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Abstract 

Objective. The risk of cardiovascular events in patients with RA is disproportionately 

heightened as a result of systemic inflammation. The relative effect of autoimmune-

associated citrullination on the structure and thrombotic potential of fibrin(ogen) 

remains unknown. We therefore compared indices of vascular function, 

inflammation, coagulation and fibrin clot composition in RA patients with healthy 

controls and evaluated inter-parameter relationships. Methods.  Blood samples were 

collected from 30 RA patients and 25 age- and gender-matched healthy volunteers. 

Levels of SAA, CRP, ICAM-1 and VCAM-1 was measured using a sandwich 

immunoassay. Whole blood coagulation was assessed using Thromboelastography. 

Fibrin clot networks and fiber structure was investigated using Scanning Electron 

Microscopy. The detection and quantification of citrullination in formed fibrin clots 

were performed using a fluorescently labeled Citrulline monoclonal antibody with 

Confocal Microscopy. Results.  Concentrations of SAA, CRP and ICAM-1 were 

significantly elevated in RA patients compared to controls. TEG parameters relating 

to coagulation initiation (R and K), rate of fibrin cross-linking (α-Angle), and time to 

reach maximum thrombus generation (TMRTG) were attenuated in RA patients. 

Parameters relating to clot strength (MA, MRTG, TGG) did not statistically differ 

between RA and controls. Logistic regression modelling revealed stronger 

association between acute phase reactants (CRP, SAA) with TEG parameters than 

endothelial function markers. Microscopic analysis revealed denser networks of 

thicker fibrin fibers in RA patients compared to controls [median (interquartile range) 

214 (170-285) vs 120 (100-144) nm respectively, p<0.0001, Odds ratio=22.7).  

Detection of multiple citrullinated regions within fibrin clot structures in RA patients, 

which was less prevalent in control samples (p<0.05, OR=2.2). Conclusion. 

Patients with active RA display a coagulation profile that is dissimilar to general 

findings associated with other inflammatory conditions. The alteration of protein 

structures by autoimmune linked citrullination could play a role in determining the 

structure of fibrin and the potential of conferring a heightened thrombotic risk in RA 

patients. 
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Introduction 

Rheumatoid Arthritis (RA) is a chronic, systemic autoimmune disease characterized 

by both peripheral joint and extra-articular site inflammation, with an increased 

predisposition to a higher incidence of cardiovascular disease (CVD) (1, 2). CVD 

(including stroke and myocardial infarction) is almost 50% more common in RA 

patients than the general population and is the most frequent cause of early mortality 

(3). Traditional risk factors for CVD (age, hypertension, obesity, etc.), do not fully 

account for the elevated occurrence of CVD events, and thus RA (genetics and 

disease characteristics) has been identified as a strong independent risk factor (4). 

The interdependence of inflammatory and hemostatic pathways is well established 

and observable in multiple types of tissue, organs and pathologies (5). Disruption of 

the tightly regulated homeostatic control of immune and hemostatic systems could 

result in a rapid progression towards a prothrombotic tendency, a central cause of 

ischaemic stroke and myocardial infarction (6). This circumstance holds true for RA, 

with elevated levels of both pro-inflammatory [e.g. C-reactive protein (CRP) (7-11), 

Tumor necrosis factor alpha (TNFα) (7, 9, 11), Interleukin-6 (IL-6) (7-12), IL-1β (7) 

and Serum Amyloid A (SAA) (10, 13, 14)] and prothrombotic markers [e.g. D-dimer 

(8, 9, 11, 15, 16), Fibrinogen (10, 11, 16, 17), Tissue Factor (TF) (15), and von 

Willebrand factor (vWF) (8, 16, 18)], which is associated with one another (7, 19) and 

with the risk of future cardiovascular complications (20-23).   

Key intermediaries of this manifestation are the structural components of formed 

thrombi.  Soluble fibrinogen is cleaved by thrombin in order to form dense matrices 

of thin fibrous protein known as fibrin (24). Polymerized fibrin networks are essential 

for wound healing and other occlusive physiological processes (24). However, 

exposure to inflammatory biomarker stimuli [such as CRP (25), SAA (26), and pro-

inflammatory cytokines (27, 28)] can result in the alteration of mechanical and 

viscoelastic properties of fibrin clots into a prothrombotic phenotype. This 

phenomenon has previously been observed in RA plasma clots (29, 30).  Various 

immunopathogenic processes related to RA development can exert upstream 

amplification of the coagulation cascade as well as impairing fibrin clot dissolution (9, 

19, 31).   

