described above.  

 As noted by Betancourt et al. (2004), there are important differences in the theoretical 

expectations for taxa such as Drosophila and Lepidoptera, in which autosomal recombinational 

exchange is absent in the heterogametic sex, and taxa such as mammals and birds, where 
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recombination is absent between the X (Z) and Y (W), but occurs on autosomes and 

pseudoautosomal regions in the heterogametic sex. In the first type of system, the sex-averaged 

effective rate of recombination (which controls the rate of breakdown of linkage disequilibrium) 

between a pair of X- or Z-linked genes is 4/3 times that for an autosomal pair with the same rate 

of recombination in the homogametic sex, due to the fact that the X or Z spends 2/3 of its time in 

the homogametic sex and 1/3 of its time in the heterogametic sex, whereas an autosome spends 

half of its time in the heterogametic sex where it cannot recombine (Langley et al. 1988). In the 

second type of system, the ratio of sex-averaged rates is 2/3 (Betancourt et al. 2004). These two 

systems will be referred to here as the “Drosophila” and “mammalian” models, respectively. For 

brevity, only male heterogamety is considered here; the results for female heterogamety can be 

obtained by interchanging male and female. 

 

The effect of a single sweep on X-linked diversity 

It is straightforward to use the framework leading to Equation 9 to examine the effect of a single 

sweep on variability for an X-linked locus. In this case, it is necessary to model the effects of sex 

differences in the effects of a mutation on male and female fitnesses, since these greatly affect 

the evolutionary trajectories of favorable X-linked mutations (Rice 1984; Charlesworth et al. 

1987; Charlesworth 2020). Three extreme cases are considered here: no sex-limitation of fitness 

effects (so that the homozygous selection coefficient, s,	is the same for males and females), 

male-only fitness effects, and female-only fitness effects. Random mating is assumed 

throughout. 

 For simplicity, the dominance coefficient h is assumed to be independent of sex. For the 

autosomal case with weak selection, a single s that is given by the mean of the male and female 

fitness effects is sufficient to describe the system (Nagylaki 1979). The values of the coefficients 

a and b in Equation 6 for the three types of sex-dependent fitness effects can be obtained from 

the expressions in Box 1 of Charlesworth (2020). With no sex-limitation and random mating, a	=	

(2h	+	1)/3 and b	=	2(1–	2h)/3; with male-only selection, a	=	1/3 and b	=	0; with female-only 

selection, a	=	2h	/3 and b	=	2(1	–	2h)/3.	In order to ensure comparable strengths of selection 

for X and A with the same patterns of relation between gender and fitness, the values of s for the 

cases of male- and female-only effects with X-linkage are set equal to twice the corresponding 

autosomal s without sex-limitation, compensating for the fact that the effective s for a sex-

limited autosomal mutation is only one-half of the selection coefficient in the affected sex.  
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 Figure 4 shows the reductions in diversity at the end of a sweep predicted by the C1 

and C2 methods for the Drosophila model, together with the results of simulations using the 

algorithm of Tajima (1990), for the case of an X-linked locus whose effective population 

size, kNe0, is three-quarters of that for A, Ne0. This case corresponds to a randomly mating 

population in which males and females have equal variances in reproductive success (Wright 

1931). With h =	0.5	and	k = 0.75, all three types of sex-specific selection on X-linked loci 

have similar evolutionary dynamics, provided that the selection coefficients are adjusted as 

described above (Charlesworth 2020). No differences among their sweep effects are thus to 

be expected, apart from small deviations reflecting numerical inccuracies in the integrations. 

This expectation is confirmed by the results shown in Figure 5. As before, the C1 

approximation predicts much larger effects than C2 at high r/s values; the NC approximation 

predicts even smaller effects than C2 (results not shown).  

 The comparison of the X-linked results with h	=	0.5	with the autosomal results for g = 

250 in Figure 1 confirms the expectation that the diversity reductions are the same for the two 

genetic systems, when s	is adjusted appropriately. In addition, female-limited X-linked mutations 

have the same effects as female-limited autosomal mutations for all h	values, again as expected 

from their similar dynamics. For a given r/s, male-limited selection gives the largest reduction in 

X-linked diversity when h =	0.1, which is substantially larger than the autosomal and female-

limited values for the same adjusted selection strength. This is expected from the slow initial 

rates of increase in the frequencies of partially recessive autosomal or female-limited X-linked 

mutations (Haldane 1924; Van Herwaarden and van der Wal 2002; Teshima and Przeworski 

2006; Ewing et al. 2011; Charlesworth 2020). With h =	0.9, the differences between the various 

cases are relatively small, with male-limited X-linked mutations having the smallest effects, and 

non-sex-limited and female-limited mutations having almost identical effects. The sweep effects 

decrease more rapidly with r/s	for X than for A, as expected from the higher effective 

recombination rate for X. 

 Figure S3 shows comparable results for the mammalian model. The results are broadly 

similar to those for the Drosophila model, the main difference being that the sweep effects are 

always larger than for the corresponding Drosophila cases, as would be expected from the fact 

that the effective rate of recombination on the X chromosome is half the Drosophila value. In 

this case, the X sweep effects decrease more slowly with r/s than the A effects.	Figure S4  in 

File S1 shows the results for both the Drosophila  and mammalian models on a linear scale.	
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 The X/A ratio of Ne  values in the absence of selection at linked sites (k) may differ 

from three-quarters. Sex differences in these variances cause k values that differ from 0.75 

(Caballero 1995; Charlesworth 2001; Vicoso and Charlesworth 2009), with higher male than 

female variances leading to k  > 0.75, and lower male than female variances having the 

opposite effect. Male-male competition for mates is likely to cause a higher male than female 

variance in fitness, so that k can be greater than 0.75 with male heterogamety. In contrast, 

female heterogamety with sexual selection leads to k < 0.75. Some examples of the 

reductions in diversity at the end of a sweep with k ≠ 0.75 using the C2 predictions are shown 

in Figure S5 in File S1, for the Drosophila  and mammalian models, respectively. Comparing 

these with Figures 1 and S1, it can be seen that smaller k values cause somewhat larger X-

linked sweep effects for all modes of selection and for both genetic systems. The effects are, 

however, relatively small, and unlikely to be detectable in most datasets. This pattern is 

presumably caused by the fact that smaller k means that coalescence during a sweep occurs 

more rapidly relative to recombination. 

 

The effects of recurrent selective sweeps on X-linked diversity 

Expressions for the effects of recurrent selective sweeps on X-linked neutral diversity can be 

obtained using the appropriate modifications to Equation 17 (the C1 approximation) and 

Equations A11-A13 (the C2 approximation). There is an important factor that leads to 

differences between A and X sweep effects, additional to those considered in the previous 

section. This is the fact that the expected coalescent time for X is 2kNe0 instead of 2Ne0, with 

k	generally expected to be less than 1 (Charlesworth 2001; Vicoso and Charlesworth 2009). 

The parameter w that appears in the equations for sweep effects is the expected number of 

substitutions over 2kNe0	generations, so that a smaller value of k for a given rate of 

substitution per generation implies a smaller w value. An alternative way of looking at this 

effect is to note that k < 1 implies a faster rate of genetic drift for X than A; other things 

being equal, coalescent events induced by drift are then more frequent for X than for A, 

relative to coalescent events induced by selection (Betancourt et al. 2004).  

 A countervailing factor is that the rates of substitution per generation of favorable X-

linked mutations are expected to be higher than for comparable autosomal mutations with 

male-limited or non sex-limited selection, given sufficiently small h	values (the condition is h	

<	0.5 with k =	0.75) (Charlesworth et al. 1987, 2018; Vicoso and Charlesworth 2009); 

expressions for the rate of substitution are given in the final section of the Appendix. These 
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opposing effects of sex linkage implies that simple generalizations about the effects of 

sweeps on X-linked versus autosomal variability cannot easily be made, as will shortly be 

seen. 

