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Abstract 
 
Motivation: Single-cell proteomics technologies, such as mass cytometry, have enabled characterization of cell-to-
cell variation and cell populations at a single cell resolution. These large amounts of data, however, require dedicated, 
interactive tools for translating the data into knowledge. 
Results: We present a comprehensive, interactive method called Cyto to streamline analysis of large-scale cytometry 
data. Cyto is a workflow-based open-source solution that automatizes the use of of state-of-the-art single-cell analysis 
methods with interactive visualization. We show the utility of Cyto by applying it to mass cytometry data from peripheral 
blood and high-grade serous ovarian cancer (HGSOC) samples. Our results show that Cyto is able to reliably capture 
the immune cell sub-populations from peripheral blood as well as cellular compositions of unique immune- and cancer 
cell subpopulations in HGSOC tumor and ascites samples.  
Availability: The method is available as a Docker container at https://hub.docker.com/r/anduril/cyto and the user 
guide and source code are available at https://bitbucket.org/anduril-dev/cyto 
Contact: sampsa.hautaniemi@helsinki.fi  
Supplementary information: Supplementary material is available and FCS files are hosted at 
flowrepository.org/id/FR-FCM-Z2LW 

 

 
1 Introduction  
Single-cell technologies such as Cytometry by Time-Of-Flight (CyTOF), 
multiplexed imaging, or single cell RNA sequencing have enabled 
characterizating tumor-microenvironment compositions and cell populations 
at a single-cell resolution (Galli et al., 2019). However, currently the pace at 
which insight is extracted from massive single-cell data sets remains the same 
as with the previous low-throughput technologies (Brodin, 2018). Common 
CyTOF analysis steps have steadily reached a quasi-standard workflow that 
involves manual gating with FlowJo™ or other 2D scatter plot tools followed 
by  dimensionality reduction with t-SNE (Van Der Maaten and Hinton, 2008) 
and unsupervised clustering. Typically these analyses are executed with 
different software or platforms, which maes the resutls prone to errors and 

biases. Meanwhile, each new experiment requires a new set of custom scripts 
to fit the analysis needs, and new computational methods and algorithms are 
being developed at a fast rate (Qiu, 2017; Angerer et al., 2016; Höllt et al., 
2016). The most comprehensive semiautomatic workflow available is 
CytoBank (Kotecha et al., 2010), a commercially available service that allows 
the users to load the data to a cloud and perform analyses without the need for 
advanced technical skills. Open-source alternatives have been developed to 
make analysis accessible . For example,  Cytofkit (Chen et al., 2016), 
integrate methods available only within the R ecosystem and no 
parallelization support due to R limitations, which is suboptimal when 
analyzing very large data sets. Other, more complex solutions, such as 
Cytosplore (van Unen et al., 2017) and CYT (Amir et al., 2013), allow for 
only one method for each step of the analysis, one transformation type, one 
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sampling approach, one clustering algorithm, and one dimensionality 
reduction method. Furtheremore, none of these software does not support 
iterative analysis, which is required for rapidly testing hypotheses and ideas 
during analysis. Iterative analysis is recognized as a key requirement for 
workflow languages (Almeida, 2010), and it is particularly important in the 
analysis of mass cytometry data as the data sets are complex and require 
testing different parameter settings, algorithms, etc. in an iterative and 
interactive fashion. We have designed and implemented an analysis software 
Cyto that enables interactive analysis and meets the need for accessibility to 
and reporting of reproducible methods.  
     We demonstrate the utility of Cyto with  two CyTOF datasets. Firstly, we 
use control data from peripheral blood mononuclear cells (PBMC) (Van Unen 
et al., 2016) to demonstrate  fast quality assessment of the data and 
recapitulation of the previous findings in only two iterations of analysis. 
Secondly,  we applied Cyto on a dataset from high-grade serous ovarian 
cancer (HGSOC). By applying Cyto on this dataset, we were able to rapidly 
measure abundance of cell types, and single-out specific tumor cell 
populations facilitating biological discovery and clinical interpretation of 
high dimensional single-cell cytometry data. 
 

2 System and Methods 
Cyto is built on top of the workflow framework Anduril 2 (Cervera et al., 
2019), a language-agnostic framework that enables rapid integration of new 
and old methods as building blocks. 
 