Fibrin(ogen) is also a potent pro-inflammatory signaling entity itself, mainly through 

ligand-receptor interactions with immune cells that further propagates pro-
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inflammatory effects (32-36). The deimination of particular arginine residues in 

fibrin(ogen), known as citrullination, is a distinctive RA posttranslational modification 

that alters normal protein structure and function that confers antigenicity to modified 

proteins (37-43). The functional relationship between citrullination and the presence 

of a prothrombotic fibrin clot phenotype is still poorly understood. Some studies have 

shown that citrullination of fibrinogen prevents thrombin digestion and subsequent 

fibrinogenesis (44-46). However, the experimental conditions upon which these 

findings are based do not reflect physiological coagulation and is inconsistent with a 

predominantly hypercoagulable state seen in RA (47).  

Inflammation-induced fibrin formation is equally present in RA synovial spaces as it 

is in circulation (Refer to Figure 1). Synovial coagulation is a key step in pannus 

formation, where fibrin provides the structural scaffold for immune cells that are 

responsible for synovial membrane disintegration and eventual joint damage (31, 

48). Endothelial tissue dysfunction is a key process that facilitates this ubiquitous 

distribution of aberrant fibrin deposition in both synovia and vasculature. This 

pathophysiological state is characterized by the expression of cell adhesion 

molecules [intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell 

adhesion molecule-1 (VCAM-1)], pro-inflammatory cytokines and pro-thrombotic 

markers (49, 50). This allows for the recruitment, translocation and propagation of 

inflammatory and thrombotic mediators across the synovial barrier (51-53).   

There is significant overlap in inflammatory pathways responsible for joint damage in 

RA and hypercoagulation, coupled with the fact that disease severity has been 

correlated to more adverse cardiovascular complications (21, 54, 55). It is therefore 

prudent that these processes and their relevant markers be examined systemically in 

RA, and not isolated to either vascular or synovial compartment. The aim of this 

study was to examine the extent to which the coagulation profiles and fibrin network 

architecture of RA patients are influenced by acute phase inflammation, endothelial 

dysfunction an autoimmune-related protein modification. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.28.121301doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.28.121301
http://creativecommons.org/licenses/by/4.0/


6 

Figure 1: Overview of the overlapping processes of inflammation and coagulation in 
both synovial and vascular compartments. 1. The chronic and systemic nature of the 
inflammatory response in RA characterizes the disease as an independent risk factor 
for CVD. 2. The movement of leukocytes, inflammatory cytokines, procoagulant 
factors and immune complexes are aided by vascular endothelial dysfunction and 
neovascularization of hyperproliferative joint tissues. 3. The role of fibrin(ogen) is 
integral to the formation of hyperplastic and destructive synovial tissue (pannus) and 
vascular thrombosis, while being a prominent self-protein target of aberrant 
citrullination and autoimmunogenicity in RA. 

 

Materials and methods 

Ethical considerations 

Ethical approval for this study was given by the Health Research Ethics Committee 

(HREC) of Stellenbosch University (reference number: 6983). This study was carried 

out in strict adherence to the International Declaration of Helsinki, South African 

Guidelines for Good Clinical Practice and the South African Medical Research 

Council (SAMRC) Ethical Guidelines for research. Written consent was obtained 

from all participants (RA patients and healthy participants) prior to any sample 

collection. 
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Study population 

