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Discussion 
This study is a comprehensive overview of associations between 156 HLA alleles and 677 
phenotypes in 337,138 individuals in the UK Biobank. Using single-allele association analysis 
and subsequent BMA, we replicate 88 known associations between HLA alleles and binary 
phenotypes (including cancers) and discover 90 novel associations. Many of the novel 
associations feature phenotypes close to known associations (e.g. intestinal malabsorption and 
celiac disease, hypo- and hyperthyroidism), but others are completely novel (e.g. anemias and 
acne). For example, we find that DRB1*04:04 is associated with a family of autoimmune 
disorders such as rheumatoid arthritis, polymyalgia rheumatica, and connective tissue disorder, 
replicating signals found previously in the literature. We add to the body of known HLA 
associations strong, novel effects such as that of B*39:06 on vitamin B12 deficiency anemia. 
Finally, we find several novel associations to skin and reproductive tract cancers, highlighting 
the clinical importance of the HLA region.  
 
These genotype-phenotype associations implicate the HLA region of the genome in 
contributions to many diverse phenotypes and suggest avenues for uncovering relevant, novel 
biology and developing therapeutics; however, there are many opportunities for future studies to 
extend this analysis. One would be to translate HLA alleles into their respective peptide 
products and analyze whether individual amino acids, or “pockets,” are associated with disease. 
Amino acids influence the binding properties of the HLA peptide binding groove; then, the 
source of the effect that is attributed to the presence of an HLA allele could ostensibly be the 
presence of a particular amino acid motif (which can be shared by multiple HLA alleles)3. Also, 
given that BMA is exponential in complexity with respect to the number of alleles analyzed, it is 
computationally infeasible to analyze all BY-significant alleles together for certain phenotypes. 
As such, it is likely that the 178 allele-phenotype associations we find are actually conservative, 
highlighting the impact of the HLA on disease risk. It could also be valuable to incorporate 
significantly-associated HLA region non-coding SNPs into the BMA analyses to fine-map 
association signal at higher resolution. Additionally, the non-additivity analysis may be 
underpowered to determine homozygote ORs in some cases where those genotypes are low in 
number. We do not find any non-additive effects consistent with a recessive-only model, i.e. 
where the heterozygote OR overlaps 1; this is perhaps because homozygosity for an HLA allele 
translates to a smaller spectrum of peptides displayed on the cell surface and recognized by the 
immune system. It is also unclear whether or not these non-additive effects can be classified as 
truly dominant, recessive, or co-dominant effects without additional formal model comparisons. 
These observations are further supported by our analysis of the effect of burden of homozygous 
HLA alleles, which suggest that peptide presentation spectra are increasingly important in 
cancers, infectious diseases, and autoimmune disorders. 
  
HLA alleles are inherited as haplotypes that group several alleles in LD with each other. Better 
HLA typing could enable accurate haplotype frequency estimation and subsequent haplotype-
based tests that enable testing of other targeted hypotheses of HLA diversity. Interactions 
between HLA alleles are also not studied here and would be a logical extension of this work; 
examples in which interaction effects are responsible for disease risk include the effect of an 
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HLA-B/ERAP1 interaction on ankylosing spondylitis44 and HLA-C/ERAP1 on psoriasis45. One of 
the functions of ERAP1 is to “trim” peptides before they are presented on HLA class I proteins. 
These studies therefore suggest that the risk effect mediated by certain HLA alleles also 
depends on peptide pre-processing. As better reference panels, superior imputation techniques, 
and larger population biobanks with more sequence data are developed, the HLA region will 
continue to grow in importance in human genetics, and in the future, as effective therapeutic 
hypotheses are generated, in clinical settings. 
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Supplementary Table 2. Significant BMA results table. Results from PLINK additive 
association analysis, BMA analysis, and non-additivity analysis for each allele-phenotype pair 
crossing BMA posterior probability 0.8. Number of cases per phenotype and allele frequencies 
per allele in the UK Biobank white British cohort also provided. 
https://bit.ly/hla_sup_2 
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