 Figure 5 shows the C2 predictions for the reductions in diversity relative to neutral 

expectation for X-linked and autosomal loci under the Drosophila model, as a function of the 

ratio of the autosomal effective CO rate to a value of	2	x	10–8	per	basepair	for	D.	

melanogaster, using the same gene structure that was used to generate the theoretical results 

for autosomes shown in Figure 3 (see Methods section). Gene conversion was allowed at the 

same rate of initiation as crossovers. The CO and gene conversion rates for the X 

chromosome were set by multiplying the corresponding autosomal effective rates by 0.75, so 

that the effective recombination rates for the X chromosome and A are equal, following the 

procedure used in empirical comparisons of diversity levels on the X and A (Campos et al. 

2014). Here k	=	0.75,	so that potential effects of sexual selection or variance in female 

reproductive status are absent. 

 As described in the Methods section, the values of the BGS parameter B1 were 

obtained from estimates given by Charlesworth (2012), which include contributions from 

selectively constrained non-coding sequences as well as coding sequences; comparable 

values were obtained in the more detailed analyses of Comeron (2014).  As described in CC, 

the BGS effect parameter B1 for the X chromosome with a relative crossing rate of 0.5 was 

set to a relatively high value (0.549 instead of 0.449) to correct for the relatively low gene 

density in this regions of the D. melanogaster X chromosome, whereas the values for the 

rates of 1, 1.5, 2 and 2.5 assumed normal gene densities, giving B1	values of 0.670, 0.766, 

0.818 and 0.852, respectively. This results in a relatively weak effect of selection in reducing 

diversity for the lowest CO rate compared with the autosomes, where the B1	values were set 

to 0.538, 0.733, 0.813, 0.856 and 0.883 for the relative CO rates of 0.5, 1, 1.5, 2 and 2.5, 

respectively. Male and female mutation rates were assumed to be equal, in view of the lack of 

strong evidence for a sex difference in mutation rates in Drosophila (Charlesworth et al. 

2018). For convenience, B2	was assumed to be equal to B1.  

 As expected, in the absence of BGS the X results for h	=	0.5 (upper panel of Figure 

5) are the same for the three types of sex-specific fitness effects. The X effects are slightly 

smaller than the A effects for low recombination rates, reflecting the reduced rate of 

substitution on the coalescent timescale of the lower Ne  for X than A, which was described 

above. With h	=	0.1, the lower rates of substitution of A mutations and female-limited X 
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mutations greatly reduce their sweep effects, but the effects for non-sex-limited and male-

limited X mutations are much larger than for A mutations. With h	=	0.9, male-limited X 

mutations have the weakest effects, while the other three classes of mutations have quite 

similar effects, with female-limited mutations having the largest effects. Similar general 

patterns are seen with BGS, with much smaller differences between X and A than in the 

absence of BGS, except for the lowest CO rate, where the relatively small BGS effect for the 

X causes it to have a much smaller reduction in diversity compared with A. Comparable 

results with no gene conversion are shown in Figure S6 of File S1. The general patterns are 

quite similar to those with gene conversion, but with a greater sensitivity to the CO rate with 

h = 0.1 and no sex-limitation or male-limitation, especially with no BGS. 

 Figure 6 shows the values of the X/A ratio of diversities (RXA) for different CO rates, 

obtained from the results shown in Figure 5; Figure S7 shows comparable results with no 

gene conversion. First, consider the case when BGS effects are absent. With h	=	0.5,	RXA is 

always close to the neutral expectation of 0.75 for all modes of selection; this is also true 

with female-limited selection for all three dominance coefficients, with a slight tendency 

towards RXA > 0.75 for low CO rates, declining towards 0.75 as the CO rate increases. With h	

=	0.1 and no sex-limitation, it can be seen that RXA << 0.75 for the lowest CO rates, 

approaching 0.7 at the highest rate. With h	=	0.1 and male-limitation, RXA increases with the 

CO rate, but remains well below 0.7 even at the highest rate. With h	=	0.9 and no sex-

limitation, RXA is slightly larger than 0.75 for the lowest rate of crossing, approaching 0.75 as 

the rate increases; with male-limited selection, RXA > 0.85 at the lowest CO rate, and RXA ≈ 

0.8 at the highest rate.  

 The presence of BGS greatly alters these patterns; the lower gene density for the X in the 

region with the lowest CO rate causes RXA values of 0.9 or more for all three modes of selection 

and dominance coefficients. RXA  even exceeds 1 for female-limited selection with h	=	0.1	and 

the lowest CO. BGS causes a much steeper decline in RXA with the CO than in its absence (when 

it can even increase), especially with h	=	0.1 and female-limited selection. The contrast between 

the presence and absence of BGS and the male-limited and non-sex-limited cases with h	=	0.1 is 

especially striking. However, if the B1 value of 0.449  for a normal gene density is used for the 

lowest CO rate, X-linked diversity is considerably increased and RXA is correspondingly reduced; 

for example, with h	=	0.1 and no sex-limitation, RXA  = 0.849 instead of 1.001. Again, the 

patterns are similar to those found with gene conversion; with h	=	0.1	and no sex-limitation or 

male-limitation,	RXA is much more sensitive to the CO rate than when gene conversion is acting.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 30, 2020. ; https://doi.org/10.1101/2020.05.27.119883doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.119883
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

 The effects of differences in k are shown in Figures S8 and S9, for the case with both 

BGS and gene conversion. Under the substitution model used here, a larger k is associated with a 

faster rate of substitution, countering the small effect of the size of a individual sweep described 

above. Comparisons with Figure 6 show that there tend to be somewhat larger effects of X-

linked sweeps with the larger values of k. These translate into noticeably larger values of the 

X/A diversity ratios, but a reduced sensitivity of these ratios to the CO rate. 

 

Discussion 

General considerations 

As described in the introduction, a widely-used simplification for calculating the effect of a 

selective sweep on nucleotide site diversity at a linked neutral site is the “star-like phylogeny” 

assumption that alleles sampled at the end of a sweep, and which have not recombined onto a 

wild-type background, coalesce instantaneously. Their mean coalescent time (relative to the 

purely neutral value) for a pair of alleles can then be equated to the probability that one of them 

undergoes a recombination event that transfers the neutral site onto the wild-type background 

(Wiehe and Stephan 1993; Barton 1998, 2000; Durrett and Schweinsberg 2004).   

 The results presented here show that this often leads to inaccuracies in predictions 

concerning the mean coalescent time for a pair of swept alleles, especially when the ratio of 

recombination rate to the homozygous selection coefficient (r/s) is relatively high, consistent 

with previous findings (Barton 1998; Hartfield and Bataillon 2020), as can be seen in Figures 1 

and S1. Similarly, Figure 3 shows that with recurrent sweeps, gene conversion and no BGS, the 

NC approximation and its modification by CC considerably underpredict the effects of sweeps 

compared with simulations, whereas the C2 approximation derived here fits much better. The C1 

approximation greatly overestimates the diversity reductions at high recombination rates.  

 This inaccuracy of the NC approximation reflects the fact that the probability of no 

recombination in the absence of coalescence (Pnr) used in the NC approximation (Equation 11b) 

declines much faster with increasing recombination rate than does the true probability of no 

recombination, (1	– Pr) (see Table 1 and Table S1 of File S1). The theory for large r/s is, 
however, not entirely satisfactory, as the C2 approximation derived here uses a heuristic 

approach to modeling the effects of multiple recombination events, while the C1 approximation 

ignores these events. Tables 1 and S1 show that the probability of a single recombination event is 

often less than half the net probability of a recombination event when r/s ≥ 0.08, so that multiple 

events cannot then be ignored. As described above, the true expected reduction in diversity 
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probably lies between the C1 and C2 predictions. Ideally, both multiple recombination events 

and within-sweep coalescent events should be included in the model without the approximations 

used here. This was done by Kaplan et al. (1989), but no simple formula can be obtained by this 

approach. 