The RA sample group consisted of 30 patients (24 female and 6 male) that visited 

the Winelands Rheumatology Clinic (Stellenbosch, South Africa) for routine check-

ups. All patients fulfilled the 2010 American College of Rheumatism/European 

League against Rheumatism (ACR/EULAR) classification criteria for RA diagnosis 

(56). The mean age of RA group was 53.4 years (range 22-75 years) with a mean 

disease duration of 10.5 years (range 1-39 years). RA participants were excluded 

from the study if they presented with other severe comorbidities (such as cancer or 

diabetes), existing cardiovascular disease or taking anticoagulant medication. RA 

participants were not excluded on the basis of any antirheumatic drug treatment or 

the use of glucocorticosteroids. The majority of RA patients (87%) were on a 

schedule of non-biologic disease modifying antirheumatic drugs (DMARDS, such as 

methotrexate, hydroxychloroquine, sulfasalazine, or leflunomide), while a lower 

proportion of patients were on biologic DMARDs (60%) and cortisone (14%, 5-10mg 

dosage). The control group consisted of 30 age- (mean: 53.9 years) and gender- (22 

female and 8 male) matched volunteer blood donors. The inclusion criteria for 

healthy controls were: (i) no history of thrombotic disease or inflammatory conditions 

(ii) no use of any chronic medication (ii) no use of anticoagulant therapy (iii) non-

smokers (iv) females not taking contraceptive medication or hormone replacement 

therapy (v) females that are not pregnant or lactating.  All demographic information is 

summarized in Table 1. 

Blood sampling 

Whole blood (WB) samples were collected in vacutainer tubes using 3.8% sodium 

citrate as anticoagulant. Blood drawing on all participants was performed by a 

qualified nurse, or phlebotomist by sterile puncture of the antecubital vein. Blood 

tubes were incubated at room temperature for a minimum duration of 30 minutes 

prior to the commencement of any whole blood analysis. In order to obtain platelet 

poor plasma (PPP), sodium citrated blood tubes were centrifuged at 3000xg for 15 

minutes, aliquoted into Eppendorf tubes and stored at -80oC until further analysis. 

Thromboelastography®  

Analysis of dynamic coagulation kinetics were performed on RA and control WB by 

means of Thromboelastograph® (TEG®) 5000 Haemostasis Analyzer System 

(Haemonetics®, 07-033).  In brief, coagulation is initiated by recalcification of 340µL 
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WB with 20µL of 0.2mM Calcium chloride (CaCl2) (Haemonetics®, 7003) in a 

disposable TEG® cup (Haemonetics®, 6211).  Various kinetic clotting parameters are 

determined by assessing the resistance that the forming thrombus provides against 

the oscillating pin of the instrument (measuring at 37oC).  Parameters derived from 

the thromboelastograph tracing consist of: reaction time (R, time from test start to 

initial fibrin formation in minutes), kinetics [K, time required to reach an amplitude 

(clot thickness) of 20mm, in minutes], alpha angle (α, rate of fibrin cross linking 

indicated by degrees), maximal amplitude (MA, maximum strength of formed clot in 

millimeters), maximum rate of thrombus generation (MRTG, in dynes.cm-2.s-1), time 

to maximum rate of thrombus generation (TMRTG, in minutes) and total thrombus 

generation (TTG, in dynes.cm-2).(57) 

Scanning electron microscopy  

The ultrastructure of fibrin networks and individual fibrin fibers were examined using 

scanning electron microscopy (SEM). In summary, clots were prepared from thawed 

PPP samples of RA patients (n=10) and controls (n=10) by addition of 5µL human 

thrombin (provided by South African National Blood Service) to 10µL PPP on a glass 

coverslip and transferred to a 24-well plate. Preparation consisted of washing with 

10X Gibco® phosphate-buffered saline (PBS, pH 7.4) (ThermoFisher Scientific, 

10010015), chemical fixation with 4% Paraformaldehyde (PFA) (Sigma-Aldrich, 

P6148) and then 1% Osmium Tetrahydroxide (OsO4) (Sigma-Aldrich, 75632), 

followed by dehydration with increasing grades of ethanol and 99.9% 

Hexamethyldisilizane (HMDS) (Sigma-Aldrich, 37921) [for detailed protocols please 

refer to (57)]. Samples were carbon coated using a Quorom Q150T E carbon coater.  

