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 23 

Abstract 24 

The discovery of a drug requires over a decade of enormous research and financial 25 

investments—and still has a high risk of failure. To reduce this burden, we developed the 26 

NICEdrug.ch database, which incorporates 250,000 bio-active molecules, and studied their 27 

metabolic targets, fate, and toxicity. NICEdrug.ch includes a unique fingerprint that identifies 28 

reactive similarities between drug-drug and drug-metabolite pairs. We use NICEdrug.ch to 29 

evaluate inhibition and toxicity by the anticancer drug 5-fluorouracil, and suggest avenues to 30 

alleviate its side effects. Clustering based on this fingerprint in statins identified drugs for 31 

repurposing. We propose shikimate 3-phosphate for targeting liver-stage malaria with 32 
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minimal impact on the human host cell. Finally, NICEdrug.ch suggests over 1,300 drugs and 33 

food molecules to target COVID-19 and explains their inhibitory mechanisms. The 34 

NICEdrug.ch database is accessible online to systematically identify the reactivity of small 35 

molecules and druggable enzymes with practical applications in lead discovery and drug 36 

repurposing. 37 

 38 

Keywords 39 

Ligand-based drug discovery, drug clustering, drug metabolic fate, prodrug, drug similarity, 40 

drug toxicity, drug side effects, reactive site similarity, enzyme inhibition, nutraceuticals. 41 

 42 

Introduction 43 

To assure effective therapies for previously untreated illness, emerging diseases, and 44 

personalized medicine, new small molecules are always needed. However, the process to 45 

develop new drugs is complex, costly, and time consuming. This is especially problematic 46 

considering about 90% of drug candidates in clinical trials are discarded due to unexpected 47 

toxicity or other secondary effects. This inefficiency threatens our health care system and 48 

economy (Wong et al., 2019). Improving how we discover and design new drugs could reduce 49 

the time and costs involved in the developmental pipeline and hence is of primary importance 50 

to define efficient medical therapies. 51 

 52 

Current drug discovery techniques often involve high-throughput screens with candidates 53 

and a set of target enzymes presumably involved in a disease, which leads to the selection for 54 

those candidates with the preferred activity. However, the biochemical space of small 55 

molecules and possible targets in the cell is huge, which limits the possible experimental 56 

testing. Computational methods for drug pre-screening and discovery are therefore 57 

promising. In silico, one can systematically search the maximum biochemical space for targets 58 

and molecules with desired structures and functions to narrow down the molecules to test 59 

experimentally. 60 

 61 

There are two main in silico strategies for drug discovery: a data-driven approach based on 62 

machine learning, or a mechanistic approach based on the available biochemical knowledge. 63 

Machine learning (ML) has been successfully used in all stages of drug discovery, from the 64 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.05.28.120782doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.28.120782
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

prediction of targets to the discovery of drug candidates, as shown in some recent studies 65 

(Shilo et al., 2020; Stokes et al., 2020; Vamathevan et al., 2019). However, ML approaches 66 

require big, high-quality data sets of drug activity and associated physiology (Vamathevan et 67 

al., 2019), which might be challenging to obtain when studying drug action mechanisms and 68 

side effects in humans. ML also uses trained neural networks, which can lack interpretability 69 

and repeatability. This can make it difficult to explain why the neural networks has chosen a 70 

specific result, why it unexpectedly failed for an unseen dataset, and the final results may vary 71 

(Vamathevan et al., 2019).  72 

 73 

Mechanistic-based approaches can also rationally identify small molecules in a desired system 74 

and do not require such large amounts of data. Such methods commonly screen based on 75 

structural similarity to a native enzyme substrate (antimetabolite) or to a known drug (for 76 

drug repurposing), considering the complete structure of a molecule to extract information 77 

about protein-ligand fitness (Jarvis and Ouvry, 2019; Verlinde and Hol, 1994). However, 78 

respecting enzymatic catalysis, the reactive sites and neighboring atoms play a more 79 

important role than the rest of the molecule when assessing molecular reactivity (Hadadi et 80 

al., 2019). Indeed, reactive site-centric information might allow to identify: (1) the metabolic 81 

fate and neighbors of a small molecule (Javdan et al., 2020), including metabolic precursors 82 

or prodrugs and products of metabolic degradation, (2) small molecules sharing reactivity 83 

(Lim et al., 2010), and (3) competitively inhibited enzymes (Ghattas et al., 2016). Furthermore, 84 

neither ML nor mechanistic-based approaches consider the metabolism of the patient, even 85 

though the metabolic fate of the drug and the existence of additional targets in the cell might 86 

give rise to toxicity. To our knowledge, no available method accounts for human biochemistry 87 

when refining the search for drugs. 88 

 89 

In this study, we present the development of the NICEdrug.ch database using a more holistic 90 

and updated approach to a traditional mechanistic-based screen by (1) adding a more 91 

detailed analysis of drug molecular structures and target enzymes based on structural aspects 92 

of enzymatic catalysis and (2) accounting for drug metabolism in the context of human 93 

biochemistry. NICEdrug.ch assesses the similarity of the reactivity between a drug candidate 94 

and a native substrate of an enzyme based on their common reactive sites and neighboring 95 

atoms (i.e., the NICEdrug score) in an analogous fashion as the computational tool BridgIT 96 
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(Hadadi et al., 2019). It also identifies all biochemical transformations in the cellular 97 

metabolism that can modify and degrade a drug candidate using a previously developed 98 

reaction prediction tool, termed BIochemical Network Integrated Computational Explorer 99 

(BNICE.ch) (Hatzimanikatis et al., 2005; Soh and Hatzimanikatis, 2010) and the ATLAS of 100 

Biochemistry (Hadadi et al., 2016; Hafner et al., 2020). With NICEdrug.ch, we automatically 101 

analyzed the functional, reactive, and physicochemical properties of around 250,000 small 102 

molecules to suggest the action mechanism, metabolic fate, toxicity, and possibility of drug 103 

repurposing for each compound. We apply NICEdrug.ch to study drug action mechanisms and 104 

identify drugs for repurposing related to four diseases: cancer, high cholesterol, malaria, and 105 

COVID-19. We also sought for molecules in food, as available in fooDB the largest database 106 

of food constituents (Scalbert et al., 2011), with putative anti SARS-CoV-2 activity. Finally, we 107 

provide NICEdrug.ch as an online resource (https://lcsb-databases.epfl.ch/pathways/108 

Nicedrug/). Overall, NICEdrug.ch combines knowledge of molecular structures, enzymatic 109 

reaction mechanisms (as included in BNICE.ch (Finley et al., 2009; Hadadi and Hatzimanikatis, 110 

2015; Hatzimanikatis et al., 2005; Henry et al., 2010; Soh and Hatzimanikatis, 2010; Tokic et 111 

al., 2018)), and cellular biochemistry (currently human, Plasmodium, and Escherichia coli 112 

metabolism) to provide a promising and innovative resource to accelerate the discovery and 113 

design of novel drugs. 114 

 115 

Results 116 

Discovery of 200,000 bioactive molecules one reaction away from known drugs in a human 117 

cell for analysis of drug metabolism with NICEdrug.ch 118 

To build the initial NICEdrug.ch database, we gathered over 70,000 existing small molecules 119 

presumed suitable for treating human diseases from three source databases: KEGG, ChEMBL,  120 

and DrugBank (Figure S1, Materials and Methods). We eliminated duplicate molecules, 121 

curated available information, computed thermodynamic properties, and applied the Lipinski 122 

rules (Lipinski et al., 2001) to keep only the molecules that have drug-like properties in 123 

NICEdrug.ch (Figure 1, Materials and Methods). NICEdrug.ch currently includes 48,544 unique 124 

small molecules from the source databases. 125 

 126 

To evaluate the reactivity of the 48,544 drugs, we searched for all possible reactive sites on 127 

each drug with BNICE.ch (Hatzimanikatis et al., 2005) (Figure 1, Materials and Methods). All 128 
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of the 48,544 drugs contain at least one reactive site and hence might be reactive in a cell. In 129 

total, we identified more than 5 million potential reactive sites (183k unique) on the 48,544  130 

molecules and matched them to a corresponding enzyme by assigning them to an Enzyme 131 

Commission (E.C.) number. All of these enzymes belong to the human metabolic network 132 

(Table S1, Materials and Methods). Interestingly, 10.4% of identified reactive sites 133 

correspond to the p450 class of enzymes, which are responsible for breaking down 134 

compounds in the human body by introducing reactive groups on those compounds, also 135 

known as phase I of drug metabolism (Figure S2A). The sites that were identified varied 136 

greatly from simple and small (i.e., comprising a minimum number of one atom) to more 137 

complex sites that covered a large part of the molecule. The biggest reactive site includes 138 

30 atoms (Figure S2B). 139 

 140 

Given the important role of metabolism in the biochemical transformations and toxicity of 141 

drugs, we investigated the metabolism of the 48,544 input molecules in human cells. We 142 

predicted the hypothetical biochemical neighborhoods of all NICEdrug.ch small molecules in 143 

a human cell (i.e., reacting with known human metabolites and cofactors) using a retro-144 

biosynthetic analysis with BNICE.ch (Figure 1, Table S1, Materials and Methods). With this 145 

approach, we discovered 197,246 unique compounds connected to the input drugs via one 146 

step or reaction (products of the first generation), and the associated hypothetical 147 

biochemical neighborhood consists of 630,449 reactions (Figure S2). The 197,246 unique 148 

compounds are part of a new set of bioactive molecules in NICEdrug.ch that might act as 149 

drugs or prodrugs in a human cell. We stored the total number of 245,790 small molecules 150 

(including the curated set of 48,544 drugs and the new set of 197,246 bioactive compounds), 151 

their calculated properties, and biochemistry in our open-access database of drug 152 

metabolism, NICEdrug.ch. 153 

 154 

To use NICEdrug.ch to identify drug-drug or drug-metabolite pairs that have shared reactivity 155 

and target enzymes, we developed a new metric called the NICEdrug score (Figure S3). The 156 

NICEdrug score uses information about the structure of the reactive site and its surroundings 157 

(as computed using the BridgIT methodology) and is stored in the form of a fingerprint 158 

(Materials and Methods). The fingerprint of a molecule’s reactive site and the neighborhood 159 

around this reactive site—termed the reactive site-centric fingerprint—serves to compare this 160 
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site-specific similarity with other molecules. We recently showed that the reactive site-centric 161 

fingerprint of a reaction provides a better predictive measure of similar reactivity than the 162 

overall molecular structure, as the overall structure can be much larger than the reactive site 163 

and skew the results by indicating high similarities when the reactivity is actually quite 164 

different (Hadadi et al., 2019). Here, we generated reactive site-centric fingerprints for all 20 165 

million reactive sites identified in the 48,544 drugs and 197,246 one-step-away molecules 166 

included in NICEdrug.ch. The 20 million reactive site-centric fingerprints for the total 245,790 167 

small molecules are available in NICEdrug.ch to be used in similarity comparisons and 168 

classifying molecules (Materials and Methods). 169 

 170 

We propose the usage of NICEdrug.ch to generate reports that define the hypothetical 171 

reactivity of a molecule, the molecule’s reactive sites as identified by target enzymes, and the 172 