 Other stochastic treatments of the mean coalescent time associated with a sweep that 

should, in principle, allow for multiple recombination events and coalescence within the sweep, 

have been given by Stephan et al. (1992) and Barton (1998) for the case of semi-dominant 

selection with autosomal inheritance and random mating. However, these are not necessarily 

very accurate. For the example in Figure 1 with h	=	0.5,	g	=	250 and r/s =	0.64, Equation 18 of 

Stephan et al. (1992) predicts a reduction in diversity at the end of a sweep of 0.013, whereas the 

simulations and C2 approximation give values of 0.0051 and 0.0044, respectively. After some 

simplification (and equating Barton’s e to q0), Equation 16 of Barton (1998) gives a predicted 

reduction in pairwise diversity in the absence of recombination of approximately 1 – Td – 2g –1 

ln(g). For g	=	250	(with	Td = 0.088), this is equal to 0.868, compared with the simulation and 

C1/C2 values of 0.925, and the NC value of 1. In addition, Figure 3 of Barton (1998) shows a 

slightly faster than linear increase in mean coalescent time with  increasing r/s for r/s  < 0.5, in 

contrast to the approximately exponential decline in – Dp seen in Figure S1, corresponding to a 

diminishing returns relation for p. 

 It is important to note that, even for recombination events within genes, relatively large 

r/s values are likely. For example, with the parameters used for Figure 3, s	=	1.25	x	10–4	in a 

population with Ne =	106. With the standard sex-averaged autosomal CO rate for D. 

melanogaster of 1	x	10–8 per bp, but without gene conversion, the recombination rate between 

two sites 1kb apart is 1	x	10–5, so that r/s  = 0.08. With gene conversion at an effective rate of 

initiation of 1	x	10–8 per bp and a mean tract length of 440bp, the recombination rate is 1.88	x	

10–5, and r/s  = 0.15. Figure 1 shows that, for r/s = 0.16, h	=	0.5	and	g	=	250, the predicted 

reduction in diversity at the end of sweep for C2 is approximately 86% of that for C1 and 114% 

of the simulation value (this is not significantly different from the C2 result at the 1% level); the 

NC approximation predicts a reduction that is approximately 27% of the C2 value. 

 Knowledge of the expected effects of multiple recombination events for large r/s  is even 

more important for modeling recurrent sweep effects on intergenic sequences, which is needed 

for interpreting the observed pattern of increased intergenic sequence variability as a  function of 

the distance from a gene in both mammals (Halligan et al. 2010; Hammer et al. 2010; Booker 

2018); and Drosophila (Johri et al. 2020). An improved analytical treatment of this problem is 
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desirable. At present, the use of the C2 approximation seems to provide the best option for 

dealing with recurrent sweeps, other than by numerical solutions using the results of Kaplan et 

al. (1989) or simulations of the type performed by Messer and Petrov (2013) and Johri et al. 

(2020). 

 

Relations between synonymous site diversity and recombination rate 

The main purpose of this paper is to explore some general principles rather than to attempt to fit 

models to data, but it is obviously of interest to examine the relations between the theoretical 

predictions for the Drosophila model of recurrent selective sweeps described above and the 

relevant empirical evidence. As Figure 3 shows, despite the caveats discussed about, the 

analytical results derived here for selective sweep effects using the C2 approximation should 

provide better predictions concerning the relation between synonymous site diversity and local 

recombination rate than those discussed in CC. The basic expectation of a diminishing returns 

relation between synonymous site diversity and CO rate described in CC remains, however, 

unchanged.  

 Based on the empirical plots of this relationship provided in Campos et al. (2014), it was 

concluded by CC that the observed relation between synonymous p and CO rate in a Rwandan 

population of D. melanogaster was too steep and close to linear to be explained by models that 

include both selective sweep and BGS effects, or by either of these processes on their own. One 

possibility is that CO events are mutagenic, as indicated by recent studies of human de novo 

mutations (Halldorsson et al. 2019). This is, however, hard to reconcile with the lack of evidence 

for a correlation between silent site divergence and CO rate in D. melanogaster, outside the non-

crossover genomic regions where divergence tends to be higher than average, presumably 

reflecting the effect of reduced Ne  due to selection at linked sites (Haddrill et al. 2007; Campos et 

al. 2014). This observation is, however, not conclusive, since the recombination landscape in D. 

melanogaster is substantially different from that in its close relative D. simulans, with less 

suppression of crossing over near telomeres and centromere (True et al. 1996), so that current 

estimates of CO rates may not reflect the evolutionarily significant values. 

 Another possibility is that the nearly linear relationships between described by Campos et 

al. (2014) are artefacts of their use of classical marker-based maps (Fiston-Lavier et al. 2010) or 

the Loess smoothing procedure applied to the 100kb window estimates of CO rates obtained by 

the SNP-based map of Comeron et al. (2012). Smoothing may cause relative low values of p 

associated with very high CO rates to be wrongly assigned to much lower CO rate, as noted by 
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Castellano et al. (2016) in connection with estimates of the relation between the rate of adaptive 

evolution of protein sequences and the CO rate. A diminishing returns relation between non-

coding site diversity for the Raleigh population of D. melanogaster and CO rate was found by 

Comeron (2014) when using the raw CO rate estimates; a similar pattern is seen in the Rwandan 

population (J.M. Comeron, personal communication). However, the use of the raw estimates is 

open to the objection that the extreme CO values may simply be artefactual, leading to a flatter 

relation between p and CO rate than truly exists. In addition, Comeron’s non-coding p values for 

the Rwandan population are substantially lower than the synonymous site values of Campos et 

al. (2014), similar to what has been found in studies of other populations (Andolfatto 2005; 

Haddrill et al. 2005), suggesting that the non-coding sites involve at least some sequences that 

are subject to selection. This could easily lead to a less than linear relation between p  and CO 

rate. The question of the true empirical relationship between neutral or nearly neutral variability 

in Drosophila needs further exploration before firm conclusions can be drawn. 

 

Differences between X chromosomes and autosomes 

As discussed by CC, the differences between X chromosomes and autosomes in their levels of 

neutral diversity, and the relations between these and CO rates, need to be interpreted in terms of 

models of the effects of selection at linked sites. A pattern seen in several analyses of D. 

melanogaster datasets is that the relation between silent or synonymous site diversity for the X 

and CO rate is considerably weaker than that for the autosomes (Langley et al. 2012; Campos et 

al. 2014; Comeron 2014).  

 The expected difference between X and A is seen mostly clearly by plotting the ratio of X 

to A diversity values (RXA) against the CO rate, adjusted to give the same effective rate for X and 

A genes. The results for the case when RXA in the absence of selection (k) is equal to 0.75 were 

shown in Figure 6). The contrast between the cases with and without BGS is striking. Without 

BGS, for each mode of selection the ratio either slightly increases with CO rate (h	=	0.1) or is 

constant or nearly constant (h	=	0.5 or h	=	0.9). With BGS, there is a strong decline in RXA from 

the lowest relative rate of CO (0.5), with values greater than 1 or close to 1, and the standard rate 

(1.0). The value at the highest relative CO rate (2.5) varies according to the dominance 

coefficient and mode of selection. With male-only selection, RXA ≈ 0.7 with h	=	0.1 but is close 

to 0.8 with the other dominance coefficients; for the other modes of selection it is close to 0.75. 

 Given the evidence that the X in Drosophila is deficient in genes with male-biased 

expression, but enriched in female-biased genes (Parsch and Ellegren 2013), the results for male-

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 30, 2020. ; https://doi.org/10.1101/2020.05.27.119883doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.119883
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

biased genes are probably the least relevant. The data on synonymous site diversity in the 

Rwandan population of D. melanogaster in Figure S2 of Campos et al. (2014), based on Loess 

smoothing of the raw recombination estimates of Comeron et al. (2012), show that RXA takes the 

values of 1, 0.84. 0.74 and 0.73 for relative CO rates of 0.5, 1.0, 1.5 and 2.0, respectively. Use of 

the raw estimates of CO rates and diversity at non-coding sites for the same population gives a 

qualitatively similar pattern (J.M. Comeron, personal communication).  

  

Effect of a change in population size on RXA 

It has been shown previously that a change in population size can cause RXA to deviate from its 

equilbrium value, k  (Hutter et al. 2007; Pool and Nielsen 2007, 2008), reflecting the fact that the 

rate of response of neutral diversity to a change in population size is faster with smaller Ne. This 

raises the question as to whether the observed pattern of relationship between RXA and the CO 

rate that has just been discussed could be explained by such a change, rather than by the 

differential effect of selection at linked sites on X and A diversity values. An approximate 

answer to this question can be obtained with a purely neutral model, in which the population size 

changes from a initial equilibrium value, but k remains constant during the process of change. In 

addition to k, we need to specify the relation between the rate of recombination and diversity. 