Images were captured at an electron high tension (EHT) of 1kV using a high 

resolution InLens detector of the Zeiss Merlin™ (Gemini II) FE SEM (Carl Zeiss 

Microscopy, Munich, Germany). Fibrin fiber diameters representative of each 

respective sample group (RA and control) was determined by means of image 

analysis software ImageJ (Version 1.52p). Three representative micrographs 

(78,98µm2 image size, 10 000x magnification) were calibrated to scale and overlaid 

with a non-destructive grid (2µm2 tile size). Single representative fibrin fibers were 

measured in 28 tiles per image, producing 84 fiber diameter measurements per 

sample (method illustrated in figure 2). 
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Figure 2: Fibrin fiber diameter measurement scheme. SEM micrographs of a 

prepared PPP clot from a representative healthy control (top) and RA (bottom).  
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Vascular injury panel analysis 

Plasma concentrations of soluble ICAM-1, VCAM-1, CRP, and SAA were measured 

by sandwich immunoassay [Meso Scale Discover (MSD) Vascular Injury Panel (V-

plex) 2 (human) kits, catalogue number K15198D]. RA (n=30) and control (n=30) 

PPP samples and reagents were prepared as per manufacturer’s protocol. Samples 

were run in duplicate and measurements read on an MSD Discovery Workbench 4. 

Analyte concentrations were calculated from the calibration curve generated by 

absorbance measurements of manufacturer supplied calibrator standards. 

Confocal laser scanning microscopy 

In order to determine the extent of protein deamination in fibrin networks, PPP 

aliquots of RA samples (n=10) and control samples (n=10) were thawed and fibrin 

clots prepared (refer to SEM method) on glass microscope slides in a dark room. 

Samples were fixed with 4% PFA, washed 3x with PBS, and blocked with 5% Goat 

serum solution (Abcam, ab7481) for 30 minutes. Clots were then stained with a 1:50 

dilution Citrulline Monoclonal Antibody (2D3.1) (Thermo Fisher Scientific, Cat #MA5-

27573) and incubated for 1 hour.  Following another 3x PBS wash to remove 

unbound antibodies, samples were then stained with 1:200 dilution Goat Anti-Mouse 

IgG Secondary antibody conjugated to AlexaFluor 488 (Thermo Fisher Scientific, Cat 

#A327273) and incubated for 1 hour. Slides were washed 3x with PBS to remove 

unbound antibody, allowed to dry, and mounted with a glass coverslip. Samples 

were viewed with a Zeiss LSM 780 Confocal laser scanning microscope (CLSM) with 

a Plan-Apochromat 63x/1.4 oil DIC M27 objective. AlexaFluor488 was excited with 

the 488nm laser and emission was detected at 508-570nm. Three representative 

micrographs per sample were analysed for fluorescent particle distribution using 

ImageJ (Version 1.52p). Images were calibrated to scale, and a global threshold (27 

pixel cut-off) applied to all analysed micrographs. 

Statistical analysis 

Statistical analysis was performed using R version 4.0. Specifically, univariate 

logistic regression was performed to determine odds ratios (OR) for experimental 

variables using the logistic model in the rstanarm package (with default priors). ORs 

and 95% confidence intervals were extracted in the corresponding unit system (i.e. 

not z-scaled) for all variables except Fibrin fiber diameter and citrulline particle 

number shown in Table 4 which are z-scaled to aid interpretation. Tables 2 and 3 
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show ORs after adjustment for age and gender with unadjusted analysis identifying 

the same significance and effect sizes. In addition, results for classical statistical 

tests are reported as follows. The distribution of sample datasets for each variable 

experimental was determined using the Shapiro-Wilk test. Accordingly, p-values for 

each variable comparing RA to healthy controls were calculated using either a Mann-

Whitney U test for nonparametric data or a Student t-test for parametric data. 

Statistical significance was set at p<0.05. One can see close alignment between all 

these and the OR results. 

Results 
Subjects 
Demographic information of all study participants is listed in Table 1. The RA sample 

group closely resembles the general population distribution for age (median: 54 

years) and sex (80% female) of the disease (58). The control group of healthy 

volunteers was closely matched to the RA group with regards to age (median: 50 

years) and sex (73% female).  The RA sample group was heterogeneous with 

respect to clinical presentation, with most patients on an anti-rheumatic drug therapy 

regime. The majority of RA patients also presented with positive titers for anti-cyclic 

citrullinated peptide (CCP) (77%) and rheumatoid factor (97%) autoantibodies. 

 

Table 1: Demographic and clinical characteristics of study participants. 