NICEdrug score between drug-drug and drug-metabolite pairs. The NICEdrug.ch reports can 173 

be used for three main applications: (1) to identify the metabolism of small molecules; (2) to 174 

suggest drug repurposing; and (3) to evaluate the druggability of an enzyme in a desired cell 175 

or organism (Figure 1), as we show in the next sections. Currently, NICEdrug.ch includes 176 

metabolic information for human cells, a malaria parasite, and Escherichia coli, and it is easily 177 

extendible to other organisms in the future. 178 

 179 

NICEdrug.ch suggests inhibitory mechanisms of the anticancer drug 5-FU and avenues to 180 

alleviate its toxicity. 181 

As a case study, we used NICEdrug.ch to investigate the mode of action and metabolic fate of 182 

one of the most commonly used drugs to treat cancer, 5-fluorouracil (5-FU), by exploring its 183 

reactivity and the downstream products or intermediates that are formed during the cascade 184 

of biochemical transformations. 5-FU interferes with DNA synthesis as an antimetabolite 185 

(Longley et al., 2003), meaning that its various intermediates like 5-fluorodeoxyuridine 186 

monophosphate (FdUMP) are similar enough to naturally occurring substrates and they can 187 

act as competitive inhibitors in the cell. 188 

 189 

We therefore used NICEdrug.ch to study the intermediates of 5-FU that occurred between 190 

one to four reaction steps away from 5-FU (Table S2), which is a reasonable range to occur in 191 

the body after 5-FU treatment (Testa, 2010). This analysis identified 407 compounds (90 192 
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biochemical and 317 chemical molecules) that have the biochemical potential to inhibit 193 

certain enzymes. Because the NICEdrug score that analyses reactive site and neighborhood 194 

similarities can serve as a better predictor of metabolite similarity, we assessed the NICEdrug 195 

score of the intermediates compared to human metabolites. This resulted in a wide range of 196 

NICEdrug scores between the different 5-FU intermediates and human metabolites, ranging 197 

from no similarity at a NICEdrug score of 0 to the equivalent substructure on a compound at 198 

a NICEdrug score of 1. More importantly, some of the 407 metabolite inhibitors (as explained 199 

next) were known compounds that have been investigated for their effects on 5-FU toxicity, 200 

but most of these compounds were newly identified by NICEdrug.ch and could therefore 201 

serve as avenues for future research into alleviating the side effects of this drug. 202 

 203 

We investigated these 407 compounds in more detail, looking first at the set of already 204 

validated metabolite inhibitors. 5-Fluorouridine (two steps away from 5-FU) and UDP-L-205 

arabinofuranose (four steps away from 5-FU) are very similar to uridine, with NICEdrug scores 206 

of 0.95 and 1, respectively. Uridine is recognized as a substrate by two human enzymes, 207 

cytidine deaminase (EC: 3.5.4.5) and 5'-nucleotidase (EC: 3.1.3.5) (Figure 2). Therefore, 208 

NICEdrug.ch predictions show that the degradation metabolism of 5-FU generates 209 

downstream molecules similar to uridine, which likely leads to the inhibition of these two 210 

enzymes. This effect has already been investigated as a potential method for reducing the 211 

toxicity of 5-FU, wherein it was proposed that high concentrations of uridine could compete 212 

with the toxic 5-FU metabolites (Ma et al., 2017). 213 

 214 

NICEdrug.ch also identified a few potential metabolites that have not been previously studied 215 

for their effects. These metabolites share a reactive site with native human metabolites and 216 

differ in the reactive site neighborhood, and we refer to them as para-metabolites (Sartorelli 217 

and Johns, 2013). 6-Methyl-2'-deoxyadenosine, purine-deoxyribonucleoside, and 2'-218 

deoxyisoguanosine structurally resemble the reactive site neighborhood of deoxyadenosine, 219 

with respective NICEdrug scores of 1, 1, and 0.91. Similarly, 2-aminoadenosine, 2-220 

chloroadenosine, and 2-methylaminoadenosine (four steps from 5-FU) have the same 221 

reactive site neighborhood as adenosine, with NICEdrug scores of 1, 1, and 0.96, respectively. 222 

Adenosine and deoxyadenosine are both native substrates of the adenosine kinase (EC: 223 

2.7.1.20) and 5'-nucleotidase (EC: 3.1.3.5) (Figure 2). Therefore, we suggest that the 5-FU 224 
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 8 

derivatives 2-aminoadenosine and 2-chloroadenosine are competitive inhibitors for the two 225 

enzymes adenosine kinase and 5'-nucleotidase. With these new insights from NICEdrug.ch, 226 

we hypothesize that co-administering adenosine or deoxyadenosine and uridine (Figure 2) 227 

with 5-FU might be required to reduce its toxic effects and hopefully alleviate the side effects 228 

of the 5-FU cancer treatment. 229 

 230 

Metabolic degradation of 5-FU leads to compounds with Fluor in their reactive site that 231 

are less reactive and more toxic than other intermediates. 232 

In the previous case study, we showed inhibitors that contain the identical active site to the 233 

native enzyme. However, a slightly different reactive site might still be able to bind to an 234 

enzyme and compete with a native substrate, also defined as anti-metabolite (Matsuda et al., 235 

2014). We explored this scenario by defining relaxed constraints in two steps. We first 236 

identified all atoms around a reactive site to compare the binding characteristics between the 237 

native molecule and putative inhibitor. Next, we compared the reactive site of the native 238 

molecule and putative inhibitor and scored the latter based on similarity (Materials and 239 

Methods). Following these two steps, we assessed the similarity between intermediates in 240 

the 5-FU metabolic neighborhood and human metabolites. Among all 407 compounds in the 241 

5-FU metabolism (Table S2), we found 8 that show a close similarity to human metabolites 242 

(NICEdrug score above 0.9, Figure 3) that might be competitive inhibitors or anti-metabolites. 243 

Inside the reactive site, the original hydrogen atom is bioisosterically replaced by fluorine. F-244 

C bonds are extremely stable and therefore block the active site by forming a stable complex 245 

with the enzyme. The inhibitory effect of the intermediates tegafur, 5-fluorodeoxyuridine, 246 

and F-dUMP (one to two reaction steps away) has been confirmed in studies by Kobayakawa 247 

et.al (Kobayakawa and Kojima, 2011) and Bielas et.al (Bielas et al., 2009). In addition, 248 

NICEdrug.ch also predicts that 5flurim, 5-fluorodeoxyuridine triphosphate, 5-249 

fluorodeoxyuridine triphosphate, 5-fluorouridine diphosphate, and 5-fluorouridine 250 

triphosphate, some of which occur further downstream in the 5-FU metabolism, also act as 251 

antimetabolites (Figure 3). Based on the insights from NICEdrug.ch, we suggest the inhibitory 252 

and side effect of 5-FU treatment might be more complex than previously thought. 5-FU 253 

downstream products are structurally close to human metabolites and might form stable 254 

complexes with native enzymes. This knowledge could serve to further refine the 255 
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 9 

pharmacokinetic and pharmacodynamic models of 5-FU and ultimately the dosage 256 

administered during treatment. 257 

 258 

NICEdrug.ch identifies toxic alerts in the anticancer drug 5-FU and its products from 259 

metabolic degradation. 260 

The concept of drug toxicity refers not to overdoses but instead to the toxic effects at medical 261 

doses (Guengerich, 2011), which often occur due to the degradation products generated 262 

through drug metabolism. Extensive efforts have been expended to identify toxic molecules 263 

or, more generally, to extract the substructures that are responsible for toxicity (called 264 

structural alerts). The Liver Toxicity Knowledge Base (LTKB) and the super toxic database 265 

include 1,036 and about 60k toxic molecules, respectively (Schmidt et al., 2009; Thakkar et 266 

al., 2018). ToxAlert provides around 1,200 alerts related to different forms of toxicity (Sushko 267 

et al., 2012). However, the number of molecules that are analyzed and labeled as toxic in 268 

databases is disproportionally low compared to the space of compounds. Additionally, 269 

structural alerts are indicated for many compounds, and current alerts might identify 270 

redundant and over-specific substructures, which questions their reliability (Yang et al., 271 

2017). 272 

 273 

To quantify the toxicity of downstream products of drugs in NICEdrug.ch, we collected all of 274 

the molecules cataloged as toxic in the LTKB and super toxic databases (approved toxic 275 

molecules) along with their lethal dose (LC50), as well as the existing structural alerts provided 276 

by ToxAlert. We measured the similarity of an input molecule with all approved toxic 277 

molecules using the reactive site-centric fingerprints implemented in BridgIT and the 278 

NICEdrug score (Materials and Methods). Next, we scanned both the toxic reference molecule 279 

and the input molecule for structural hints of toxicity, referred to here as NICEdrug toxic 280 

alerts. We kept common NICEdrug toxic alerts between the reference, which is a confirmed 281 

toxic compound, and input molecule. With this procedure in place, NICEdrug.ch finds for each 282 

input molecule the most similar toxic molecules along with their common toxic alerts and 283 

serves to assess the toxicity of a new molecule based on the mapped toxic alerts. Additionally, 284 

the NICEdrug toxic alerts and toxicity level of drug intermediates can be traced with 285 

NICEdrug.ch through the whole degradation pathway to reveal the origin of the toxicity. 286 

 287 
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As an example, we herein tested the ability of NICEdrug.ch to identify the toxicity in 5-FU 288 

metabolism. First, we queried the toxicity profile of all intermediates in the 5-FU metabolic 289 

neighborhood, integrating both known and hypothetical human reactions (Materials and 290 

Methods). In this analysis, we generated all compounds up to four steps away from 5-FU. 291 

Based on the toxicity report of each potential degradation product, we calculated a relative 292 

toxicity metric that adds the LC50 value, NICEdrug score, and number of common NICEdrug 293 

toxic alerts with all approved toxic drugs (Materials and Methods). We generated the 294 

metabolic neighborhood around 5-FU, and labeled each compound with our toxicity metric 295 

(Table S2). Interestingly, we show that the top most toxic intermediates match the list of 296 

known three toxic intermediates in 5-FU metabolism (Figure 4) (Krauß and Bracher, 2018). 297 