2.1 Cyto modules 
2.1.1 Graphical user interface 

The user interface was developed as a light Flask application server within a 
Docker container. Docker avoids dependency installation and versioning 
issues, and therefore eases compatibility between researchers. The application 
handles data upload and download and saves user configuration changes. All 
projects are saved locally in the user’s computer in case Docker is restarted. 

2.1.2 Interactive results browser 

To make Cyto modular, the user-data interaction was implemented as a 
separate web application built with Python dashboards, a powerful framework 
that supports interactive Plotly components. The choice of visualization 
strategies are based on those reported in relevant publications, particularly in 
Nowicka et al., 2017. 

2.1.3 Cytometry analysis pipeline 

The analysis pipeline is shown in Supplementary Figure S1. Briefly,  
integration of cytometry specific methods was achieved through development 
of new Anduril components built with MATLAB®, R, Python, Java, or Bash 
scripts, depending on the programming language of the original 
implementation of each method. A list of the currently integrated methods for 
data processing, clustering, 2D embedding, and building dashboard are listed 
in Supplementary Table S1. 
 

2.2 Materials and methods for peripheral blood case 
study 
2.2.1 Data acquisition of peripheral blood myeloid cells 

We downloaded the mass cytometry FCS files from (Van Unen et al., 2016) 
and selected the control (Ctrl) samples (n=14) to recapitulate the PBMC cell 
subtypes. No preprocessing of the data was required before the Cyto analysis. 
 

2.2.2 Cyto analysis of data quality 

We selected the channels used in (Van Unen et al., 2016). The complete 
dataset contained 48,611,486 cells, of which we randomly subsampled to 
300,000 cells and transformed all selected channels with an arcsinh 
transformation (cofactor 5). The parameters and their values are listed in  
Supplementary File S1. Multidimensional scaling (MDS) and non-
redundancy scores (NRS) visualization within Cyto Dash report were used to 
identify outlier samples. 

2.2.3 Cyto recapitulation of cell types 

After excluding the outlier samples 52_CtrlAdult5_PBMC and 
53_CtrlAdult6_PBMC we ran Cyto analysis (Supplementary File S2) on the 
remaining 12 Ctrl samples. This dataset contained 41,779,615 cells which 
were randomly downsampled to 300,000 cells. The same parameters as in the 
previous iteration were used but clustering was done with FlowSOM 
algorithm (k=18) and dimensionality reduction by tSNE (n=10,000; 
perplexity=20; theta=0.3). The cell type labels used and prior knowledge of 
marker expression profiles are described in (Van Unen et al., 2016). 
 

2.3 Materials and methods for case study HGSOC 
case study 
2.3.1 Data acquisition of High-Grade Serous Ovarian Cancer 

Tissue and ascites specimens were collected from 15 consented patients 
(Supplementary Table S2) at the Department of Obstetrics and Gynecology, 
Turku University Central Hospital. Samples were analysed with CyTOF 1 
mass cytometer (DVS Sciences Fluidigm). The antibody panel was manually 
curated with focus on markers of cell populations that compose the tumor 
compartment and less attention to the microenvironment (Supplementary 
Table S2). For further details about sample preparation and CyTOF assay see 
Supplementary Methods. 

2.3.2 Tumor compartment identification with Cyto  

The FCS files and the CSV file with clinical annotations were uploaded to 
Cyto and processed as shown in Supplementary File S3. 300,000 cells were 
randomly sampled from a total of 65,331,333 cells in the complete dataset. 
After the cyto run with signal transformation log1p, sample-wise mean 
centering, clustering with Phenograph (k=200), and dimensionality reduction 
by UMAP (n=10,000, min-dist=0.1, knn=90). we associate cell types to each 
cluster based on the expression of canonical cell type markers (Supplementary 
Figure S5). The clustering results were downloaded from Cyto to label the 
clusters and compare global cell type abundances. To maximize the number 
of tumor cells we ran  a second iteration of analysis using a density-biased 
downsampling while keeping all other parameters unchanged (Supplementary 
Figure S6). The resulting CSV file was filtered in AWK to keep only the 
tumor cells for the next iteration. 