This can be done by introducing a variable b (0	≤ b ≤	1) which is equal to the ratio of the 

equilibrium diversity for a given effective rate of recombination to its value at the maximum 

recombination rate in the study. On the null hypothesis that there is no differential effect on RXA 

of selection at linked sites, the same b should apply to X and A diversities with the same 

effective recombination rate. 

 The most extreme effect of a population size change on RXA will come from a step change 

in population size, since this minimizes the ability of diversity values to track the population size. 

Consider a model in which the time T since the start of the expansion is scaled relative to the 

final autosomal Ne	at the highest recombination rate; let the ratio of final to initial effective 

population sizes be RN	; and write a = 1 – 1/RN	.	Using the equivalents of Equation A8a applied 

to X and A diversities relative to their final equilibrium values, RXA at time T is given by: 

 

																																																												𝑅��(𝑇) = 𝑘 [PR� ���bR�
�t��t\d]

[PR� ���(R��t\)]
																																	(20) 
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 This expression shows that, as expected, RXA is equal to k when T	=	0, and also when T		

>> kb. For a population expansion (so that 0 < a < 1), for intermediate	T values we have RXA > k, 

provided that k < 1. The converse is true for a population contraction, for which a <  0. Thus, 

regardless of the value of b, a population expansion will temporarily increase RXA above its 

equilibrium value. The extent of this increase for a given T	is affected by b, but the direction and 

magnitude of the effect of b varies with T. For small T, a smaller value of b causes a larger value 

of RXA; the reverse is true for large T (see Section 1 of File S1).  

 It follows that no simple predictions are possible as to whether low rates of 

recombination are associated with larger values of RXA than high rates, after a population 

expansion of the kind indicated by the data on the Rwandan population of D. melanogaster. 

However, numerical examples suggest that the effects of differences in b are at best modest 

when k =	0.75. For example, with RN = 10 (a ten-fold increase in population size), the values of 

RXA for b =	0.25	and b =	1	are 0.892 and 0.858, respectively at T	=	0.1. By	T	=	0.2, the 

respective RXA values are 0.869 and 0.885, and by T	=	0.5	they are 0.801 and 0.884. There is 

therefore only a brief interval of time in which the lower b value (which corresponds to the 

lowest recombination rate considered above) is associated with RXA substantially larger than that 

with the higher value (which corresponds to the higher recombination rate considered). With b =	

1, RXA > 0.85 persists untilT	=	1.	
	 Instead of comparing X and A, we can compare the ratio of diversity values for two 

different regions of the same chromosome with different CO rates, with the left-hand side of 

Equation 20 representing this ratio at a given time after a population size change, where k now 

represents the effect of recombination rate differences on the equilibrium level of diversity (b is 

set equal to 1, since we are now longer comparing X and A). Equation 20 shows that a 

population expansion will reduce the differentials between regions with different k values, 

whereas a contraction will enhance them. For example, with RN = 10, k = 0.5 and T	=	0.1, the 

diversity ratio becomes 0.709 instead of 0.5. Given the distortion of the site frequency spectrum 

at synonymous sites on the autosomes in the Rwandan population towards low frequency 

variants, with Tajima’s D values at synonymous sites of approximately – 0.2 (Campos et al. 

2014), there has probably been a recent population expansion, which may have weakened the 

relation between diversity and CO rate compared with an equilibrium population. Further 

theoretical investigations of the interaction between such demographic effects and effects of 

selection at linked sites are needed if reliable inferences concerning both demography and 
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selection are to be obtained (Messer and Petrov 2013; Zeng 2013; Ewing and Jensen 2016; 

Comeron 2017; Becher et al. 2020; Johri et al. 2020).  
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Appendix 

Explicit formulae for coalescence and recombination probabilities 

When a	>	0 and a	+	b	>	0 (i.e. excluding cases of random mating with complete recessivity 

or dominance), the time between a given frequency q of A2 and its frequency q2 at the end of 

the deterministic phase of the sweep is given by:  

 

																																		𝑇(𝑞) = 𝛾RP ∫ 𝑥RPop
o (1 − 𝑥)RP(𝑎 + 𝑏𝑥)RPd𝑥   

																																												= 𝛾RP ∫ {𝑥RP +op
o (1 − 𝑥)RP}(𝑎 + 𝑏𝑥)RPd𝑥  

																																												= 𝛾RP{𝑎RP ln nop(qrso)
o(qrsop)

u + (𝑎 + 𝑏)RP ln nv(qrsop)
vp(qrso)

u}            (A1a) 

 

When a tends to 0 and b tends to 1, corresponding to random mating with complete 

recessivity, we have: 

              𝑇(𝑞) = 	𝛾RP[𝑞RP + ln(𝑝𝑞RP𝑝_RP) − 1]                      (A1b) 

 

When a tends to 1 and b tends to –1, corresponding to random mating with complete 

dominance, we have: 

																																							𝑇(𝑞) = 	 𝛾RP[𝑝_RP + ln(𝑝𝑞RP𝑝_RP) − 𝑝RP]	                   (A1c)   

   

Similarly, for a	>	0 and a	+	b	>	0 Equation 8b can be written as: 

 

								𝑃TL(𝑞) = exp − {𝛾RP � 𝑥R_(1 − 𝑥)RP	(𝑎 + 𝑏𝑥)RP	d𝑥	}																																							
op

o
 

																																= exp − {𝑎RP𝛾RP n(𝑞RP − 𝑞_RP) + 𝑎RP𝑏 ln  
o(qrsop)
op(qrso)

¡u + 𝑇(𝑞)}	    (A2a) 

 

When a tends to 0 and b tends to 1 (complete recessivity), we have: 

 

 												𝑃TL(𝑞) = exp − {𝛾RP ∫ 𝑥R¢(1 − 𝑥)RPop
o d𝑥} 

																																							= 	exp − {𝛾RP ∫ [𝑥R¢+	𝑥R_ + 𝑥RP + (1 − 𝑥)RP]op
o d𝑥}  

																																							= exp − 𝛾RPf£p(𝑞
RP − 𝑞_RPd + ln	(

opv
ovp
)]                            (A2b) 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 30, 2020. ; https://doi.org/10.1101/2020.05.27.119883doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.119883
http://creativecommons.org/licenses/by-nc-nd/4.0/


 41 

 

When a tends to 1 and b tends to –1 (complete dominance, we have: 

 

																								𝑃TL(𝑞) = exp − {𝛾RP ∫ 𝑥R_(1 − 𝑥)R_op
o d𝑥}  

																																					= exp − {𝛾RP ∫ [𝑥R_ + 2𝑥RP(1 − 𝑥)RP +op
o (1 − 𝑥)R_]d𝑥}  

																																					= exp − 𝛾RP[(𝑞RP − 𝑞_RP) + (𝑝_RP − 𝑝RP) + 2	ln	(
opv
ovp
)]   (A2c) 

 

Equation 8c for a	>	0 and a	+	b	>	0 can be written as: 

 

																														𝑃TU(𝑞) = exp−{2ρ𝛾RP ∫ 𝑥RP(𝑎 + 𝑏𝑥)RPop
o d𝑥}  

																																													= 	exp − {2ρ𝛾RP𝑎RP ln nop(qrso)
o(qrsop)

u}                                 (A3a)                          

 

When a tends to 0 and b tends to 1, this becomes: 

 

 																															𝑃TU(𝑞) = exp−{2ρ𝛾RP ∫ 𝑥R_op
o d𝑥} 

																																																									= exp−{2ρ𝛾RP(𝑞RP − 𝑞_RP)}                              (A3b) 

 

When a tends to 1 and b tends to –1, we have: 

 

 																														𝑃TU(𝑞) = exp−{2ρ𝛾RP ∫ 𝑥RP(1 − 𝑥)RPop
o d𝑥} 

																																																								= exp−{2ρ𝛾RPln	(vpv
ovp
)}                                       (A3c) 

 

Probability of no coalescence conditional on no recombination 

For simplicity, only the case of intermediate dominance (a	≠	0,	b	≠	–1) will be considered. 