Based on the toxicity analysis in NICEdrug.ch for 5-FU, we hypothesize there are highly toxic 298 

products of 5-FU drug metabolism that had not been identified either experimentally or 299 

computationally and it might be necessary to experimentally evaluate their toxicity to 300 

recalibrate the dosage of 5-FU treatment. 301 

 302 

The NICEdrug reactive site-centric fingerprint accurately clusters statins of type I and II 303 

and guides drug repurposing. 304 

Because potential side effects of a drug are documented when the drug passes the approval 305 

process, repurposing approved drugs for other diseases can reduce the medical risks and 306 

development expenses. For instance, the antitussive noscapine has been repurposed to treat 307 

some cancers (Mahmoudian and Rahimi-Moghaddam, 2009; Rajesh, A. and International, 308 

2011). Because NICEdrug.ch can search for functional (i.e., reactivity), structural (i.e., size), 309 

and physicochemical (i.e., solubility) similarities between molecules while accounting for 310 

human biochemistry, we wanted to determine if NICEdrug.ch could therefore suggest drug 311 

repurposing strategies. 312 

 313 

As a case study, we investigated the possibility of drug repurposing to replace statins, which 314 

are a class of drugs often prescribed to lower blood cholesterol levels and to treat 315 

cardiovascular disease. Indeed, data from the National Health and Nutrition Examination 316 

Survey indicate that nearly half of adults 75 years and older in the United States use 317 

prescription cholesterol-lowering statins (US Preventive Services Task Force, 2016). Since 318 

some patients do not tolerate these drugs and many still do not reach a safe blood cholesterol 319 
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level (Kong et al., 2004), there is a need for alternatives. Being competitive inhibitors of the 320 

cholesterol biosynthesis enzyme 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMG-321 

CoA reductase) (Jiang et al., 2018; Mulhaupt et al., 2003), all statins share the same reactive 322 

site. BNICE.ch labeled this reactive site, in a linear or circular form, as corresponding to an EC 323 

number of 4.2.1.- (Istvan, 2001). NICEdrug.ch includes 254 molecules with the same reactive 324 

site that are recognized by enzymes of E.C. class 4.2.1.-, ten of which are known statins. We 325 

used the NICEdrug score to cluster the 254 molecules into different classes (Table S3, Figure 326 

5). Two of the classes correspond to all currently known statins, which are classified based on 327 

their activity into type 1 and 2, wherein statins of type 2 are less active and their reactive site 328 

is more stable compared to type 1. This property is well distinguished in the clustering based 329 

on the NICEdrug score (Figure 5A). 330 

 331 

In addition to properly classifying the ten known statins (Figure 5B and 5C, molecules non-332 

marked), we identified seven other NICEdrug.ch molecules that clustered tightly with these 333 

statins (Figure 5B and 5C, molecules marked with *). These new molecules share the same 334 

reactive site and physicochemical properties, and they have the highest similarity with known 335 

statins in atoms neighboring the reactive site. In a previous study by Endo et al., these seven 336 

NICEdrug.ch molecules were introduced as Mevastatin analogues for inhibiting cholesterol 337 

biosynthesis (Endo and Hasumi, 1993). Therefore, they were already suggested as possible 338 

candidates for treating high blood cholesterol and could be a good option for repurposing. 339 

Furthermore, we found eight known drugs not from the statin family among the 254 scanned 340 

molecules (Table S4). One of them, acetyl-L-carnitine (Figure 5C, molecule marked with **), 341 

is mainly used for treating neuropathic pain (Li et al., 2015), though Tanaka et al. have already 342 

confirmed that it also has a cholesterol-reducing effect (Tanaka et al., 2004).  343 

 344 

Overall, NICEdrug.ch was able to characterize all known enzymatic reactions that metabolize 345 

statins, including proposed alternatives and new hypothetical reactions that could be 346 

involved in their metabolism within human cells (Figure 5A, Figure S4). The identification of 347 

seven drugs that clustered around the statins and were already designed as alternatives to 348 

statins verifies the ability of NICEdrug.ch and the NICEdrug score to search broad databases 349 

for similar compounds in structure and function. Furthermore, the discovery of the eight 350 

compounds unrelated to known statins offer multiple candidate repurposable drugs along 351 
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with a map of their metabolized intermediates for the treatment of high cholesterol, though 352 

further preclinical experiments would be required to verify their clinical benefits. 353 

 354 

NICEdrug.ch suggests over 500 drugs to target liver-stage malaria and simultaneously 355 

minimize side effects in human cells, with shikimate 3-phosphate as a top candidate 356 

Efficiently targeting malaria remains a global health challenge. Malaria parasites 357 

(Plasmodium) are developing resistance to all known drugs, and antimalarials cause many 358 

side effects (World Health Organization, 2018). We applied NICEdrug.ch to identify drug 359 

candidates that target liver-stage developing malaria parasites and lessen or avoid side effects 360 

in human cells. 361 

 362 

We previously reported 178 essential genes and enzymes for liver-stage development in the 363 

malaria parasite Plasmodium berghei (Stanway et al., 2019) (Table S5, STAR Methods). Out of 364 

178 essential Plasmodium enzymes, 32 enzymes are not essential in human cells (Wang et al., 365 

2015) (Table S5, STAR Methods). We extracted all molecules catalyzed by these 32 enzymes 366 

uniquely essential in Plasmodium, which resulted in 68 metabolites and 157 unique 367 

metabolite-enzyme pairs (Table S5, STAR Methods). We used NICEdrug.ch to examine the 368 

druggability of the 32 essential Plasmodium enzymes with the curated 48,544 drugs (Figure 369 

1) and the possibility of repurposing them to target malaria. 370 

 371 

We considered as candidates for targeting liver-stage malaria as the drugs or their metabolic 372 

neighbors that show a good NICEdrug score (NICEdrug score above 0.5) with any of the 157 373 

Plasmodium metabolite-enzyme pairs. We identified 516 such drug candidates, targeting 16 374 

essential Plasmodium enzymes (Table S6, STAR Methods). Furthermore, 1,164 other drugs 375 

appear in the metabolic neighborhood of the 516 identified drugs (between one and three 376 

reaction steps away). Interestingly, out of the 516 identified drug candidates, digoxigenin, 377 

estradiol-17beta and estriol have been previously validated as antimalarials (Antonova-Koch 378 

et al., 2018) and NICEdrug.ch suggests their antimalarial activity relies on the competitive 379 

inhibition of the KRC enzyme (Figure 6). This enzyme is part of both the steroid metabolism 380 

and the fatty acid elongation metabolism, which we recently showed is essential for 381 

Plasmodium liver-stage development (Stanway et al., 2019). Among the 516 NICEdrug 382 

antimalarial candidates, there are also 89 molecules present in the metabolic neighborhood 383 
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of antimalarial drugs approved by (Antonova-Koch et al., 2018), which suggests these 384 

antimalarials might be prodrugs (Table S6). 385 

 386 

Being an intracellular parasite, antimalarial treatments should be efficient at targeting 387 

Plasmodium as well as assure the integrity of the host cell (Figure 6A). To tackle this challenge, 388 

we identified 1,497 metabolites participating in metabolic reactions catalyzed with essential 389 

human enzymes (Table S5, STAR Methods) and excluded the antimalarial drug candidates that 390 

shared reactive site-centric similarity with the extracted human metabolite set (to satisfy 391 

NICEdrug score below 0.5). Out of all 516 drug candidates that might target liver-stage 392 

Plasmodium, a reduced set of 64 molecules minimize the inhibition of essential human 393 

enzymes (Table S6, STAR Methods) and are hence optimal antimalarial candidates. 394 

  395 

Among our set of 64 optimal antimalarial candidates, a set of 14 drugs targeting the 396 

Plasmodium shikimate metabolism, whose function is essential for liver-stage malaria 397 

development (Stanway et al., 2019), arose as the top candidate because of its complete 398 

absence in human cells. The set of drugs targeting shikimate metabolism include 40 prodrugs 399 

(between one and three reaction steps away) that have been shown to have antimalarial 400 

activity (Antonova-Koch et al., 2018) (Table S6). NICEdrug.ch identified molecules among the 401 

prodrugs with a high number of toxic alerts, like nitrofen. It also identified four molecules 402 

with scaffolds similar (two or three steps away) to the 1-(4-chlorobenzoyl)pyrazolidin-3-one 403 

of shikimate and derivatives. This result suggests that downstream compounds of the 40 404 

prodrugs might target the Plasmodium shikimate pathway, but also might cause side effects 405 

in humans (Table S6). 406 

 407 

To this end, NICEdrug.ch identified shikimate 3-phosphate as a top candidate antimalarial 408 

drug. We propose that shikimate 3-phosphate inhibits the essential Plasmodium shikimate 409 

biosynthesis pathway without side effects in the host cell (Figure 6, Table S6). Excitingly, 410 

shikimate 3-phosphate has been used to treat E. coli and Streptococcus infections without 411 

appreciable toxicity for patients  (Díaz-Quiroz et al., 2018). Furthermore, recent studies have 412 

shown that inhibiting the shikimate pathway using 7-deoxy-sedoheptulose is an attractive 413 

antimicrobial and herbicidal strategy with no cytotoxic effects on mammalian cells (Brilisauer 414 

et al., 2019). Experimental studies should now validate the capability of shikimate 3-415 
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phosphate to efficiently and safely target liver malaria, and could further test other 416 

NICEdrug.ch antimalarial candidates (Table S6). 417 

 418 

NICEdrug.ch identifies over 1,300 molecules to fight COVID-19, with N-acetylcysteine as a 419 

top candidate 420 

SARS-CoV-2 is responsible for the currently on-going COVID-19 pandemic and the death of 421 

around half a million people (as of today, June 15 (Dong et al., 2020)) and there is currently 422 

no confirmed treatment for it. Attacking the host factors that allow replication and spread of 423 

the virus is an attractive strategy to treat viral infections like COVID-19. A recent study has 424 

identified 332 interactions between SARS-CoV-2 proteins and human proteins, which involve 425 

332 hijacked human proteins or host factors (Gordon et al., 2020). Here, we first used 426 

NICEdrug.ch to identify inhibitors of enzymatic host factors of SARS-CoV-2. Targeting such 427 

human enzymes prevents interactions between human and viral proteins (PPI) (STAR 428 

Methods, Figure 7A). Out of the 332 hijacked human proteins we identified 97 enzymes (STAR 429 

Methods, Table S7) and evaluated their druggability by inhibitors among the 250,000 small 430 

molecules in NICEdrug.ch and 80,000 molecules in food (STAR Methods, Figure 7A). 431 

NICEdrug.ch suggests 22 hijacked human enzymes can be drug targets, and proposed 1301 432 

potential competitive inhibitors from the NICEdrug.ch database. Out of 1301 potential 433 

inhibitors, 465 are known drugs, 712 are active metabolic products of 1,419 one-step-away 434 

prodrugs, and 402 are molecules in fooDB (Table S7). We found among the top anti SARS-435 