2.3.3 Tumor cell population analysis 

All tumor cells were used with no preprocessing (setting none). We applied 
all clustering methods to show the different effect of complex cell populations 
that do not follow a clear lineage on clustering results, each analysis is 
detailed with the method name within the configuration file Supplementary 
File S4. 
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3 Results 
Cyto is an open-source application that enables  running cytometry analysis 
pipelines that integrate state-of-the-art tools with reliable reporting and 
reproducibility as shown in Figure 1. Importantly, the interactive visualization 
of the results removes the need for many iterations of editing the common 
analysis scripts and improving interpretation time over traditional static 
visualization methods (Dix and Ellis, 1998). 
 

3.1 Software architecture supports reproducibility and 
accessibility requirements 
The design of Cyto was driven by both the need of iterative analysis 
characteristic to the high dimensional cytometry field and the requirement for 
easily reporting of methods and parameters used in each step of an analysis, 
which are critical for reproducibility. With this in mind, we developed 
Anduril components to integrate the most popular cytometry tools into fully 
customizable analysis pipelines (https://bitbucket.org/anduril-dev/cytometry 
and https://bitbucket.org/anduril-dev/tools).  
    Our cytometry analysis pipeline includes tools from different fields and in 
different languages that are wrapped into modular units, called components, 
which are interchangeable and reusable throughout the pipeline development 
process. To enable rapid changes to the choice of components and to support 
non-bioinformaticians to interact with CyTOF datasets, we built a lightweight 
user interface that runs a generalizable Anduril pipeline (Supplementary 
Figure S1). This is achieved with two web-based Python applications: the first 
one is the data importer where the user defines their analysis parameters, 
while the second one is the results browser to enable interactive data 
visualization through Plotly figures. Finally, to simplify installation 
requirements and thus enhance accesibility, we packaged this system into an 
interactive Docker containter which can run on most operating systems. To 
our knowledge, Cyto is the first open-source solution that features access to 
multiple cytometry tools with a low learning threshold for non-
bioinfomaticians. 

3.1.1 Mass cytometry data analysis with Cyto  

On a general scale, Cyto follows a common CyTOF workflow (Figure 1A and 
Supplementary Figure S1), however, each step enables agile and fast 
iterations. The preprocessing components are a critical step of a CyTOF 
pipeline. An arcsinh transformation is usually applied and it works well in 
many experiments, however, it may truncate high values to an artificial 
maximum. For this reason, users may choose also logarithmic or quadratic 
scaling. Other important parts of the preprocessing implemented in new 
components are quality assessment, normalization, gating, and filtering 
components. By generalizing these steps in the Cyto pipeline instead of 
running multiple independent scripts or manual analysis, the user has a 
comprehensive log of methods tested, and complete control of the 
preprocessing steps without having to code all the logic that is already 
included in each component. 
       Because of the flexibility to adapt new tools as components to this bundle, 
Cyto supports dimensionality reduction and unsupervised clustering methods, 
along with new tools that can be included when available. The third popular 
toolbox contains lineage inference methods; we integrated them to produce 
an output that can be further analysed with any component or visualized with 
the interactive visualization components. The interactive visualization 
components transform data into plotly objects to be used either locally in the 
user’s browser or included in a Dash application, as demonstrated in the Cyto 
method. Lastly, Anduril counts with a large tools bundle with components for 
statistical analysis, CSV file manipulations, and machine learning analysis, 
all of which are fully compatible with our cytometry components.  
 

3.1.2 Cyto design enables customized analysis steps 

Figure 1A depicts worfklow for a standard cytometry analysis project. First, 
the user sets the input data and parameters for the analysis in the data 
importer. Different types of research questions require different settings. 
Questions about population abundance can analyze all cells or a random 
sample, while detection and identification of rare cell populations requires a 
density-biased sample as implemented in SPADE package (Qiu et al., 2011) 