With large g, we can write q1	≈ 1/(2ag), p2	≈ 1/[2(a	+	b)g]	and q2	=	p1 ≈ 1.	We can then use 

Equations A1a and A2a with q = q1.	 T(q1) and the multiplicand of b in the exponent are of 

order ln(g)/g, provided that a–2	<< g. The leading term in the exponent is the product of –

1/(2ag)  and 1/q1, which is approximately equal to –2 under this condition, implying that 

Pnc(q1) ≈ e	–2 = 0.135. 
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Harmonic mean of q during a sweep 

The integral of 1/q between q1	and q2	is equivalent to the terms in braces in the exponents in 

the first lines of Equations A3, with q =	q1. The harmonic mean of q is given by taking the 

reciprocal of this integral, after division by Td.  From the above result, the integral is 

approximately 2 for large g, so that the harmonic mean of q is approximately equal to ½Td.
  

Probability of recombination during a sweep, for large values of r/s 

A semi-dominant (h	=	0.5) autosomal locus with random mating is assumed. Using the 

notation described in the main text, together with Equations A1a, A2a, and A3a, Equation 10 

can be written as: 

 																																	𝑃U = 𝑅𝑒�𝛾R� ∫ 𝑞¤r�RP𝑝R�exp	−(𝛼op
ot

𝑞RP)	d𝑞            (A4) 

 

 Assuming that g >>	1 (so that a << 1), and R	>	1, the integrand can be approximated 

by: 

                 	𝑓(𝑞) = 		𝑞¤RP𝑝R�[1 − 𝛼𝑞RP]									 

 

Expanding p–a as a binomial series in powers of q, the integrand can be written as: 

 

   	𝑞¤RP − 𝛼	𝑞¤R_ 	+		𝛼𝑞¤[1 − 𝛼𝑞RP] +	∑ �(�rP)…(�r�RP)
�!

�
��_ [𝑞¤r�RP	 − 𝛼𝑞¤r�R_]					(A5a) 

 

Neglecting higher powers in a, this can be approximated by: 

 

																																											𝑞¤RP − 𝛼	𝑞¤R_ +	𝛼𝑞¤ + 𝛼 ∑ 𝑖RP�
��_ 𝑞¤r�RP																																(A5b) 

 

This expression can be integrated term by term to yield the following indefinite integral: 

 

													𝑅RP𝑞¤ − 𝛼(𝑅 − 1)RP	𝑞¤RP +	𝛼(𝑅 + 1)RP𝑞¤rP + 𝛼¨[𝑖(𝑅 + 𝑖)]RP
�

��_

𝑞¤r�					(A6a)		 

  

We can then use q1	=	p2	=	1/g  to obtain the definite integral in Equation A4, again 

neglecting higher order terms in a: 
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 																											𝑅RP − 	𝛼(𝑅 − 1)RP + 	𝛼(𝑅 + 1)RP + 𝛼∑ [𝑖(𝑅 + 𝑖)]RP�
��_         (A6b) 

 

Simplifying the first two terms in a in this expression, and multiplying by the terms outside 

the integral in Equation A4, we obtain the following expression for the probability of 

recombination during a sweep: 

 

																					𝑃U ≈ 𝑒�𝛾R�{1 − 	2𝛼𝑅[(𝑅 − 1)(𝑅 + 1)]RP + 𝛼𝑅∑ [𝑖(𝑅 + 𝑖)]RP�
��_ }										(A7) 

 

 

Increase in expected diversity of recombinant alleles at the start of a sweep 

At the start of a sweep, the expected diversity (relative to the neutral expectation) is p1.	If 

there is sufficient recombination that recombinant alleles have an effective population size of 

B1 relative to neutrality, their expected relative pairwise diversity relative to neutrality at a 

given time T since the start of the sweep is given by: 

 

         𝜋(𝑇)𝐵PRP = 1 − (1 − 𝜋P𝐵PRP)exp	(−𝐵PRP𝑇)                                     (A8a) 

 

(Compare with Equation 11 of CC). 

 For sweep of type i, with duration Tdi  and mean time to the first recombination event 

Tri, the expected diversity at the time of the recombination event is thus: 

 

                   𝜋(𝑇U�) = 𝐵P{1 − (1 − 𝜋P𝐵PRP) exp[−𝐵PRP(𝑇 � − 𝑇U�)]}                          

         =  𝐵P[1 − (1 − 𝜋P𝐵PRP)𝐸�]                                                         (A8b) 

 

If we assume that this is approximately the same as the mean coalescent time associated with 

multiply-recombinant haplotypes, the diversity at the end of a sweep of this type can be 

written as: 

  

							𝜋]� ≈ (𝑃U� − 𝑃Uz�)𝐵P[1 − (1 − 𝜋P𝐵PRP)𝐸�] + 𝑃Uz�𝜋P + 𝑇z� + 𝑃Uz�𝑇 �  

             =  [𝑃Uz� + (𝑃U� − 𝑃Uz�)𝐸� ]	𝜋P + (𝑃U� − 𝑃Uz�)𝐵P(1 − 𝐸�) + 𝑇z� + 𝑃Uz�𝑇 �     (A9)       

 

   If the rate of occurrence of sweeps of type i is wi, their frequency among all sweeps is equal 

to fi = wi /w. The expected diversity at the end of a sweep is given by: 
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                𝜋] ≈ [𝑃�Uz + 𝐺] 	𝜋P + (𝑃�U − 𝑃�Uz)𝐵P − 𝐺𝐵P + 𝑇�z 	+ 𝑃Uz𝑇�������              (A10a) 

  

where 

                        𝐺 = ∑ 𝑓�(𝑃U� − 𝑃Uz�)𝐸��                                     (A10b) 

 

 From Equation 10 of CC, we also have: 

  

                                        𝜋P = 𝐵P[1 − (1 − 𝜋]𝐵PRP)𝐴)                              (A11a) 

where 

                                              𝐴 = 𝜔/(1 + 𝐵PRP)                                 (A11b) 

 

 Furthermore, by Equation 10 of CC, the mean diversity over the interval between 

sweeps,	p, is given by: 

 

                               𝜋 = [1 − (1 − 𝜋]𝐵PRP)]𝐵P_𝜔𝐼(𝜔, 𝐵P)                          (A12) 

	
where I is the integral defined in Equation 10 and section 5 of File S1of CC. 

 As in CC, these expressions allow p0, p1	and p to be determined explicitly. Let 𝐶P =

	𝑃�Uz + 𝐺 and 𝐶_ = (𝑃�U −	𝑃�Uz)𝐵P − 𝐺𝐵P + 𝑇�z 	+ 𝑃�Uz𝑇�`. Using Equations A10 and A11, we 

have: 

                          𝜋P = [𝐴𝐶_ + (1 − 𝐴)𝐵P]/(1− 𝐴𝐶P)                   (A13) 

 

 Substituting this expression into Equation A10a yields an expression for p0, which in turn 

allows p to be determined from Equation A12.        

                    

Rates of substitution of new favorable mutations for arbitrary genetic systems 

Following Charlesworth et al. (2018), let NH be the total number of haploid copies among 

breeding adults for a given genetic system, where NH	=	2N for A, NH	=	3N/2 for X, and N is 

the number of breeding adults. Let the effective population size for the genetic system in 

question be kNe0, where	Ne0 is the effective population size for A. Under the selection model 

described in the text (Equation 6), the probability of fixation of a new mutation is 

4as(kNe0/NH) (Charlesworth 2020), and the rate of entry of new favorable mutations into the 
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population each generation is NHupa,	where pa	is the proportion of mutations that are 

favourable. The rate of substitution of favorable mutations per generation is thus 4NHupa	(as	

kNe0/NH)	=	4kNe0upa	(as) = 2upa	(akg0), where g0	is	the scaled selection coefficient for 

autosomal mutations. The expected number of substitutions over one unit of coalescent time 

for the given genetic system is thus 4kNe0	x	upa	(akg0) = ppa(akg0),	where p = 4kNe0u is the 

expected neutral nucleotide site site diversity with mutation rate u. The relevant formulae for 

a described in the text can be used to obtain the substitution rates for the genetic system of 

interest.  
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   Table 1   Parameters describing the effect of a single sweep  
 