CoV-2 drug candidates the known reverse transcriptase inhibitor didanosine (Figure 7B, Table 436 

S7), which other in silico screenings have also suggested as a potential treatment for COVID-437 

19 (Alakwaa, 2020; Cava et al., 2020). Among others, NICEdrug.ch also identified: (1) 438 

actodigin, which belongs to the family of cardiotonic molecules proven to be effective against 439 

MERS-CoV but without mechanistic knowledge (Ko et al., 2020), (2) three molecules in ginger 440 

(6-paradol, 10-gingerol, and 6-shogaol) inhibiting catechol methyltransferase, and (3) 441 

brivudine, a DNA polymerase inhibitor that has been used to treat herpes zoster (Wassilew, 442 

2005) and prevent MERS-CoV infection (Park et al., 2019), and NICEdrug.ch suggests it for 443 

repurposing (Figure S5, Table S7). 444 

 445 

Drugs like remdesivir, EIDD-2801, favipiravir, and inhibitors of angiotensin converting enzyme 446 

2 (ACE2) have been used to treat COVID-19 (Jeon et al., 2020), and act through a presumably 447 
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effective inhibitory mechanism (Figure S6A). For instance, the three drugs remdesivir, EIDD-448 

2801, and favipiravir are believed to inhibit the DNA-directed RNA polymerase (E.C: 2.7.7.6). 449 

Here, we used the NICEdrug reactive site-centric fingerprint to seek for alternative small 450 

molecules in NICEdrug.ch and fooDB that could be repurposed to target ACE2 and DNA-451 

directed RNA polymerase. NICEdrug.ch identified a total of 215 possible competitive 452 

inhibitors of ACE2. Among those is captopril, a known ACE2 inhibitor (Kim et al., 2003), and 453 

D-leucyl-N-(4-carbamimidoylbenzyl)-L-prolinamide, a NICEdrug.ch suggestion for drug 454 

repurposing to treat COVID-19. We also found 39 food-based molecules with indole-3-acetyl-455 

proline (a molecule in soybean) as top ACE2 inhibitor candidate (Figure S6A, Table S8). To 456 

target the same enzyme as remdesivir, EIDD-2801, and favipiravir, NICEdrug.ch identified 457 

1115 inhibitors of the DNA-directed RNA polymerase, like the drug vidarabine, which shows 458 

broad spectrum activity against DNA viruses in cell cultures and significant antiviral activity 459 

against infections like the herpes viruses, the vaccinia virus, and varicella zoster virus (Suzuki 460 

et al., 2006). We further found 556 molecules in food that might inhibit DNA-directed RNA 461 

polymerase, like trans-zeatin riboside triphosphate (FDB031217) (Table S8). 462 

 463 

One of the host factors identified by Gordon and co-workers is the histone deacetylase 2 464 

(HDAC2) (Gordon et al., 2020), which acetylates proteins and is an important transcriptional 465 

and epigenetic regulator. The acetyl and carboxylate moieties are the reactive sites of the 466 

forward (N6-acetyl-L-lysyl-[histone]) and reverse (acetate) biotransformation of HDAC2, 467 

respectively (Figure 7). NICEdrug.ch recognized a total of 640 drugs for repurposing that can 468 

inhibit HDAC2, including 311 drugs sharing the acetyl moiety and showing a NICEdrug score 469 

above 0.5 with respect to N6-acetyl-L-lysyl-[histone], and 329 drugs sharing the carboxylate 470 

moiety and presenting a NICEdrug score above 0.5 with acetate (STAR Methods). Among the 471 

drugs sharing the acetyl reactive site, we identified the known HDAC2 inhibitor melatonin 472 

(Wu et al., 2018), and to-our-knowledge new candidates like N-acetylhistamine and N-473 

acetylcysteine. We also located 22 molecules in food with potential HDAC2 inhibitory activity, 474 

like N8-acetylspermidine (FDB022894) (Figure 7C, Table S8). Drugs sharing the carboxylate 475 

reactive site (as identified with NICEdrug) include the known HDAC2 inhibitors valproate, 476 

butyrate, phenyl butyrate (Abdel-Atty et al., 2014) and statins (Kong et al., 2004) (Figure 7C, 477 

Table S8). Interestingly, statins have been shown to have protective activity against SARS-478 

CoV-2 (Lodigiani et al., 2020; Zhang et al., 2020). In addition and excitingly, the NICEdrug.ch 479 
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candidate N-acetylcysteine is a commonly used mucolytic drug that is sometimes considered 480 

as a dietary supplement and has putative antioxidant properties. Indeed, N-acetylcysteine is 481 

believed for long to be precursor of the cellular antioxidant glutathione (Mårtensson et al., 482 

1989), but has unknown pharmacological action. NICEdrug.ch suggests that N-acetylcysteine 483 

might present a dual antiviral activity: firstly, N-acetylcysteine is converted to cysteine by 484 

HDAC2 and by that means, it is competitively inhibiting the native function of HDAC2 and 485 

interactions with viral proteins (Figure 7C, Table S8). Cysteine next fuels the glutathione 486 

biosynthesis pathway and produces glutathione in two steps. 487 

 488 

Given the high coverage of validated molecules with activity against SARS-CoV-2 that 489 

NICEdrug.ch captured in this unbiased and reactive site-centric analysis, we suggest there 490 

might be other molecules in the set of 1,300 NICEdrug.ch candidates that could also fight 491 

COVID-19. Excitingly, there are many molecules that can be directly tested since these are 492 

drugs that have already passed all safety regulations or are molecules in food, like N-493 

acetylcysteine for which we further reveal an action mechanism behind its potential anti 494 

SARS-CoV-2 activity. Other new candidates for which no safety data is available should be 495 

further validated experimentally and clinically. The mechanistic analyses provided by 496 

NICEdrug.ch could also guide new pharmacokinetic and pharmacodynamic models simulating 497 

SARS-CoV-2 infection and treatment. 498 

 499 

Discussion 500 

To systematically illuminate the metabolism and all enzymatic targets (competitively 501 

inhibited) of known drugs and hypothetical prodrugs to aid in the development of new 502 

therapeutic compounds, we used a proven reaction-prediction tool BNICE.ch (Hatzimanikatis 503 

et al., 2005) and an analysis of neighboring atoms of reactive sites analogous to BridgIT 504 

(Hadadi et al., 2019) and performed the first large-scale computational analysis of drug 505 

biochemistry and toxicity in the context of human metabolism. The analysis involved over 506 

250,000 small molecules, and curation and computation of bio- and physicochemical drug 507 

properties that we assembled in an open-source drug database NICEdrug.ch that can 508 

generate detailed drug metabolic reports and can be easily accessed and used by researchers, 509 

clinicians, and industry partners. Excitingly, NICEdrug.ch revealed 20 million potential 510 

reactive sites at the 250,000 small molecules of the database, and there exist over 3,000 511 
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enzymes in the human metabolism that can be inhibited with the 250,000 molecules. This is 512 

because NICEdrug.ch can identify all potential metabolic intermediates of a drug and scans 513 

these molecules for substructures that can interact with catalytic sites across all enzymes in 514 

a desired cell. 515 

 516 

NICEdrug.ch adapts the metric previously developed for reactions in BridgIT (Hadadi et al., 517 

2019) to precisely compare drug-drug and drug-metabolite pairs based on similarity of 518 

reactive site and the neighborhood around this reactive site, which we have recently shown 519 

outperforms previously defined molecular comparison metrics (Hadadi et al., 2019). Since 520 

NICEdrug.ch shows high specificity in the identification of such reactive sites and 521 

neighborhood, it provides a better mechanistic understanding than currently available 522 

methods (Robertson, 2005). Despite these advances, it remains challenging to systematically 523 

identify non-competitive inhibition or targeting of non-enzymatic biological processes. We 524 

suggest coupling NICEdrug.ch drug metabolic reports with other in silico and experimental 525 

analyses accounting for signaling induction of small molecules and other non-enzymatic 526 

biological processes like transport of metabolites in a cell. The combined analysis of drug 527 

effects on different possible biological targets (not uniquely enzymes) will ultimately increase 528 

the coverage of molecules for which a mechanistic understanding of their mode of action is 529 

assigned. 530 

 531 

A better understanding of the mechanisms of interactions and the specific nodes where the 532 

compounds act can help re-evaluate pharmacokinetic and pharmacodynamic models, 533 

dosage, and treatment. Such understanding can be used in the future to build models that 534 

correlate the pharmacodynamic information with specific compounds and chemical 535 

substructures in a manner similar to the one used for correlating compound structures with 536 

transcriptomic responses. We have shown for one of the most commonly used anticancer 537 

drugs, 5-FU, that NICEdrug.ch identifies and ranks alternative sources of toxicity and hence 538 

can guide the design of updated models and treatments to alleviate the drug’s side-effects. 539 

 540 

The mechanistic understanding will also further promote the development of drugs for 541 

repurposing. While current efforts in repurposing capitalize on the accepted status of known 542 

drugs, some of the issues with side effects and unknown interactions limit their development 543 
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as drugs for new diseases. Given that drug repurposing will require new dosage and 544 

administration protocols, the understanding of their interactions with the human metabolism 545 

will be very important in identifying, developing, and interpreting unanticipated side effects 546 

and physiological responses. We evaluated the possibility of drug repurposing with 547 

NICEdrug.ch as a substitute for statins, which are broadly used to reduce cholesterol but have 548 

many side effects. NICEdrug.ch and its reactive site-centric comparison accurately cluster 549 

both family types of statins, even though they are similar in overall molecular structure and 550 

show different reactivity. In addition, NICEdrug.ch suggests a set of new molecules with 551 

hypothetically less side effects (Endo and Hasumi, 1993; Tanaka et al., 2004) that share 552 

reactive sites with statins. 553 

 554 

A better mechanistic understanding of drug targets can guide the design of treatments 555 

against infectious diseases, for which we need effective drugs that target pathogens without 556 

side effects in the host cell. This is arguably the most challenging type of problem in drug 557 

design, and indeed machine learning has continuously failed to guide such designs given the 558 

difficulty in quantifying side effects—not to mention in acquiring large, consistent, and high-559 

quality data sets from human patients. To demonstrate the power of NICEdrug.ch for tackling 560 

this problem, we sought to identify drugs that target liver-stage malaria parasites and 561 

minimize the impact on the human host cell. We identified over 500 drugs that inhibit 562 

essential Plasmodium enzymes in the liver stages and minimize the impact on the human host 563 

cell. Our top drug candidate is shikimate 3-phosphate targeting the parasite’s shikimate 564 

metabolism, which we recently identified as essential in a high-throughput gene knockout 565 

screening in Plasmodium (Stanway et al., 2019). Excitingly, our suggested antimalarial 566 

candidate shikimate 3-phosphate has already been used for Escherichia and Streptococcus 567 

infections without appreciable side effects (Díaz-Quiroz et al., 2018). 568 

Finally, minimizing side effects becomes especially challenging in the treatment of viral 569 

infections, since viruses fully rely on the host cell to replicate. As a last demonstration of the 570 

potential of NICEdrug.ch, we sought to target COVID-19 by identifying inhibitors of 22 known 571 

enzymatic host factors of SARS-CoV-2 (Gordon et al., 2020). NICEdrug.ch identified over 1,300 572 

molecules that might target the 22 host factors and prevent SARS-CoV-2 replication. As a 573 

validation, NICEdrug.ch correctly identified known inhibitors of those enzymes, and further 574 

suggested safe drugs for repurposing and other food molecules with activity against SARS-575 
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CoV-2. Among the NICEdrug.ch suggestions for COVID-19, based on the knowledge on its 576 

mechanism and safety, we highlight N-acetylcysteine as an inhibitor of HDAC2 and SARS-CoV-577 