Fig 1. Workflow for cytometry analyses. (A) Diagram of steps showing cytometry analysis as an iterative process and how our framework enables knowledge discovery. (B) 
Schematic of the analysis environment to enable multi-system compatibility. On top screenshots of the data importer and the results browser as the two separate python applications. 
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to preserve smaller populations. Commonly used clustering algorithms in the 
field are tailored for different research setups (Weber and Robinson, 2016). 
Algorithms based on a k-nearest neighbors approach are suitable for samples 
where the expression of markers varies smoothly, e.g. are expected to belong 
to an evolving. On the other hand, samples with distant subpopulations will 
benefit from a more fragmented clustering method, like k-means. Thus, it is 
important to support the use of the right tool for the right question, not just 
the easiest to use. Second, the user saves the settings. At the moment of saving 
these options, Cyto validates the inputs and creates a new execution folder, 
which is used to archive the configuration, to support reproducibility, and to 
store the intermediate results, to support re-running only necessary steps on 
following iterations. Third, starting the analysis will launch the cytometry 
analysis pipeline and build the results browser. Upon completion of the 
analysis, the browser will enable the user to build new hypotheses and make 
informed decisions for the next iterations. The browser helps interacting with 
high dimensional data and multiple results effectively, from assessing signal 
quality and sample selection quality to examining individual or groups of cell 
populations. In the data importer, we can also download the results as a table 
that includes all preprocessed data and clustering results, and the results 
browser can also be downloaded to be hosted on a web server as supporting 
material for complex publication results. 
    The presented cytometry components can  also be integrated into Anduril 
pipelines independently of our proposed analysis pipeline within the Cyto 
system. Independent pipelines are specially useful for laboratories with highly 
specific research questions that cannot be addressed within the Cyto system 
but benefit from some of the steps. The modular design of our method enables 
other researchers to follow this design for specialized needs (Figure 1B and 
Supplementary Figure S1).  
 

3.2 Case study I: Peripheral Blood Myeloid Cells 
dataset 
3.2.1 Interactive browser enables outlier detection 

The results browser generates summary figures to assess data quality. Multi-
dimensional scaling visualization of the average expresion on each sample 
(Figure 2A) highlights sample 53_CtrlAdult6_PBMC as an outlier at the 
general level. While visualization of Non-Redundancy Scores (Figure 2B), 
identifies also sample 52_CtrlAdult5_PBMC due to artifactually low signal, 
seen as lowest NRS for more than 50% of the antibodies. Further assessment 
of outlier samples is possible by exploring the profiles of cell populations 
predominant in the outlier population (Supplementary Figure S2). In this 
analysis, sample 53_CtrlAdult6_PBMC shows over-representation of 
myeloid cells, possibly caused by preanalytical conditions. Sample 
52_CtrlAdult5_PBMC shows a very low Simpson’s diversity index (0.34) 
compared with the rest of the samples (µ=0.67; s=0.003) (Supplementary 
Figure S3). By creating a new analysis from the data importer, we were able 
to rapidly discard poor quality samples and repeat the analysis with the same 
settings. 

3.2.2 Cyto recapitulates cell-type identification from PBMCs 

We set out to test the performance of Cyto in detecting immune cell 
populations from the PBMC dataset. By using density-biased sampling, we 
quickly recapitulate the cell types present in these samples in line with the 
authors of the data. Figure 3 shows the results from Cyto manually colored by 
the cell type classification for each cell. Visual separation of some cell types 
can be further explored by intensity tSNEs and lineage trees (Supplementary 
Figure S4). Interactive visualization of relevant markers shows slight 
differences in expression within the same cell type. Additionally, the lineages 
presented as the minimum spanning trees can be applied to the result of any 
clustering algorithm. Cyto analysis workflow herein reliably identifies 

Fig 2. Easy outlier detection and characterization. (A) MDS plot shows sample 
53_CtrlAdult6_PBMC separate from the other Ctrl samples. (B) Non-redundancy 
scores visualization; sample 53_CtrlAdult6_PBMC has highest NRS on marker CD14, 
and sample 52_CtrlAdult5_PBMC shows lowest for 18 out of 30 markers. 

Fig 3. Recapitulation of cell types in the 12 PBMC samples using tSNE (n=30,000, 
perplexity=90, theta=0.4) colored by the combined cluster labels produced by 
FlowSOM. 
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biological cell populations from PBMC facilitating biological interpretation 
of CyTOF data. 
 