Risk Factor RA (n=30) Control (n=30) 
Age (years) 53.5 (22-75) 50 (28-79) 
Women [n (%)] 24 (80%) 22 (73.3%) 
Smokers [n (%)] 3 (10%) - 
Disease duration (years) 6.5 (1-39) - 
Hypertension [n (%)] 5 (16.7%) - 
Hypercholesterolemia [n (%)] 3 (10%) - 
Disease activity (DAS-28) 
classification [n (%)] 

- Remission  
- Low 
- Moderate 
- High 

 
 
1 (3.3%) 
17 (56.7%) 
4 (13.3%) 
8 (26.7%) 

- 

Autoantibody seropositivity [n (%)] 
- RF-/Anti-CCP- 
- RF+/Anti-CCP- 
- RF-/Anti-CCP+ 
- RF+/Anti-CCP+ 

 
1 (3.3%) 
6 (20%) 
- 
23 (76.7%) 

 

Conventional DMARD use [n (%)] 26 (86.7%) - 
Biologic DMARD use [n (%)] 18 (60%) - 
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Cortisone use [n (%)] 13 (43%) - 
Values expressed as median and interquartile range (IQR) unless otherwise stated. 
Disease activity scores (DAS-28), were categorized in RA patients as remission, low, 
moderate or high (59).  For full demographic information and specified list of disease 
modifying anti-rheumatic drugs (DMARDs) please refer to full study database in 
supplementary material.   

 

Confirmation of altered inflammatory and vascular function profile in RA 
Circulating concentrations of endothelial function and acute phase markers are 

shown in Table 2. Previous studies have shown these markers (CRP, SAA, sVCAM-

1 and sICAM-1) to be associated with a prothrombotic state and increased CVD risk 

in RA(7, 13, 60-62), and was therefore measured in this study to determine the 

extent to which systemic inflammation influences viscoelastic and structural clot 

properties. As expected, all markers were elevated in RA compared to controls [CRP 

(median 4.25 µg/mL vs 1.26, OR=1.29), SAA (4.98 µg/mL vs 1.52, OR=1.29), 

sICAM-1 (378.82 ng/mL vs 289.70, OR=1.01), sVCAM-1 (359.83 ng/mL vs 325.80, 

OR=1.00)].   

 

Table 2: Vascular injury panel (V-Plex) analysis. 

V-Plex Analyte RA  
(n=30) 

Control 
 (n=25) 

Adjusted OR  
(95% CI) 

P-value 

CRP  
(µg/mL) 

4.25 
[1.89-8.11] 

1.26 
[0.43-3.15] 

1.29  
(1.09-1.62) * 

0.0011** 

SAA  
(µg/mL) 

4.98 
[2.56-8.84] 

1.52 
[0.64-2.24] 

1.25  
(1.08-1.55) * 

<0.0001**** 

sICAM-1  
(pg/mL) 

377.82 
[295.69-460.49] 

289.7 
[225.34-365.56] 

1.008  
(1.0021-1.014) * 

0.0202* 

sVCAM-1 
(pg/mL) 

359.83 
[283.01-394.20] 

325.8 
[253.73-422.62] 

1.001  
(0.995-1.007) 

0.9 
 

Analyte concentrations for RA and control are expressed as median [IQR].  Odds 
ratios for age- and gender-adjusted logistic regression model is listed with the 95% 
confidence interval, while level of statistical significance was set at p<0.05 for 
calculated Mann-Whitney test values. *Denotes statistically significant differences in 
variables between RA and controls. 

 
Functional coagulation assessment indicates a prothrombotic tendency in RA  
Whole blood coagulation parameters as measured by TEG® are listed in Table 3. 

Limited viscoelastic assessment of coagulation in RA has been performed to date 

(60, 63, 64), with TEG® not commonly used in rheumatology practice (65-67). RA 
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patients showed significantly altered rates of clot formation compared to healthy 

controls.  This included shortened clot initiation (R; OR=0.675, p=0.0007 and K; 

OR=0.539, p=0.0196), augmented fibrin cross-linking (α; OR=1.15, p=0.0006) and 

shortened time to maximal thrombus formation (TMRTG; OR=0.737, p=0.0001). 

Measures of overall clot strength (MA) and growth (TTG) were attenuated in RA but 

did not statistically differ from those of controls. 