2. 578 

 579 

Overall, we believe that a systems level or metabolic network analysis coupled with an 580 

investigation of reactive sites will likely accelerate the discovery of new drugs and provide 581 

additional understanding regarding metabolic fate, action mechanisms, and side effects and 582 

can complement on-going experimental effects to understand drug metabolism (Javdan et 583 

al., 2020). We suggest the generation of drug metabolic reports to understand the reactivity 584 

of new small molecules, the possibility of drug repurposing, and the druggability of enzymes. 585 

Our results using NICEdrug.ch suggest that this database can be a novel avenue towards the 586 

systematic pre-screening and identification of drugs and antimicrobials. In addition to human 587 

metabolic information, NICEdrug.ch currently includes information for the metabolism of P. 588 

berghei and E. coli. Because we are making it publicly available (https://lcsb-589 

databases.epfl.ch/pathways/Nicedrug/), our hope is that scientists and medical practitioners 590 

alike can make use of this unique database to better inform their research and clinical 591 

decisions—saving time, money, and ultimately lives. 592 
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 613 

Main figure title and legends 614 

Figure 1. Pipeline to construct and use the NICEdrug.ch database. 615 

NICEdrug.ch (1) curates available information and calculates the properties of an input 616 

compound; (2) identifies the reactive sites of that compound; (3) explores the hypothetical 617 

metabolism of the compound in a cell; (4) stores all functional, reactive, bio-, and physico-618 

chemical properties in open-source database; and (5) allows generation of reports to evaluate 619 

(5a) reactivity of a small molecule, (5b) drug repurposing, and (5c) druggability of an 620 

enzymatic target. See also Figure S1, Figure S2, Figure S3, and Table S1. 621 

 622 

Figure 2. Similarity in reactive site and neighborhood defines para-metabolites in 5-FU 623 

metabolism and inhibited human metabolic enzymes. 624 

Eight para-metabolites in the 5-FU metabolic neighborhood (represented as defined in 625 

Materials and Methods). We show the most similar native human metabolites, inhibited 626 

enzymes, and native products of the reactions. See also Table S2. 627 

 628 

Figure 3. A different reactive site but similar neighborhood defines top anti-metabolites in 629 

5-FU metabolism and inhibited human metabolic enzyme. 630 

Eight anti-metabolites of dUMP in the 5-FU metabolic neighborhood (represented as defined 631 

in Materials and Methods). Note that the reactive site of the anti-metabolites is different than 632 

the one of the native human metabolite, but the neighborhood is highly similar, which 633 

determines the high NICEdrug score (value in parenthesis). We show the inhibited human 634 

enzyme (dTMP synthase) and reaction, and its native product. See also Table S2. 635 

 636 

Figure 4. Comparing downstream products to known toxic molecules and analyzing their 637 

common structural toxic alerts explains metabolic toxicity of 5-FU. 638 
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Example of six suggested toxic molecules in the 5-FU metabolic neighborhood (represented 639 

as defined in Materials and Methods). We show toxic compounds from the supertoxic and 640 

hepatotoxic databases that lead to the highest NICEdrug toxicity score (number under toxic 641 

intermediate name, Materials and Methods). We highlight functional groups linked to five 642 

NICEdrug toxic alerts (legend bottom right). See also Table S2. 643 

 644 

Figure 5. Clustering of molecules with statin reactive sites based on NICEdrug score suggests 645 

drugs for repurposing. 646 

(A) Pairwise NICEdrug score between all molecules with statin reactive sites (heat map) and 647 

number of metabolic reactions in which they participate (right). We highlight clusters of 648 

statins of type 1 (cluster a) and type 2 (cluster b), and clusters of most similar molecules to 649 

type 1 statins (cluster c) and type 2 statins (cluster d). Within the metabolic reactions, we 650 

indicate the total number of reactions (dark color) and the number of reactions that involve 651 

the statin reactive site (light color). (B) Examples of statins and Mevastatin analogues of type 652 

1 from cluster c (blue) and of type 2 from cluster d (gold). We left the known statins 653 

unmarked, which are appropriately clustered together based on the NICEdrug score, and we 654 

mark with * new molecules that cluster with statins and that NICEdrug.ch suggests could be 655 

repurposed to act as statins. Reactive sites in type 1 statins and type 2 statins are colored in 656 

blue and orange, respectively. The reactive site neighborhood as considered in the NICEdrug 657 

score is also marked. See also Figure S3, Figure S4, Table S3, and Table S4. 658 

 659 

Figure 6. NICEdrug.ch suggests shikimate 3-phosphate as a top candidate to target liver-660 

stage malaria and minimize side effects in host human cells. 661 

(A) Schema of ideal scenario to target malaria, wherein a drug efficiently inhibits an essential 662 

enzyme for malaria parasite survival and does not inhibit essential enzymes in the host human 663 

cell to prevent side effects. (B) Shikimate 3-phosphate inhibits enzymes in the Plasmodium 664 

shikimate metabolism, which is essential for liver-stage development of the parasite. 665 

Shikimate 3-phosphate does not inhibit any enzyme in the human host cell since it is not a 666 

native human metabolite, and it does not show similarity to any native human metabolite. 667 

(C) Mechanistic details of inhibition of aroC by shikimate 3-phosphate and other NICEdrug 668 

candidates. See also Table S5 and Table S6. 669 

 670 
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Figure 7. NICEdrug strategy to fight COVID-19, and NICEdrug candidate inhibitors of SARS-671 

CoV-2 host factors: reverse transcriptase and HDAC2. 672 

(A) Schema of NICEdrug strategy to target COVID-19, wherein a drug (top-left) or molecules 673 

in food (top-right) efficiently inhibit a human enzyme hijacked by SARS-CoV-2. Inhibition of 674 

this host factor reduces or abolishes protein-protein interactions (PPI) with a viral protein and 675 

prevents SARS-CoV-2 proliferation. (B) Inhibition of the reverse transcriptase (E.C: 1.1.1.205 676 

or P12268) and the PPI with SARS-CoV-nsp14 by didanosine based on NICEdrug.ch. (C) 677 

Inhibition of the HDAC2 (E.C: 3.5.1.98) and the PPI with SARS-CoV-nsp5 by molecules 678 

containing acetyl moiety (like melatonin, N-acetylcysteine, and N8-acetylspermidine), and 679 

molecules containing carboxylate moiety (like valproate, stains, and butyrate) based on 680 

NICEdrug.ch. See also Figure S5, Figure S6, Table S7, and Table S8. 681 

 682 

Supplementary figure title and legends 683 

Supplementary figure 1. Overview of number of molecules in NICEdrug.ch and their 684 

structural curation, related to Figure 1. 685 

(A) Venn diagram showing the number of compounds in NICEdrug.ch and their source 686 

database: KEGG, DrugBank, ChEMBLE NTD, and ChEMBLE. (B) Representation on how 687 

different kekulé forms affect the identification of reactive sites and prediction of biological 688 

activity for an example molecule. 689 

 690 

Supplementary figure 2. Distribution of reactive sites and metabolic reactions as of E.C. 691 

numbers linked to all molecules in NICEdrug.ch, related to Figure 1. 692 

(A) Distribution of reactive sites identified in all molecules of NICEdrug.ch among classes of 693 

E.C. numbers. (B) Specificity of reactive sites identified in drugs based on length and types of 694 

participating atoms. (C) Distribution of drug metabolic reactions based on class of E.C. 695 

number. (D) Distribution of Gibbs free energy for the drug metabolic reactions, which are the 696 

reactions linked to all molecules of NICEdrug.ch. 697 

 698 

Supplementary figure 3. Description of NICEdrug score, related to Figures 1, 2, 3, 4, 5, and 699 

6. 700 
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Example of NICEdrug score calculation. The NICEdrug score takes into account the structure 701 

of a molecule’s reactive site and its seven-atom-away neighborhood for similarity evaluation, 702 

analogous to BridgIT. 703 

 704 

Supplementary figure 4. Clustering based on NICEdrug score, molecular weight, and 705 

reactivity of statin like molecules, related to Figure 5. 706 

Hierarchical clustering based on the NICEdrug score of all molecules in NICEdrug.ch that 707 

contain statin reactive site (left). We report the molecules’ molecular weight (middle left) and 708 

number of drug metabolic reactions or reactions in which these drugs participate (middle). 709 

The molecular weight seems to be inversely correlated with the number of drug metabolic 710 

reactions. We highlight six clusters of drugs (a-f, middle right) and an example representative 711 

molecule (left). Interestingly, these clusters also group molecules based on bio- or physico-712 

chemical properties: “cluster a” involves a range of silicon-containing chemical molecules, 713 

“cluster b” are drug like molecules of type 2 statins, “cluster c” includes chemical molecules 714 

with a long chain connected to the reactive site, “cluster d” involves molecules with 1-715 

indanone fused with a tetrahydropyran ring, “cluster e” comprises drug-like molecules of type 716 

1 statins, and “cluster f” are 16-membered ring macrolide antibiotics. 717 

 718 

Supplementary figure 5. NICEdrug candidate inhibitors of SARS-CoV-2 host factors: 719 

galactosidase, catechol methyltransferase, and DNA polymerase, related to Figure 7. 720 

(A) Inhibition of the galactosidase (E.C: 3.2.1.22 or P06280) and the PPI with SARS-CoV-2 721 

nsp14 by actodigin based on NICEdrug.ch. (B) Inhibition of the catechol methyltransferase 722 

(E.C: 2.1.1.6 or P21964) and the PPI with SARS-CoV-2 nsp7 by 6-paradol, 10-gingerol, and 6-723 

shogaol, which are molecules in ginger, based on NICEdrug.ch. (C) Inhibition of the DNA 724 

polymerase (E.C: 2.4.1.-) and the PPI with SARS-CoV-2 nsp8 by brivudine based on 725 