3.3 Case study II: Cancer cell populations on 
HGSOC  
To assess the performance of Cyto in enabling clinical interpretation we next 
performed an iterative analysis on a dataset of 15 clinical samples (Table S2) 
from HGSOC patients at diagnosis (primary), after neoadjuvant 
chemotherapy (interval) or at tumor progression. In this analysis Cyto also 
takes advantage of a detailed clinical metadata to assist variable association 
in the results browser.  
    Phenograph successfully detects main immune, stromal and tumoral cells 
(Figure 4A and Supplementary Figure S5). The immune compartment is the 
largest; we annotated the clusters to be CD8+ T-cells, CD8- CD3+ likely 
CD4+T-cells, and CD45+ T-cell marker negative likely Myeloid-lineage 
inflammatory cells. The stromal compartment is divided into CD90 positive 
and negative stromal cells, with the negative cells showing closer similarity 
to the tumor cells. The tumor compartment, identified as Cluster-7 is 
characterized by high expression of EpCAM, MUC1, E-Cadherin and 
CA125, and low expression of pan-leucocyte marker CD45. Abundance 
difference (Figure 4B) show ascites samples (n=10) have more myeloid cells, 
and less tumor and stromal cells than solid tumor samples, while no apparent 

differences were observed on T-cell abundance. Interestingly, Cluster-6 
shows expression for stemness markers CD117 and CD44, the tumor markers 
CD125, HE4 and EpCAM, and is negative for the immune and stromal 
markers, presenting as a potential cancer stem cell population. 

      A second iteration of Cyto analysis, in which we focused on the tumor 
cells (Figure 5 and Supplementary Figure S7), shows the integration of 
clinical annotations with a tumor subpopulation profiling analysis. The 
intermediate run that shows the detection of the tumor cells is shown in Figure 
S6. Minimum spanning tree (MST) representation of the detected clusters 
present distinct tumor population abundance in Primary, Interval, and 
Progression time of sampling. Furthermore, Cluster-6 on the MST shows 
higher Ki67 and more abundant in Primary and Interval samples. Cluster-2 
shows highest E-Cadherin and is dominant in Interval samples, and 
progression samples have larger representation of Cluster-10, which are cells 
enriched for MUC1 and CD147, and are low on ERK1-2 signaling. 
   A Cyto visualization of Simpson’s diversity index highlights also that 
Progression samples have the lowest heterogeneity. Interestingly, collapsing 

B

Tumor cells
Cluster-7

CD8+ T cells

CD8- T cells

Myeloid cells

CD90- Stromal cells

CD117+ CD44+ CA125+ cells
Cluster-6

A

Fig 4. First iteration on high-grade serous ovarian cancer data. (A) Screenshot of all cells 
from 15 HGSOC samples from different therapy time-points and different tissue sites, 
Phenograph labels (colors) were computed with 300,000 cells randomly sampled and 
k=450. (B) Summary of proportions of cell types identified by Phenograph for each 
sample annotated with sample type and tissue type 

 

A

B

C

Fig 5. Screenshots of Cyto analysis of only tumor cell populations. (A) Minimum 
Spanning Trees (MST) by Sample time summarizes the expression of CA125(B) 
Simpson's diversity index by Sample time. (C) CD24 expression across MST nodes 
grouped by time from sample to next progression.  
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the MST by time from sample to the next progression we see a clear enrich-
ment of a stemness marker CD24 in samples with shorter time to progression. 