                                                    g = 250 

												h = 0.1, Td  = 0.111, approx. Ts  = 0.0703, Pnc = 0.229 

r/s Pc1 Pnr Pr Prs Ts  Tc 
/ Pc1 Tr  

 0 0.771 1 0 0 0.0594 0.0770   — 

0.04 0.354 0.226 0.595 0.346 0.0293 0.0669 0.0359 

0.08 0.193 0.0571 0.796 0.244 0.0121 0.0562 0.0477 

0.16 0.0895 0.0026 0.910 0.0645 0.0036 0.0392 0.0393 

0.32 0.0471 0.0000 0.953 0.0027 0.0011 0.0244 0.0266 

0.64 0.0313 0.0000 0.969 0.0000 0.0005 0.0017 0.0259 

1.28 0.0237 0.0000 0.977 0.0000 0.0003 0.0013 0.0215 

	
											h = 0.5, Td  = 0.0883, approx. Ts  = 0.0561, Pnc = 0.125    

r/s Pc1 Pnr Pr Prs Ts  Tc 
/Pc1 Tr  

 0 0.875     1    0    0 0.0637 0.0728  — 

0.04 0.491 0.413 0.457 0.335 0.0385 0.0690 0.0556 

0.08 0.293 0.171 0.686 0.353 0.0207 0.0640 0.0528 

0.16 0.131 0.0293 0.866 0.200 0.0071 0.0517 0.0476 

0.32 0.0589 0.0009 0.941 0.0341 0.0019 0.0320 0.0407 

0.64 0.0386 0.0000 0.962 0.0006 0.0008 0.0210 0.0339 

1.28 0.0297 0.0000 0.971 0.0000 0.0004 0.0162 0.0279 

	 	
	 h = 0.9, Td  = 0.118, approx. Ts  = 0.0749, Pnc = 0.118  
 

r/s Pc1 Pnr Pr Prs Ts  Tc 
/Pc1 Tr  

 0 0.882  1   0   0 0.0860 0.0972 — 

0.04 0.531 0.485 0.412 0.307 0.0557 0.0929 0.0792 

0.08 0.335 0.235 0.637 0.346 0.0323 0.0872 0.0757 

0.16 0.160 0.0554 0.834 0.223 0.0122 0.0719 0.0690 

0.32 0.0746 0.0031 0.926 0.0489 0.0034 0.0449 0.0582 

0.64 0.0486 0.0000 0.954 0.0013 0.0014 0.0296 0.0451 

1.28 0.0341 0.0000 0.969 0.0000 0.0008 0.0221 0.0324 
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Td and Ts are the expected durations of the deterministic phase of the sweep 

and pairwise coalescent time associated with the sweep, respectively; Pnc is 

the probability of no coalescence during the sweep, in the absence of 

recombination; Pnr  is the probability of no recombination during the sweep, 

in the absence of coalescence; Pc1 is the probability of coalescence during 

the sweep; Pr is the probability of a least one recombination event during 

the sweep; Tc/Pc1 is the mean time to coalescence during the sweep, 

conditioned on coalescence; Tr is the mean time to the first recombination 

event, conditioned on the occurrence of a recombination event. The 

approximate value of Ts is for the case of no recombination, and is equal to 

0.635 Td (see the text). 
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Figures and Figure Legends 
 
Figure 1  The reduction in diversity (relative to the neutral value) at the end of a sweep for 

an autosomal locus (Y-axis, log10 scale), as a function of the ratio of the frequency of 

recombination (r) to the selection coefficient for homozygotes (s) (X-axis, log2 scale).  A 

population size of 5000 is assumed, with three different values of the scaled selection 

coefficient (g = 2Nes): 125 (top panel), 250 (middle panel) and 500 (bottom panel), and three 

different values of the dominance coefficient (h), increasing from left to right. The filled red 

circles are the mean values from computer simulations, using the algorithm of Tajima 

(1990); the open filled blue circles and black circles are the C1 and C2 predictions, 

respectively; the open blue squares are the NC predictions. Values of the reduction in 

diversity less than 0.001 have been reset to 0.001. 
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Figure 2   The reduction in diversity (relative to the neutral value) at the end of a sweep for 

an autosomal locus, as a function of the scaled rate of recombination (2Ner) for a randomly 

mating population. The results for two different selfing rates, S, (upper and lower panels) 

are shown, together with three different values of the dominance coefficient, h. A 

population size of 5000 is assumed, with a scaled selection coefficient for A2A2 

homozygotes in a randomly mating population (g = 2Nes) of 500. The filled black lozenges 

are the mean values from computer simulations (Hartfield and Bataillon 2020); the open 

blue circles and open black circles are the C1 and C2 predictions, respectively; the open blue 

squares are the NC predictions. 
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Figure 3  Comparisons with several different theoretical predictions of the mean values of 

the reduction in diversity obtained in computer simulations of recurrent sweeps with 

random mating, autosomal inheritance and semi-dominant favorable mutations, described 

in CC. The X axis shows the values of the rate of crossing over, expressed relative to the 

mean value for Drosophila melanogaster. The red bars are the mean values of the 

simulation results for neutral (synonymous sites) in a group of 70 genes; the blue bars are 

the predictions from Equations A10-13; the black bars are the predictions from Equation 

12b of CC; the white bars are the predictions from the standard coalescent model of 

recurrent sweeps, assuming no coalescence within sweeps (Equation 7 of CC). Cases with 

and without gene conversion (upper and lower panels, respectively), and in the absence or 

presence of background selection (BGS), using either B1 or B2 to predict fixation probabilities 

when BGS is acting, are shown.  
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Figure 4 The reduction in diversity (relative to the neutral value) at the end of a sweep for 

an X-linked locus (Y-axis, log10 scale), as a function of the ratio of the frequency of 

recombination (r) to the selection coefficient for homozygotes (s) (X-axis, log2 scale).  The 

Drosophila recombination model is assumed; Ne for the X chromosome is three-quarters of 

that for the autosomes. The results for mutations with no sex limitation are shown in the 

left-hand panels; those for male-limited and female-limited mutations are shown in the 

middle and right-hand panels, respectively. A population size of 5000 is assumed, with a 

scaled selection coefficient for an autosomal mutation in a randomly mating population (g = 

2Nes) of 250 for the cases with no sex-limitation. For the sex-limited cases, g = 500 to ensure 

comparability to sex-limited autosomal mutations. Results for three different values of the 

dominance coefficient (h) are shown, with h increasing from the top to bottom panels. The 

filled red circles are the mean values from computer simulations, using the algorithm of 

Tajima (1990); the filled blue circles and black circles are the C1 and C2 predictions, 

respectively; the open blue squares are the NC predictions. Values of the reduction in 

diversity less than 0.001 have been reset to 0.001.  
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Figure 5   Reductions in diversity (relative to neutrality) under recurrent sweeps at 

autosomal and X-linked loci for the Drosophila model, using the C2 theoretical predictions 

with gene conversion and five different rates of crossing over relative to the autosomal 

standard value (the X-linked rates of crossing over and gene conversion were chosen to give 

the same sex-averaged effective rates as for the autosomes). Ne for the X chromosome is 

three-quarters of that for the autosomes. The upper panel is for cases without BGS; the 

lower panel is for cases with BGS (using the parameters described in the main text). The 

filled red bars are for autosomal mutations, the hatched blue bars are for X-linked 

mutations with no sex-limitation, the stippled black bars are for male-limited X-linked 

mutations, and the hatched green bars are for female-limited X-linked mutations. For the 

sex-limited cases, g = 500 to ensure comparability with the autosomal and non-sex-limited 

X-linked mutations.  
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Figure 6    The ratios of X chromosome to autosome nucleotide site diversities (RXA) for the 

Drosophila model under recurrent sweeps, using the C2 theoretical predictions with gene 

conversion and five different rates of crossing over relative to the autosomal standard value 

(the X-linked rates of crossing over and gene conversion were chosen to give the same sex-

averaged effective rates as for the autosomes).  Ne for the X chromosome is three-quarters 

of that for the autosomes (k	=	0.75). The upper panel is for cases without BGS; the lower 

panel is for cases with BGS. The filled red bars are for h	=	0.1 (the dominance coefficient of 

favorable mutations), the hatched blue bars are for h	=	0.5 and the black stippled bars are 

for h	=	0.9. The other details are as for Figure 5. 
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Section S1  
 