NICEdrug.ch. 726 

 727 

Supplementary figure 6. NICEdrug candidate inhibitors of ACE2, related to Figure 7. 728 

Inhibition of the ACE2 (E.C: 3.4.17.23), a putative host factor of SARS-CoV-2, by the known 729 

inhibitor captopril, and NICEdrug candidates D-leucyl-N-(4-carbamimidoylbezyl)-L-730 

prolinamide and indole-3-acetyl-proline. 731 

 732 
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Materials and Methods 733 

Representation of metabolic neighborhood in figures of this manuscript  734 

We represent the metabolic neighborhood of a drug with reactions or steps away (arrows), 735 

where each step away (circle connected to arrow) involves a set of compounds. We extract 736 

compounds at each step that present a high NICEdrug score (value under metabolite name) 737 

with the native substrate of a reaction in the human cell. Reactive sites common to neighbor 738 

metabolites and native human metabolites are shaded with colors matching the color of the 739 

enzymes (packmen) that are inhibited. The neighborhood (seven atoms away, as considered 740 

in NICEdrug score) of the reactive sites is circled in the metabolites and native human 741 

metabolites with the same color as the reactive sites and enzymes. Compounds marked with 742 

* are confirmed inhibitors and references are provided in the main text. 743 

 744 

Representation of enzymatic inhibition in figures of this manuscript  745 

We represent the enzymes and catalyzed reactions inhibited by NICEdrug candidates. 746 

Highlighted are the reactive site and neighborhood (as considered in the NICEdrug score) in 747 

candidate drugs and metabolites, which are native substrates of the human enzymes. The 748 

SARS-CoV-2 proteins interaction with the enzyme is presumed to be diminished or abolished 749 

upon inhibition of the human enzyme. Compounds marked with * are confirmed inhibitors 750 

and references are provided in the main text. 751 

 752 

Curation of input molecules used in the construction of NICEdrug.ch 753 

We constructed the NICEdrug.ch database to gather small molecules suitable for treatment 754 

of human diseases. We collected the SMILES structure, synonyms, and any available bio- and 755 

physico-chemical property included from three source databases: KEGG, ChEMBL, and 756 

DrugBank, which added up to 70,976 molecules by January 2018 (Figure S1A). Only molecules 757 

that were fully structured were imported to our database. We further curated the imported 758 

molecules by removing duplicate structures and merging annotations from different 759 

databases into one molecule entry in the database. For removing duplicate structures we 760 

used canonical SMIELS (Weininger, 1988) generated  by openbabel (O’Boyle et al., 2011) 761 

version 2.4.0. This unification method is based on atoms and their connectivity in a molecule 762 

in terms of a molecular graph that is captured by the canonical SMILES. Therefore, different 763 

resonance forms, stereoisomers, as well as dissociated and charged states of the same 764 
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compound are mapped to one entry in database. Furthermore, we filtered molecules based 765 

on Lipinski rules (Lipinski et al., 2001): (1) the molecular weight should be less than 500 766 

Dalton, (2) the number of hydrogen bond donors should be less than five, (3) the number of 767 

hydrogen bond acceptors should be less than ten, and (4) an octanol-water partition 768 

coefficient (log P) should be less than five. According to Lipinski rules an active orally drug 769 

does not violate more than one of the above criteria. We calculated criteria one, two and 770 

three based on the structural information from SMILES of molecules. To assess criterion four, 771 

we relied on reported data in the source database. We kept in the NICEdrug.ch database 772 

those compounds for which the partition coefficient was not available. 773 

We performed a separate analysis to account for non-unique graph representations of 774 

aromatic rings, also called kekulé structures. The existence of aromatic rings and the fact that 775 

bond-electrons are shared within the ring make several single-double bond assignments 776 

possible, which results in multiple kekulé representations for a single molecule (Figure S1B). 777 

We included all such kekulé structures to account for alternative atom-bond connectivity and 778 

associated reactivity. We call “effective forms” to the kekulé representations that show 779 

different reactive sites than their canonical structures. For example, there can be two 780 

effective forms plus the canonical structure (Figure S1B). In total, we found 42,092 effective 781 

forms for 29,994 aromatic compounds in NICEdrug.ch database and we kept them for further 782 

analysis. 783 

We also computed the thermodynamic properties of all drugs in NICEdruch.ch. Specifically, 784 

we computed the Gibbs free energy of formation (∆ 퐺′°) using the group contribution method 785 

of Mavrovouniotis (Jankowski et al., 2008). 786 

The NICEdrug.ch database includes a total number of 48,544 unique and curated small 787 

molecules (Figure S1A). 788 

 789 

Identification of reactive sites in drugs 790 

The 3D structures of enzyme pockets are complex and mostly unknown. Therefore, evaluating 791 

and comparing docking of two small molecules in the pocket of a specific target is impossible 792 

most of the times. Using BNICE.ch, we focused on the complementary structure of active sites 793 

on substrates, also called reactive site. To recognize the potential reactive sites on molecules, 794 

we scanned molecules using expert-curated generalized reaction rules of BNCIE.ch (Hadadi et 795 

al., 2016), which mimic the identification of substrates by the enzyme pocket and account for 796 
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the promiscuous activity of enzymes. Theses reaction rules incorporate the information of 797 

biochemical reactions and have third-level Enzyme Commission (EC) identifiers. Each 798 

BNICE.ch reaction rule accounts for three levels of information: (1) atoms in reactive sites of 799 

compounds, (2) connectivity and configuration of atom bonds in the reactive site, and (3) 800 

mechanism of bond breakage and formation during the reaction. As of May 2020, BNICE.ch 801 

contains 450 bidirectional generalized reaction rules that can reconstruct 8118 KEGG 802 

reactions (Hadadi et al., 2016). Here, we include all BNICE.ch rules to identify all possible 803 

reactive sites on a given drug in two steps. First, a BNICE.ch rule identifies all atoms in a 804 

compound that belong to the rule’s reactive site. Second, the rule evaluates the connectivity 805 

of the atoms previously identified. The candidate compounds for which a BNICE.ch rule 806 

identified a reactive site were validated as metabolically reactive and considered for analysis 807 

in NICEdrug.ch. 808 

It is important to note that thanks to the generalized reaction rules, which abstract the 809 

knowledge of thousands of biochemical reactions, BNICE.ch is able to reconstruct known 810 

biotransformations and also propose novel metabolic reactions. This was demonstrated in 811 

the reconstruction of the ATLAS of Biochemistry (Hadadi et al., 2016), which involves up to 812 

130,000 reactions between known compounds. 813 

 814 

Analysis of drug metabolism in human cells. 815 

To mimic biochemistry of human cells and simulate human drug metabolism, we collected all 816 

available information (metabolites and metabolic activities or EC numbers of enzymes) on 817 

human metabolism from three available databases: the human metabolic models Recon3D 818 

(Brunk et al., 2018) and HMR (Pornputtapong et al., 2015), and the Reactome database (Croft 819 

et al., 2011). These three databases include a total of 2,266 unique human metabolites and 820 

2,066 unique EC numbers of enzymes (Table S1). 821 

To explore the biochemical space beyond the known human metabolic reactions and 822 

compounds, we used (1) the generalized enzymatic reaction rules of BNICE.ch that match up 823 

to the third EC level the collected human enzymes, and (2) all of the collected human 824 

metabolome. We evaluated the reactivity of each drug in a human cell using the retro-825 

biosynthesis algorithm of BNICE.ch, which predicts hypothetical biochemical transformations 826 

or metabolic neighborhood around the drug of study.  We generated with BNICE.ch metabolic 827 

reactions in which each drug and all known human metabolites could participate as substrate 828 
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or products.  We also allowed a set of 53 known cofactors to react with the human 829 

metabolites (Table S1). 830 

We define the boundaries of the metabolic neighborhood of a molecule with a maximum 831 

number of reactions or steps away that separate the input molecule (drug of study) from the 832 

furthest compound. In BNICE.ch, a generation n of compounds involves all metabolites that 833 

appear for the first time in the metabolic neighborhood of a drug after n reactions or steps 834 

happened. For example, in the case study of 5-FU we find the compound 5-Fluorouridine in 835 

generation 2 or 2 steps away, which means there are two metabolic reactions that separate 836 

5-FU and 5-Fluorouridine (Figure 2). 837 

In NICEdrug.ch, there exist 197,246 compounds in generation 1 (1 step away) from all input 838 

drugs. The 197,246 compounds are part of the potential drug metabolic neighborhood in 839 

human cells. Out of all generation 1 molecules, 13,408 metabolites can be found in human 840 

metabolic models and HMDB database (Wishart et al., 2018), 16,563 metabolites exist in 841 

other biological databases, and the remaining 167,245 metabolites are catalogued as known 842 

compounds in chemical databases (i.e., PubChem). Note that HMDB includes native human 843 

metabolites and non-native human compounds, like food ingredients. 844 

The 197,246 products that are one-step away of all NICEdrug.ch molecules are part of a 845 

hypothetical biochemical neighborhood of 630,449 drug metabolic reactions. Of all drug 846 

metabolic reactions, 5,306 reactions are cataloged in biological databases, and the remaining 847 

625,143 reactions are novel. A majority of the reactions involved oxidoreductases (42.54%), 848 

broken down into 27.45% of lyases, 7.15% of hydrolases, 6.28% of transferases, 1% of 849 

isomerases, and 15.58% of ligases. Interestingly based on the previously identified reactive 850 

sites, out of the 265,935 (42.54% of 625,143) oxidoreductase reactions, 49.92% are catalyzed 851 

by the p450 family of enzymes, which are known to be responsible for the metabolism of drug 852 

(Figure S2C). 853 

 854 

Using NICEdrug.ch database for analysis of the metabolic neighborhood of a drug 855 

In NICEdrug.ch webserver, users can look up for a drug using the drugs’ name and other 856 

identifiers like ChEMBL, DrugBank and KEGG. NICEdrug.ch will report a unique identifier for 857 

the compound that will be input for upcoming analysis modules. The predict metabolism 858 

module allows to study the metabolic network around an input molecule. The input to this 859 

module is: (1) the unique identifier of the drug of interest, (2) a maximum number of reactions 860 
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or steps away that shall separate the input drug to the furthest compound in the metabolic 861 

neighborhood. 862 

The output of this analysis is a report in the form of a csv file that includes all compounds and  863 

metabolic reactions in the metabolic neighborhood of the input drug. One can also export the 864 

neighborhood in the form of a visual graph, in which nodes are molecules and edges are 865 

reactions. 866 

 867 

Definition of the NICEdrug score 868 

Based on the theory of lock and key, two metabolites that can be catalyzed by the same 869 

enzyme may have similar reactive sites and also neighboring atoms. In order to quantify the 870 

similarity inside and around reactive sites of two molecules, we developed a metric called 871 