4 Conclusion  
Rapid advances in single-cell technologies produce larger and more complex 
data than ever before. Complex analyses increase the difficulty of reporting 
reproducible results, while accessibility to and usability of highly specialized 
tools drive the choice of algorithms in the analysis. A standard one-way 
analysis workflow is sufficient on low-dimensional data but a more 
exploratory research requires an iterative approach. We propose to level the 
usability of different tools and to ease reproducibility of analysis by 
integrating tools using a workflow paradigm design. First, by including 
popular cytometry methods as Anduril components available, less 
experienced bioinformaticians can easily build customized analysis 
workflows. Second, we present a generalized analysis pipeline that covers 
cytometry questions from detection of rare cells to differential abundance 
analysis, and from general sample profiling to deeper analysis of single cell 
populations. Third, by making this pipeline accessible as a Docker container 
with a user-friendly interface, non-bioinformaticians are able to perform 
complex single-cell analyses regardless of their experience level on software 
maintenance. Fourth, a side-effect of utilizing Docker for accessibilty 
includes the potential to run it remotely on a server. 
   To our knowledge Cyto is the first cytometry tool with a workflow paradigm 
design. Many R packages (Simpson, 2019; Spidlen. et al., 2019; Finak, Greg 
et al., 2014) have enabled compatibility with the popular flowCore package 
(Ellis et al., 2019), and including them in our cytometry components allowes 
users to execute them as part of larger pipelines on computing clusters if 
necessary. 
   Additionally, this study demonstrates the key features of Cyto on a public, 
well-known dataset, as well as on a new independent cohort. Here we are able 
to identify and characterize cell population changes before and after 
chemotherapy, as well as at the time of progression. Ascites samples are 
valuable but underutilized due to the large number of non-tumor cells. Our 
analysis characterized the composition of there herein used ascites samples 
and the iterative analysis feature in Cyto enabled focusing on tumor cells 
without manual setting of thresholds for each sample. This allowed us to 
compare tumor cell phenotypes between clinical settings, suggesting that 
HGSOC tumors at relapse are characerized by higher heterogeneity and 
enriched stemness; an interesting hypothesis for further studies. 
   In summary, this work presents Cyto, which is an open-source, accessible 
and customizable cytometry analysis method that takes advantage of 
workflow engines and enables easy integration of existing tools. Cyto offers 
two levels for technical and non-technical users. Further, to our knowledge 
this study presents the first CyTOF experiments on comparison of 
chemotherapy naïve and heavily treated relapse samples from HGSOC .  
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1 Supplementary methods 
1.1 Data acquisition of High-Grade Serous Ovarian Cancer 

1.1.1 Sample dissociation and preparation  

Ovarian cancer primary cells were isolated from ascites and tumor tissues. Ascites was centrifuged at 3.0 G for 15 min, followed by gradient 
centrifugation with Histopaque-1077 to discard the contaminating blood cells from the sample. Tissues were cut in to approximately 1mm pieces 
and dissociated over night with 1:75 dilution of 10x Collagenase/hyaluronidase in warm DMEM-F12 media (Stem Cell technologies, Cambridge, 
UK). Cells were isolated by filtering the sample with 100µm and 70 µm meshes followed by Histopaque-1077 centrifugation to discard 
contaminating blood cells and cell debris.  

1.1.2 Antibody preparation for mass cytometry 

The antibodies (Supplementary Table S2) were purchased already conjugated with metal isotopes from Fluidigm when available. Otherwise, 
purified carrier-free antibodies were purchased from other vendors (Biolegend, R&D System and BD Biosciences) and then conjugated with 
metal isotopes using the Maxpar antibody conjugation kit (Fluidigm) following the manufacturer’s instructions. In-house conjugated antibodies 
were quantified and diluted in PBS antibody stabilization solution (CANDOR Biosciences) to 0.1-0.4 mg/ml and stored at +4°C. CD166, CD133 
and cleaved-PARP were purchased conjugated with fluorochromes and detected with anti-fluorochromes metal tagged antibodies (145Nd-PE, 
176Yb-APC and 160Gd-FITC respectively) in a secondary staining step. Antibodies have been initially tested by flow cytometry followed by a 
titration at mass cytometer using cell lines to set the working concentration.  
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1.1.3 Cell processing and antibody staining  

The isolated cells were washed with 1x PBS, centrifuged, suspended in to warm DMEM-F12 medium and stained with 1 µM 103Rhodium- DNA 
Intercalator (Fluidigm). Unstained cells were acquired as control sample to detect the background signals. After 15 min incubation at 37°C, cells 
were washed with Cell Staining Medium (CSM) [PBS, 0.5% BSA (Sigma Aldrich), 0.02 % NaN3 (Sigma Aldrich)] and fixed with 1.6% 
paraformaldehyde (Electron Microscopy Sciences) for 10 min at room temperature. Samples were washed twice with CSM and shipped at +4°C 
to the Istituto Superiore di Sanità, Roma, Italy. Upon arrival the cells were counted and around 2-3 million were pelleted, washed with CSM and 
incubated with Fc-blocker (Biolegend) for 10 minutes at RT to counteract the antibody binding to FC-receptors. Cellular staining with antibodies 
was performed according to the manufacturer’s protocol (Fluidigm) consisting of several staining steps interspersed with permeabilization 
treatments moving from gentlest to strongest conditions. In the first step, cells were resuspended in 100 µl of a mix of CSM and metal-conjugated 
antibodies specific for surface antigens, incubated for 30 minutes at RT and washed twice in CSM. In a second step the cells were permeabilized 
with 1ml of CSM supplemented with 0.3% Saponin (Sigma Aldrich) (CSM-S) for 30 minutes at +4°C and then stained with an antibody cocktail 
specific for intracellular antigens, for 45 minutes at RT and washed twice with CSM-S. The third step consisted in a stronger permeabilization 
of the cell pellet with 1 ml of ice cold methanol (Sigma Aldrich) per 0.5x106 cells for 10 minutes at 4°C. Cells were then washed twice in CSM 
and stained with 100 µl of a further antibody mix toward phosphoproteins and transcription factors, for 60 minutes at RT in CSM. After washing 
with CSM, the cells were stained with 125 nM 191/193Iridium-DNA Intercalator (Fluidigm), in PBS/PFA 1.6% for 20 minutes at RT (or 
overnight at 4), for cell events recognition during data acquisition, and then washed twice with CSM and once with MilliQ water.  