Derivation of Frisse et al. formula for the effect of gene conversion 

Consider two sites (1 and 2, with 1 to the left of 2) separated by z basepairs; let the rate of 

initiation of a gene conversion tract be rg	and the mean tract length be dg. Assume an 

exponential distribution of tract lengths, with rate parameter l = 1/dg. If a tract is initiated to 

the left of 1, it has a probability of ½ of moving towards 1. If it is initiated at distance y from 

1, the probability that it includes 1 but falls short of 2, resulting in the conversion of 1 but not 

2, is given by: 

 

																			𝜆 � exp(−𝜆𝑥) 	d𝑥
±r²

±
= exp(−𝜆𝑦)[1 − exp(−𝜆𝑧)]																														(S1) 

 

The net probability of conversion of 1 from this class of event is then given by:  

  

																						tp𝑟· ∫ exp(−𝜆𝑦) [1 − exp(−𝜆𝑧)]	d𝑦�
] = t

p𝑟·𝑑·f1 − expb−𝑧/𝑑·di												(S2)  

 

We also need to consider the class of events where a tract is initiated between sites 1 and 

moves the right including 2. If it starts at a distance u from 1, the probability that it includes 2 

is given by: 

 	

																																			𝜆 � exp(−𝜆𝑥) 	d𝑥
�

²R¹
= exp[ − 𝜆(𝑧 − 𝑢)]																														(S3) 

 

The net probability of a tract of this class converting site 2 but not 1 is:  

 

 t
p𝑟· ∫ exp[−𝜆(𝑧 − 𝑢)]	d𝑢²

] = 	tp𝑟·𝑑·[1 − exp(−𝑧/ 𝑑·)]																								(S4) 

  

The same argument applies to tracts moving from right to left, so the net probability of 

recombination between sites 1 and 2, due to one site but not the other being included in a 

conversion tract, is: 

 

                 																		2𝑟·𝑑·[1 − exp(−𝑧/ 𝑑·)]																																										(S5) 
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Effect of the b parameter on RXA 

It is sufficient to consider the partial derivative of RXA	with respect to 1/b, as given by 

Equation 19 of the main text. We have: 

 

 		»¤¼½
»��t

∝ b1 − 𝛼	𝑒R��t\	d𝑘RP𝑒R��t��t\ 		− 	b1 − 𝛼	𝑒R��t��t\	d𝑒R��t\																																		 

 
             = 𝑘RP𝑒R��t��t\ − 𝑒R��t\ 		+ 𝛼(1 − 𝑘RP)𝑒RbPr��td��t\							(S6) 
 
 As T tends to 0, this expression approaches (1	– a)(k	–1	–	1). Provided that k	<	1, 

this is positive if a <	1 (a population expansion), and negative if a  > 1 (a population 

contraction). The product of exp(bT) and the derivative is equal to: 

 

                         𝑘RP𝑒R(��tRP)��t\ − 1		 + 𝛼(1 − 𝑘RP)𝑒R��t��t\							 

 

For T >> kb and k	<	1, this quantity approaches –1, which implies that the derivative must 

be negative; a negative value will be reached at smaller values of T, the larger a. In the case 

of a population expansion, this corresponds to a smaller increase in population size. The 

effect of b on RXA for a given value of k	is therefore dependent on the time since the start of 

the expansion. 
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Section S2  
 

Table S1 Results for a single sweep of an autosomal locus in a randomly mating 

population with N = 106  

 

                                                g = 125 

																	h = 0.1, Td  = 0.169, approx. Ts  = 0.107, Pnc = 0.284 

r/s Pc Pnr Pr Prs Ts  Tc 
/Pc Tr  

0 0.716 1 0 0 0.114 0.130 – 

0.04 0.427 0.354 0.472 0.324 0.0607 0.102 0.0902 

0.08 0.280 0.125 0.685 0.304 0.0311 0.0898 0.0821 

0.16 0.154 0.0157 0.842 0.137 0.0112 0.0682 0.0698 

0.32 0.0849 0.0002 0.915 0.0154 0.0038 0.0447 0.0566 

0.64 0.0534 0.0000 0.945 0.0001 0.0017 0.0302 0.0456 

1.28 0.0408 0.0000 0.960 0.0000 0.0009 0.0022 0.0369 

 	 		
	 				h = 0.5, Td  = 0.154, approx. Ts  = 0.0978, Pnc = 0.118 

r/s Pc Pnr Pr Prs Ts  Tc 
/Pc Tr  

0 0.882 1 0 0 0.125 0. 121    – 

0.04 0.558 0.463 0.388 0.292 0.0607 0.113 0.0956 

0.08 0.373 0.214 0.602 0.331 0.0428 0.104 0.0906 

0.16 0.198 0.0457 0.797 0.216 0.0177 0.0852 0.0820 

0.32 0.101 0.0021 0.899 0.0482 0.0568 0.0559 0.0698 

0.64 0.0655 0.0000 0.935 0.0014 0.0024 0.0368 0.0570 

1.28 0.0277 0.0000 0.953 0.0000 0.0014 0.0277 0.0454 

 

 					h = 0.9, Td  = 0.169, approx. Ts  = 0.0617, Pnc = 0.109 

r/s Pc Pnr Pr Prs Ts  Tc 
/Pc Tr  

0 0.891 1 0 0 0.143 0.140 – 

0.04 0.586 0.523 0.358 0.274 0.0874 0.133 0.112 

0.08 0.401 0.274 0.569 0.326 0.0547 0.124 0.107 

0.16 0.108 0.0748 0.775 0.234 0.0237 0.103 0.0962 

0.32 0.101 0.0056 0.892 0.0629 0.0568 0.0073 0.0795 

0.64 0.0664 0.0000 0.935 0.0025 0.0028 0.0423 0.0593 

1.28 0.0439 0.0000 0.959 0.0000 0.0013 0.0299 0.0406 
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                                        g = 500 

																	h = 0.1, Td  = 0.0695, approx. Ts  = 0.0441, Pnc = 0.192 

r/s Pc1 Pnr Pr Prs Ts  Tc 
/ Pc1 Tr 

0 0.808 1 1 0 0.0533 0.0495 – 

0.04 0.274 0.136 0.701 0.338 0.0132 0.0417 0.0314 

0.08 0.123 0.0188 0.874 0.175 0.0044 0.0334 0.0267 

0.16 0.0496 0.0004 0.951 0.0262 0.0011 0.0216 0.0216 

0.32 0.0257 0.0000 0.975 0.0004 0.0003 0.0130 0.0175 

0.64 0.0175 0.0000 0.983 0.0000 0.0002 0.0090 0.0145 

1.28 0.0136 0.0000 0.987 0.0000 0.0001 0.0069 0.0123 

	
	 h = 0.5, Td  = 0.0497, approx. Ts  = 0.0316, Pnc = 0.129 
 

r/s Pc1 Pnr Pr Prs Ts  Tc 
/ Pc1 Tr 

0 0.871 1 0 0 0.0434 0.0425 – 

0.04 0.433 0.370 0.519 0.368 0.0200 0.0407 0.0319 

0.08 0.230 0.137 0.753 0.361 0.0096 0.0380 0.0300 

0.16 0.0848 0.0188 0.913 0.177 0.0027 0.0306 0.0270 

0.32 0.0335 0.0004 0.969 0.0234 0.0006 0.0178 0.0232 

0.64 0.0223 0.0000 0.978 0.0002 0.0003 0.0117 0.0197 

1.28 0.0178 0.0000 0.983 0.0000 0.0002 0.0093 0.0166 

  	 	
	 h = 0.9, Td  = 0.0695, approx. Ts  = 0.0441, Pnc = 0.124 
 

r/s Pc1 Pnr Pr Prs Ts  Tc 
/ Pc1 Tr 

0 0.876 1 0 0 0.0642 0.0634 – 

0.04 0.484 0.453 0.460 0.336 0.0335 0.0612 0.0525 

0.08 0.281 0.205 0.694 0.361 0.0180 0.0579 0.0504 

0.16 0.116 0.0421 0.879 0.212 0.0059 0.0479 0.0463 

0.32 0.0469 0.0018 0.951 0.0389 0.0015 0.0289 0.0399 

0.64 0.0340 0.0000 0.968 0.0008 0.0007 0.0198 0.0321 

1.28 0.0252 0.0000 0.979 0.0000 0.0004 0.0154 0.0242 
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Td and Ts are the expected durations of the deterministic phase of the sweep and pairwise 

coalescent time associated with the sweep, respectively; Pnc is the probability of no 

coalescence during the sweep, in the absence of recombination; Pnr		is the probability of no 

recombination during the sweep, in the absence of coalescence; Pc1	is the probability of 

coalescence during the sweep; Pr is the probability of a least one recombination event 

during the sweep;  Tc/Pc1 is the mean time to coalescence during the sweep, conditioned on 

coalescence; Tr is the mean time to the first recombination event, conditioned on the 

occurrence of a recombination event.   
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Section S3  
 