NICEdrug score (Figure S3), which is inspired on BridgIT (Hadadi et al., 2019). BridgIT assesses 872 

the similarity of two reactions, considering the reactive site of the participating substrates 873 

and their surrounding structure until the seventh atom out of the reactive site. 874 

The NICEdrug score is an average of two similarity evaluations: (1) the atom-bond 875 

configuration inside reactive site (D parameter), and (2) the 7 atom-bond chain molecular 876 

structure around the reactive site (E parameter). The NICEdrug score, and its parameters D 877 

and E, range between 0 and 1 when they indicate no similarity and identical structure, 878 

respectively. Different constraints on the D and E parameters determine the identification of 879 

different types of inhibition like para-metabolites and anti-metabolites (see other sections in 880 

this Materials and Methods). 881 

We show the evaluation of NICEdrug scores for three example compounds (Figure S3). In this 882 

example, Digoxin, Labriformidin and Lanatoside C all share the reactive site corresponding to 883 

EC number 5.3.3.- (D=1).  Starting from the atoms of the identified reactive site, eight 884 

description layers of the molecule were formed, where each layer contains a set of connected 885 

atom-bond chains. Layer zero includes types of atoms of reactive site and their count. Layer 886 

1 expands one bond away from all of the atoms of reactive site and accounts for atom-bond-887 

atom connections. This procedure is continued until layer 7, which includes the sequence of 888 

8 atoms connected by 7 bonds. Then, we compare the fingerprint of each molecule to the 889 

other participants of the class based on the Tanimoto similarity scores. A Tanimoto score near 890 

0 designates no or low similarity, whereas a score near 1 designates high similarity in and 891 
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around reactive site. Lanatoside C and Digoxin share the same substructure till 8 layers out of 892 

reactive site which is presented in the NICEdrug score by preserving score 1 in all layers, so 893 

the overall Tanimoto score for these two compounds in the context of EC number 5.3.3.- is 1 894 

(D=1 and E=1). However, the structure of two compounds are not exactly the same and 895 

actually Lanatoside C has 8 more carbon atoms and 6 more oxygen atoms, shaped as an extra 896 

benzenehexol ring and an ester group. Although this part is far from the reactive site, based 897 

on the NICEdrug score they both can perfectly fit inside the binding pocket of a common 898 

protein related to this reactive site. This hypothesis is proved by experiments reported in 899 

KEGG and DrugBank. According to DrugBank and KEGG, Lanatoside C has actions similar to 900 

Dioxin and both of them have the same target pathways: Cardiac muscle contraction and 901 

Adrenergic signaling in cardiomyocytes. Furthermore, target protein for both of them is 902 

ATP1A. 903 

Also, the NICEdrug score effectively captures and quantifies differences around the reactive 904 

site. The substructure around the reactive site in Labriformidin is slightly different (D=1 and 905 

E <1). The difference is calculated trough different layers of the NICEdrug score. 906 

In the case study of 5-FU, in order to predict competitive inhibition, we analyzed all the 907 

metabolites that share reactive site with 5-FU or its downstream products (D=1) and then we 908 

ranked the most similar metabolites based on their similarity in neighborhood of reactive site 909 

to 5-FU or its downstream products (E). To assess the structural differences in the reactive 910 

sites themselves (D), we implemented the Levenshtein edit distance algorithm (Levenshtein, 911 

1966) to determine how many deletions, insertions, or substitutions of atom/bonds are 912 

required to transform one pattern of reactive site into the other one. Here, the edit distance 913 

explains the difference between the reactive sites of the intermediate and the human 914 

metabolite. However, even slight changes in the reactive site affect its interaction with the 915 

binding site. To ensure that the divergence retained the appropriate topology, we compared 916 

the required edit on reactive site with interchangeable groups, termed bioisosteric groups 917 

(Papadatos and Brown, 2013). These bioisosteric groups contain similar physical or chemical 918 

properties to the original group and largely maintain the biological activity of the original 919 

molecule. An example of this is the replacement of a hydrogen atom with fluorine, which is a 920 

similar size that does not affect the overall topology of the molecule. For this analysis, we 921 
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used 12 bioisosteric groups adapted from the study by Papadatos et.al. (Papadatos and 922 

Brown, 2013). 923 

To predict irreversible Inhibitors in metabolism of 5-FU, we kept only molecules with a 924 

similarity score greater than 0.9 to metabolites (E>0.9), to preserve a high similarity in the 925 

neighborhood of the reactive sites. Then, we checked which ones contained reactive sites 926 

that differed only in the replacement of bioisosteric groups (D~1). 927 

 928 

Classification of drugs based on the NICEdrug score 929 

Classification of compounds with similar structure is normally used to assign unknown 930 

properties to new compounds. For instance, one can infer ligand-protein binding for a drug 931 

when its action mechanism or the structure of the target proteins are not known. In this study, 932 

we have demonstrated four strategies to classify drugs (Figure 1), which are from less to more 933 

stringent: classifying (1) molecules that participate in reactions with the same EC up to the 3th 934 

level, (2) molecules that in addition share a BNICE.ch reaction rule, (3) molecules that in 935 

addition to both previous points share reactive site, (4) molecules that show high similarity of 936 

reactive site and neighborhood based on the NICEdrug score. 937 

The EC number guarantees that molecules are catalyzed with similar overall reaction 938 

mechanism. Generalized reaction rules from BNICE.ch further capture different 939 

submechanisms inside an EC number (Hadadi et al., 2016). A BNICE.ch reaction rule might 940 

involve more than one reactive site. Hence, information of reactive sites provide further 941 

insights into the molecule’s reactivity. Furthermore, similarity of reactive sites and their 942 

neighborhoods based on the NICEdrug score increase the comparison resolution and this is 943 

the basis of the classification in NICEdrug.ch. 944 

In NICEdrug.ch database there exist 95,342 classes that comprise all drugs and human 945 

compounds sharing EC, BNICE.ch rule, and reactive site (classification based on our strategy 946 

3). We computed the NICEdrug score between all pairs of molecules in a class and this 947 

information is available in NICEdrug.ch. 948 

 949 

Identification of drugs acting as para-metabolites based on NICEdrug score 950 

Small molecules that share reactive site and are structurally similar to native human 951 

metabolites enter and bind the pocket of native enzymes and competitively inhibiting 952 
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catalysis acting as para-metabolites (Ariens, 2012). In this study, we define as para-metabolite 953 

any drug or any of its metabolic neighbors that (1) shares reactive site with native metabolites 954 

(D=1), and (2) preserves a high NICEdrug score with respect to the reactive site neighborhood 955 

(E>0.9). 956 

 957 

Identification of drugs acting as anti-metabolites based on NICEdrug score 958 

Small molecules that do not share reactive site but are structurally similar to native human 959 

metabolites might enter the binding pocket of native enzymes and inhibiting catalysis acting 960 

as anti-metabolites (Ariens, 2012). In this study, we define as anti-metabolite any drug or any 961 

of its metabolic neighbors that (1) differs slightly in reactive site from a native metabolite 962 

(D~1), and (2) preserves high similarity in the reactive site neighborhood (E>0.9). We 963 

hypothesize that a low divergence in the reactive site, still allows a non-native compound to 964 

enter and bind the enzyme pocket since it is structurally similar enough to the native 965 

substrate. 966 

 967 

Identification of NICEdrug toxic alerts 968 

We obtained all NICEdrug toxic alters from ToxAlert database (Sushko et al., 2012). ToxAlert 969 

database includes about 1,200 structural toxic alerts associated with particular types of 970 

toxicity. Toxic alerts are provided in the form of SMART patterns that are searchable in SMILES 971 

structure of molecules. NICEdrug.ch uses openbable tool (O’Boyle et al., 2011) to search for 972 

these structural alerts on SMILES of compounds. 973 

  974 

Collection of reference toxic molecules in NICEdrug.ch 975 

Studying the adverse effects of chemicals on biological systems has led to development of 976 

databases cataloging toxic molecules. The Liver Toxicity Knowledge Base (LTKB) integrates 977 

1,036 molecules annotated with human Drug-induced liver injury risk (severity). Super toxic 978 

DB include about 60k toxic molecules, that are annotated with their toxicity estimate, 979 

LC50/LD50 i.e., lethal dose or concentration at which 50% of a population dies. 980 

As a resource of approved toxic molecules, we collected all of the molecules cataloged as 981 

toxic in LTKB and super toxic databases. We used this collection as a reference to compare 982 

the similarity of drugs or and products of drug metabolism with approved toxic molecules.  983 
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 984 

Definition of a toxicity score in NICEdrug.ch 985 

The number of molecules labeled as toxic in databases is disproportionally low compared to 986 

the space of compounds. On the other hand, toxic alerts are defined for a big number of 987 

compounds and are linked to redundant molecular structures. 988 

We measured the similarity of drugs and their metabolic neighbors with the collection of 989 

reference toxic molecules using the NICEdrug score. We assigned toxic alerts to molecules in 990 

NICEdrug.ch if a molecule and toxic molecule shared a molecular substructure linked to the 991 

toxic alert. 992 

Finally, NICEdrug.ch provides a toxicity report in the form of a csv file for each molecule in the 993 

metabolic neighborhood including six values linked to the most similar toxic molecules in both 994 

toxic reference databases (LTKB and supertoxic databases): (1) the NICEdrug score between 995 

the drug and those most similar toxic molecules, (2) the severity degree of the hepatotoxic 996 

compound, and log(LC50) of the supertoxic compound, and (3) the number of common toxic 997 

alerts between the drug and the most similar toxic molecules. The list of toxic alerts is also 998 

provided.   999 

We combined the six values of the toxicity report into a toxicity score defined as follows: 1000 

 1001 

NICEdrug score  × (log(LC ) or severity degree)  1002 

×  number of common NICEdrug toxic alerts    1003 

i ∈ {the most similar approved toxic molecules in LTKB and supertoxic databases } 1004 

 1005 

The toxicity score in NICEdrug.ch served to quantify the toxicity of each molecule in the 1006 

metabolic neighborhood of a drug, recapitulate known toxic molecules, and suggest new toxic 1007 

compounds (Figure 4). 1008 

 1009 

 1010 

Analysis of essential enzymes and linked metabolites in Plasmodium and human cells 1011 

We extracted information of essential genes and enzymes for liver-stage malaria 1012 

development from our recent study (Stanway et al., 2019). In this study, we developed the 1013 

genome-scale metabolic model of Plasmodium berghei, which shows high consistency 1014 
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(approximately 80%) with the largest gene knockout datasets in Plasmodium blood (Bushell 1015 

et al., 2017) and liver stages (Stanway et al., 2019). There are 178 essential genes for P. 1016 

berghei’s growth simulating liver-stage conditions (Stanway et al., 2019). Here, we identified 1017 

the substrates of those essential metabolic enzymes, which comprise a set of 328 metabolites 1018 