1.1.4 CyTOF assay and data preprocessing  

Before acquisition, cells were counted and diluted at 2x105 cells/ml in MilliQ water with 1/10 of volume of EQTM Four Element Calibration 
Beads (Fluidigm) and filtered through a 35µm nylon mesh before acquisition. Data from each sample were pre-processed with CyTOF software 
version 6.7.1014 to normalize signals and minimize instrument performance variation during acquisition (lower convolution threshold of 200, 
event length between 10 and 75 and with a rate of 500 cells/sec). FCS files were processed with FlowJo software (FlowJo LLC) to export bead-
normalized single-viable cells based on gating performed on cell length and DNA intercalators signals (191/193Iridium and 103Rhodium). 
Because each sample was processed at the time of acquisition to conserve signal quality, the header of the raw FCS files were matched in R. 
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2 Supplementary tables 

Table S1. Methods and tools available within the Anduril pipeline integrated in Cyto. 

Category	 Method/Tool	

Preprocessing	

Density-biased sampling 
Random down sampling 
Data tranformation 
Sample-wise normalization 

Clustering	

Phenograph 
FlowSOM 
FlowMeans 
XShift 
K-means 

2D	Embedding	 tSNE 
UMAP 

Build	Data	Dashboard	
MDS 
NRS 
Minimum Spanning trees 

 
 
Table S3. Sample cohort included in this study. Age, stage, tissue, number of patients, number of total cells acquired from each, survival, 
treatment. 
 

 
  

Sample file Patient code Age at diagnosis Histological grade Treatment phase Tissue site PFI months OS months 

EOC1_r2Asc.fcs EOC1 71 IIIC Recurrence Ascites 6 21.9 

EOC2_rAsc2.fcs EOC2 39 IVB Recurrence Ascites 13.1 31.86 

EOC3_pAsc.fcs EOC3 77 IVB Primary Ascites 16.79 34.7 

EOC4_iAsc.fcs 
EOC4 60 IIIC 

Interval Ascites 
2.1 >38 

EOC4_pAsc.fcs Primary Ascites 

EOC5_iOme.fcs EOC5 67 IIIC Interval Omentum 9.2 30.76 

EOC6_pAsc2.fcs EOC6 68 IVB Interval Ascites 2.3 14.63 

EOC7_iAsc.fcs 

EOC7 75 IIIC 

Interval Ascites 

6.9 >38 EOC7_iMes.fcs Interval Mesentery 

EOC7_pAsc.fcs Primary Ascites 

EOC8_pAsc.fcs 
EOC8 54 IVA 

Primary Ascites 
5.8 29.7 

EOC8_pOme.fcs Primary Omentum 

EOC9_pAsc.fcs EOC9 62 IIIC Primary Ascites 3.5 17.9 

EOC10_iOme.fcs EOC10 72 IVA Interval Omentum 2.7 19.17 

EOC11_iOme.fcs EOC11 73 IVA Interval Omentum 2.1 >25 

EOC12_pAsc.fcs EOC12 78 IVA Primary Ascites 12.9 >24 

EOC13_pAsc.fcs EOC13 60 IIIC Primary Ascites >19 >24 

EOC14_pAsc.fcs EOC14 67 IIIC Primary Ascites 9.6 >22 

EOC15_r2Asc.fcs EOC15 64 IIIC Recurrence Ascites 5.7 28.17 
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Table S2. Antibodies used for in-house CyTOF data. 
 