Figure S1   The reduction in diversity (relative to the neutral value) at the end of a sweep for 

an autosomal locus (Y-axis, linear), as a function of the ratio of the frequency of 

recombination (r) to the selection coefficient for homozygotes (s) (X-axis, linear scale).  A 

randomly mating population of size 5000 is assumed, with three different values of the 

scaled selection coefficient (g = 2Nes): 125 (top panel), 250 (middle panel) and 500 (bottom 

panel), and three different values of the dominance coefficient (h), increasing from left to 

right. The filled red circles are the mean values from computer simulations, using the 

algorithm of Tajima (1990); the open blue circles and black circles are the C1 and C2 

predictions, respectively; the open blue squares are the NC predictions.  
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Figure S2 The reduction in diversity (relative to the neutral value) at the end of a sweep for 

an autosomal locus, as a function of the scaled rate of recombination (2Ner). The results for 

three different values of the dominance coefficient (h) are displayed. A randomly mating 

population of size 5000 is assumed, with a scaled selection coefficient (g = 2Nes) of 500. The 

filled red circles and black lozenges are the mean values from computer simulations, using 

the algorithm of Tajima (1990) and the results of Hartfield and Bataillon (2020), respectively; 

the open blue circles and black circles are  he C1 and C2 predictions, respectively; the open 

blue squares are the NC predictions.  
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Figure S3 The reduction in diversity (relative to the neutral value) at the end of a sweep for 

an X-linked locus (Y-axis, log10 scale), as a function of the ratio of the frequency of 

recombination (r) to the selection coefficient for homozygotes (s) (X-axis, log2 scale).  The 

mammalian recombination model is assumed; the  The results for mutations with no sex 

limitation are shown in the left-hand panels; those for male-limited and female-limited 

mutations are shown in the middle and right-hand panels, respectively. A population size of 

5000 is assumed, with a scaled selection coefficient for an autosomal mutation in a 

randomly mating population (g = 2Nes) of 250 for the cases with no sex-limitation. For the 

sex-limited cases, g = 500 to ensure comparability to sex-limited autosomal mutations. 

Results for three different values of the dominance coefficient (h) are shown, with h 

increasing from top to bottom. The filled red circles are the mean values from computer 

simulations, using the algorithm of Tajima (1990); the open filled blue circles and black 

circles are the C1 and C2 predictions, respectively; the open blue squares are the NC 

predictions. Values of the reduction in diversity less than 0.001 have been reset to 0.001.  
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Figure S4  Reductions in diversity (relative to the neutral value) at the end of a sweep for an 

X-linked locus in a randomly mating population, as a function of the ratio of the autosomal 

value of the rate of crossing over to the homozygous selection coefficient (r/s), for three 

different dominance coefficients (h).	Ne for the X chromosome is three-quarters of that for 

the autosomes. Linear scales are used for both X and Y axes. The upper panel is for a 

Drosophila model, with no crossing over in males; the lower panel is for a mammalian 

model, with equal rates of crossing over for autosomes in both sexes. The red and blue 

colors denote the C1 and C2 predictions, respectively.  The full bars denote results for 

mutations with equal effects in both sexes, with g = 250. The stippled bars denote male-

limited mutations and the hatched bars denote female limited mutations. For the sex-

limited cases, g = 500 to ensure comparability with sex-limited autosomal mutations.  
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Figure S5  Reductions in diversity (relative to the neutral value) at the end of a sweep for an 

X-linked locus in a randomly mating population for the mammalian model (crossing over on 

the autosomes in both sexes), as a function of the ratio of the autosomal value of the rate of 

crossing over to the homozygous selection coefficient (r/s), for three different dominance 

coefficients (h). Gene conversion is absent. The upper panel is for the case when Ne for the 

X chromosome is half of that for the autosomes; in the lower panel, Ne is the same for both 

X and A. The red and blue colors denote the C1 and C2 predictions, respectively.  The full 

bars denote results for mutations with equal effects in both sexes, with g = 250. The stippled 

bars denote male-limited mutations, and the hatched bars denote female-limited 

mutations. For the sex-limited cases, g = 500 to ensure comparability with sex-limited 

autosomal mutations.  
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Figure S6   Reductions in diversity (relative to neutrality) under recurrent sweeps at 

autosomal and X-linked loci for the Drosophila model, using the C2 theoretical predictions 

with no gene conversion and five different rates of crossing over relative to the autosomal 

standard value (the X-linked rates of crossing over were chosen to give the same sex-

averaged effective recombination rates as for autosomes). Ne for the X chromosome is 

three-quarters of that for the autosomes. The upper panel is for cases without BGS; the 

lower panel is for cases with BGS (using the parameters described in the main text). The 

filled red bars are for autosomal mutations, the hatched blue bars are for X-linked 

mutations with no sex-limitation, the stippled black bars are for male-limited mutations X-

linked mutations, and the hatched green bars are for female-limited X-linked mutations. For 

the sex-limited cases, g = 500 to ensure comparability with sex-limited autosomal 

mutations. 
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Figure S7 The ratios of X chromosome to autosome nucleotide site diversities under 

recurrent sweeps for the Drosophila model, using the C2 theoretical predictions with no 

gene conversion and five different rates of crossing over relative to the autosomal standard 

value (the X-linked rates of crossing over were chosen to give the same sex-averaged 

effective rates as for the autosomes).  The upper panel is for cases without BGS; the lower 

panel is for cases with BGS. The filled red bars are for h = 0.1 (the dominance coefficient of 

favorable mutations), the hatched blue bars are for h = 0.5 and the black stippled bars are 

for h = 0.9. The other details are as for Figure S6.  
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Figure S8  Reductions in diversity (relative to neutrality) under recurrent sweeps at 

autosomal and X-linked loci for the Drosophila model, using the C2 theoretical predictions 

with gene conversion and five different rates of crossing over relative to the autosomal 

standard value (the X-linked rates of crossing over and gene conversion were chosen to give 

the same sex-averaged effective rates as for the autosomes). BGS is assumed to be present, 

with the parameters described in the main text. The upper panel is for the case when Ne for 

the X chromosome is half of that for the autosomes; in the lower panel, Ne is the same for 

both X and A.  The filled red bars are for autosomal mutations, the hatched blue bars are for 

X-linked mutations with no sex-limitation, the stippled black bars are for male-limited 

mutations, and the hatched green bars are for female-limited mutations. For the sex-limited 

cases, g = 500 to ensure comparability with the autosomal and non-sex-limited X-linked 

mutations.  
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Figure S9   The ratios of X chromosome to autosome nucleotide site diversities for the 

Drosophila model with recurrent sweeps, using the C2 theoretical predictions with gene 

conversion and five different rates of crossing over relative to the autosomal standard value 

(the X-linked rates of crossing over and gene conversion were chosen to give the same sex-

averaged effective rates as the autosomal rates).  BGS is assumed to be present. The upper 

panel is for the case when Ne for the X chromosome is half that for the autosomes; in the 

lower panel, Ne is the same for both X and A.   The filled red bars are for h = 0.1 (the 

dominance coefficient of favorable mutations), the hatched blue bars are for h = 0.5 and the 

black stippled bars are for h = 0.9. The other details are as for Figure S8. 
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