(Table S5). To further minimize on the host cell, we filtered out those Plasmodium enzymes 1019 

that share 4th level E.C. with human essential enzymes. We used available CRISPR gene 1020 

essentiality data in various human cell lines (Wang et al., 2015) to identify essential genes and 1021 

enzymes in human cells (Table S5). We further identified essential metabolites in human cells 1022 

(Table S5) using the latest human genome-scale metabolic model (Robinson et al., 2020) and 1023 

the metabolic information associated to the essential human genes. Subtracting essential 1024 

parasite and human enzymes resulted in the analysis of 32 essential Plasmodium enzymes 1025 

catalyzing 68 metabolites and 157 unique metabolite-enzyme pairs in the parasite (Table S6). 1026 

 1027 

Identification of drugs to target malaria and minimize side effects on human cells 1028 

Those molecules that themselves and their downstream products cannot act as inhibitors of 1029 

essential metabolic enzymes in the human host cell while they can target essential 1030 

Plasmodium enzymes are attractive antimalarial candidates. 1031 

We first used NICEdrug.ch to look for small molecules that share reactive site with the 32 1032 

essential Plasmodium enzymes and they have good similarity score in reactive site 1033 

neighborhood to native substrates of essential enzymes of parasite, i.e. NICEdrug score above 1034 

0.5 (Table S6). We also identified prodrugs that might lead to downstream products with 1035 

similar reactive site and neighborhood (NICEdrug above 0.5) to any of the essential 1036 

Plasmodium metabolites (Table S6). We suggest those drugs and downstream products act 1037 

as antimetabolites and competitively inhibit the essential enzymes in the parasite. Overall, 1038 

we identified 516 drugs that directly compete with essential metabolites and 1,164 prodrugs 1039 

that need to be biochemically modified between one to three times in human cell to render 1040 

inhibition of essential enzymes. 1041 

We next combined information of essential Plasmodium and human metabolites to screen 1042 

further the drug search using NICEdrug.ch. Out of the hypothetical 516 antimalarial 1043 

candidates, we identified 64 drugs that share reactive site with parasite metabolites 1044 

(NICEdrug score above 0.5) and not with human metabolites (NICEdrug score below 0.5), 1045 

making them good candidates for drug design (Table S6). 1046 
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 1047 

Prediction of inhibitors among food based molecules 1048 

We used the reactive site-centric fingerprint available in NICEdrug.ch to identify molecules in 1049 

food that share reactive site with native substrates of human enzymes and hence might 1050 

inhibit those enzymes. We retrieved the total set of 80,000 compounds from FooDB (Scalbert 1051 

et al., 2011), and treated them as input molecules into the NICEdrug pipeline (Figure 1) to 1052 

identify reactive sites and evaluate their biochemistry, as done for all molecules in 1053 

NICEdrug.ch. 1054 

 1055 

Identification of small molecules to target COVID-19 1056 

A recent study reported 332 host factors of SARS-CoV-2 (Gordon et al., 2020). Out of the 332 1057 

proteins, 97 have catalytic function and EC number assigned, and are potential targets of 1058 

small molecules. We evaluated the druggability of these 97 enzymes using NICEdrug.ch.  1059 

To generate a druggability report, NICEdrug.ch first gathers the metabolic reactions 1060 

associated with the protein EC numbers. NICEdrug.ch uses 11 databases (including HMR, 1061 

MetaCyc, KEGG, MetaNetX, Reactome, Rhea, Model SEED, BKMS, BiGG models and Brenda) 1062 

as source of metabolic reactions. All these databases involve a total of 60k unique metabolic 1063 

reactions.  1064 

Out of the 97 host factor enzymes, we identified 22 enzymes that are linked to fully-defined 1065 

metabolic reactions. Fully-defined metabolic reactions fulfill three criteria. (1) There is a 1066 

secondary structure available for all the reaction participants, which means there are 1067 

available mol files. (2) There is a fully defined molecular structure for all the reaction 1068 

participants, which means molecules with unspecified R chains are discarded. (3) There is a 1069 

BNICE.ch enzymatic reaction rule assigned to the reaction (Table S7). 1070 

NICEdrug.ch identified 22 host factor enzymes with 24 unique linked EC numbers and 145 1071 

unique fully defined reactions. NICEdrug.ch extracts the metabolites participating in these 1072 

reactions and identifies their reactive site for a reactive-site centric similarity evaluation 1073 

against a list of molecules. To this end, NICEdrug.ch reports the list of molecules ranked based 1074 

on the NICEdrug score. The molecule with the highest NICEdrug score shares the highest 1075 

reactive site-centric similarity with the native substrate of the target enzyme (Table S7). 1076 

We found 1,301 molecules that show NICEdrug score above 0.5 with respect to substrates of 1077 

the 22 SARS-CoV-2 hijacked enzymes (Table S7). Out of 1,301 molecules, 465 are drugs 1078 
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cataloged in DrugBank, KEGG drugs or ChEMBL databases, 712 are active molecules one step 1079 

away of 1,419 prodrugs, and 402 are food molecules (Table S7).  1080 

To better understand the classes of drugs or food molecules, we classified drugs based on 1081 

their KEGG drug groups (Dgroups) and food molecules based on their food source. Out of 465 1082 

drugs identified, 43 drugs are assigned to 55 different Dgroups and 402 food molecules belong 1083 

to 74 different food sources (Table S7). 1084 

 1085 

Supplemental table titles and legends 1086 

Table S1. Information of human metabolism considered in this study, related to Figures 2, 1087 

3, 4, 5, and 6. 1088 

(A) List of cofactors, (B) list of metabolites, and (C) list of E.C. numbers considered in BNICE.ch 1089 

for the generation of reactions in the analysis of drug metabolism in a human cell (Materials 1090 

and Methods). 1091 

 1092 

Table S2. Metabolic neighborhood of 5-FU, related to Figures 2, 3, and 4. 1093 

(1) List of compounds in the 5-FU metabolic neighborhood including up to four reactions or 1094 

steps away. (2) Description of reactions in the 5-FU metabolic neighborhood including up to 1095 

four reactions or steps away. 1096 

 1097 

Table S3. NICEdrug score between all molecules with reactive site of statins in NICEdrug.ch, 1098 

related to Figure 5. 1099 

Matrix of NICEdrug score between each pair of the whole set of 254 molecules in NICEdrug.ch 1100 

with reactive site of statins. 1101 

 1102 

Table S4. Description of nine drugs candidates for repurposing to replace statins based on 1103 

NICEdrug.ch, related to Figure 5. 1104 

These drugs can act as competitive inhibitors of HMG-CoA reductase like statins. 1105 

 1106 

Table S5. Essential genes or enzymes and linked metabolites in liver-stage Plasmodium and 1107 

a human cell, related to Figure 6. 1108 

(A) List of essential genes and associated reactions in liver-stage Plasmodium, as obtained 1109 

from the study (Stanway et al., 2019) (B) List of essential genes and associated reactions in a 1110 
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human cell, as obtained from the study (Wang et al., 2015) (C) List of metabolites linked to 1111 

essential genes in liver-stage Plasmodium. (D) List of metabolites linked to essential genes in 1112 

a human cell. 1113 

 1114 

Table S6. Description of drugs, prodrugs, metabolites and enzymes analyzed in the study of 1115 

malaria, related to Figure 6  1116 

(A) NICEdrug druggability analysis of essential genes or enzymes in liver-stage Plasmodium: 1117 

all drugs sharing reactive-site centric similarity with the Plasmodium metabolites and 1118 

comparison with human metabolites. (B) NICEdrug druggability analysis of essential genes or 1119 

enzymes in liver-stage Plasmodium: all prodrugs (up to three steps away of 346 drugs) sharing 1120 

reactive-site centric similarity with the Plasmodium metabolites and comparison with human 1121 

metabolites. (C) Description of drugs and prodrugs identified in the malaria analysis with 1122 

NICEdrug.ch and validated in the study by (Antonova-Koch et al., 2018) along with their similar 1123 

Plasmodium metabolite and human metabolite. 1124 

 1125 

Table S7.  Hijacked human enzymes by SARS-CoV-2, and drugs and food-based compounds 1126 

that can inhibit them based on the NICEdrug score, related to Figure 7. 1127 

(A) Hijacked human proteins by SARS-CoV-2 as identified by (Gordon et al., 2020) with an 1128 

annotated enzymatic function (E.C. number), also called here "SARS-CoV-2 hijacked 1129 

enzymes". (B) NICEdrug druggability report for SARS-CoV-2 hijacked enzymes including all 1130 

NICEdrug small molecules. (C) Best candidate drugs against COVID-19: NICEdrug druggability 1131 

report for SARS-CoV-2 hijacked enzymes including drugs with NICEdrug score above 0.5 1132 

compared to the native human substrate. (D) Summary of NICEdrug best candidate drugs 1133 

against COVID-19 and their classification according to the drug category in the KEGG 1134 

database. (E) NICEdrug druggability report of SARS-CoV-2 hijacked enzymes including 1135 

prodrugs (up to three steps away of any NICEdrug small molecule) with NICEdrug score above 1136 

0.5 compared to the native human substrate. (F) Best candidate food-based molecules 1137 

against COVID-19: NICEdrug druggability report of SARS-CoV-2 hijacked enzymes including 1138 

food-based molecules with NICEdrug score above 0.5 compared to the native human 1139 

substrate. (G) Summary of the NICEdrug best candidate food-based molecules against COVID-1140 

19 and their classification according to the fooDB source. 1141 

 1142 
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Table S8. NICEdrug analysis of inhibitory mechanisms of currently used anti SARS-CoV-2 1143 

drugs, related to Figure 7. 1144 

(A) All drug molecules and (B) prodrugs in NICEdrug.ch sharing reactive site with the native 1145 

substrates of the human enzyme HDAC2 and their NICEdrug score with this substrate. (C) All 1146 

molecules cataloged in fooDB sharing reactive site with the native substrates of the human 1147 

enzyme HDAC2 and their NICEdrug score with this substrate. (D) All drug molecules and (E) 1148 

prodrug molecules in NICEdrug.ch sharing reactive site with the native substrates of the 1149 

human enzyme ACE2 and their NICEdrug score with this substrate. (F) All molecules cataloged 1150 

in fooDB sharing reactive site with the native substrates of the human enzyme ACE2 and their 1151 

NICEdrug score with this substrate. (G) All molecules in NICEdrug.ch or cataloged in fooDB 1152 

sharing reactive site with the native substrates of the human enzyme DNA-directed RNA 1153 

polymerase and their NICEdrug score with this substrate. 1154 

 1155 
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