Cat No Metal 
Tag Target Clone Vendor Final Concentra-

tion (µg/100µl) Dilution  

3141006B 141Pr EpCAM 9C4 Fluidigm N.A 1:50 

3143001B 143Nd CD117 104D2 Fluidigm N.A 1:50 

MAB56091 144Nd CA125 986811 R&D 1.2 - 

559263/3145006B 145Nd CD166-PE 3A6/PE001 BD/Fluidigm N.A 1:30/1:50 

3147015B 147Sm ALDH 44/ALDH Fluidigm N.A 1:50 

304045 149Sm CD45 HI30 Biolegend 0,6 - 

561469 151Eu Sox2 O30-678 BD 1.2 - 

3152005A 152Sm pAkt [S473] D9E Fluidigm N.A 1:50 

3153021B 153Eu CD44s Pan 
Specific 691534 Fluidigm N.A 1:75 

3154003B 154Sm CD3 UCHT1 Fluidigm N.A 1:75 

355602 155Gd MUC1 16A Biolegend 0.7 - 

3156022B 156Gd CD147 HIM6 Fluidigm N.A 1:75 

3158021A 158Gd E-Cadherin 24E10 Fluidigm N.A 1:50 

3159029B 159Tb PD-L1 29E.2A3 Fluidigm N.A 1:50 

558576/3160011B 160Gd Cleaved 
PARP-FITC F21-852/FIT22 BD/Fluidigm N.A 1:30-1:50 

3161009B 161Dy CD90 5E10 Fluidigm N.A 1:75 

3162015B 162Dy CD8a RPA-T8 Fluidigm N.A 1:75 

MAB6274 164Dy HE4 676013 R&D 0.9 - 

350802 165Ho N-Cadherin 8C11 Biolegend 0.9 - 

550314 166Er CD146 P1H12 BD 1.2 - 

3171010A 167Er pERK 1/2 
[T202/Y204] D13.14.4E Fluidigm N.A 1:50 

3168007B 168Er Ki-67 B56 Fluidigm N.A 1:50 

3169004B 169Tm CD24 ML5 Fluidigm N.A 1:50 

3172014B 172Yb PD-L2 24F.10C12 Fluidigm N.A 1:50 

3174020B 174Yb PD-1 EH12.2H7 Fluidigm N.A 1:50 

3175009A 175Lu pS6 
[S235/S236] N7-548 Fluidigm N.A 1:50 

130-090-
826/3176007B 176Yb CD133-APC AC133/APC003 Miltenyi/Flui-

digm N.A 1:30-1:50 
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3 Supplementary figures 

 
Figure S1. Detailed workflow of the Anduril workflow used in Cyto. 
 
 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.28.120527doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.28.120527
http://creativecommons.org/licenses/by-nc-nd/4.0/


Automated mass cytometry analysis 6 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

Figure S2. (A) Sample representation within the dominant cluster from the outlier sample 53_CtrlAdul6_PBMC. (B) Marker signal distribution within this cluster. 
The highest expressing markers are CD14, CD11c, CD38, and CD11b. 

Figure S3. Simpson’s diversity index identifies sample 52_CtrlAdult5_PBMC (in Cyan) as an outlier based on the number of clusters represented within the sample 
and the relative abundance of each of the clusters. 
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Figure S4. Expression profiles of the PBMC cell types without the two outlier samples. The sample labels indicate that a batch 
effect is not dominant. Visualization of the dataset as tSNE or as MST shows the expression and relationships of the populations 
shown in Figure 3. 
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Figure S5. Expression distribution of each marker within the cell clusters selected in Figure 4. The lasso selection tool in the results browser allows to explore the 
expression profiles interactively. 
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Figure S6. Identification of the tumor compartment using density-based sampling option. (A) UMAP of the density-based sampled dataset with the tumor cells highlighted with a 
dashed line. (B) Expression profile of each cluster. Tumor cells are highlighted with a dashed line and further filtered for the tumor cell analysis. 

Figure S7. Tumor cell clustering with focus on Cluster-10 and Cluster-6 (highlighted in cyan) (A) Marker expression and hierarchical clustering of the 
subpopulations. (B) Population abundance across the samples. 
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