 

Table 3: Thromboelastography® analysis. 

TEG® Parameter RA  
(n=30) 

Control 
 (n=30) 

Adjusted OR  
(95% CI) 

P-value 

R (min) 8.3 [7.5-9.5] 
 

11.9 [8.3-15.1] 0.675  
(0.528-0.827) * 

0.0007*** 

K (min) 2.6 [2.2-3.2] 3.6 [2.6-4.5] 0.539  
(0.308-0.847) * 

0.0196* 

α (o) 63.2 [57.6-68.6] 
 

54.2 [48.4-60.5] 1.15  
(1.07-1.27) * 

0.0006*** 

MA (mm) 55.9 [52.0-61.7] 
 

58.9 [54.5-63.9] 0.960  
(0.889-1.03) 

0.1646 

MRTG  
(dyn·cm-2·s-1) 

5.01 [3.89-6.02] 
 

4.23 [3.26-5.85] 1.03  
(0.767-1.40) 

0.2745 

TMRTG (min) 11.67 [9.73-12.96] 
 

17.43 [12.48-21.13] 0.737  
(0.607-0.858) * 

0.0001*** 

TTG (dyn·cm-2) 633 [544.1-775.2] 
 

719.3 [602.1-879.8] 0.997  
(0.995-1.00) 

0.0899 

Viscoelastic coagulation measurements for RA and control are expressed as median 
[IQR]. Odds ratios for age- and gender-adjusted logistic regression model is listed 
with the 95% confidence interval, while level of statistical significance was set at 
p<0.05 for calculated Mann-Whitney test values. *Denotes statistically significant 
differences in variables between RA and controls. 

 

Association of vascular injury biomarkers to thrombotic parameters indices 
Significantly altered inflammatory and coagulation indices in RA, as determined by 

an adjusted logistic regression model, are represented by box-and-whisker plots 

(Figure 3). Additionally, the distribution of RA and control experimental values are 

plotted and arranged in a lattice (Figure 4) to exhibit correlation values between 

intra- and inter-assay variables. CRP shows positive and significant association with 

SAA (r = 0.6) and sICAM-1 (r = 0.52). Further strong correlation existed between 

respective endothelial markers (sICAM-1 and sVCAM-1, r=0.62), and between all 
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TEG® parameters (R, K, α, TMRTG). CRP and SAA display stronger association with 

thromboelastographic parameters than the cell adhesion molecules.  

 

Figure 3: Box-and-whisker plots for statistically significant TEG® and V-plex 
parameters.  Boxes represent the median and IQR. Whiskers indicate upper (75th 
percentile + 1.5*IQR) and lower (25th percentile -1.5*IQR) extremes. Outlier values 
are indicated by black dots 
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Figure 4: Lattice of cross-plots and correlation values across statistically significant 
TEG® and V-Plex measurements. The sample values are indicated by crosses (RA: 
red, Control: black). Strong intra-analysis correlation exists between CRP with SAA 
and sICAM-1, between sICAM-1 and VCAM-1, and between all TEG parameters (R, 
K, Angle, TMRTG).  CRP and SAA show moderate correlation with inflammatory and 
endothelial markers. 

 

SEM analysis exposes anomalous fibrin network architecture in formed RA 
clots 
Further investigation into the apparent modification of the clot structure in RA was 

carried out by means of SEM. Figure 2 illustrates the scheme followed for the 

measurement of fibrin fiber diameters in PPP clots of RA (n=10) and Control (n=10) 

samples. Results (refer to Table 4) indicate that fibrin fiber diameters in 
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representative areas were significantly increased in RA versus controls (median: 

214nm vs 120nm, OR=22.732). Examining the networks qualitatively, it is evident 

that ex vivo formed clots from RA samples have denser, less porous fibrin networks. 

Figure 5 B-D, representative of the RA sample group, illustrates the amalgamation 

of fibrin monomers that contribute to increased fibrin fiber diameter and overall 

network density. This contrasts sharply with the ultrastructural attributes of Figure 

5A (Healthy control sample), which demonstrates thinner protein strands and a more 

permeable fibrin network.  

Table 4: Microscopy Image Analysis. 

Imaging 
Parameter 

RA  
(n=10) 

Control  
(n=10) 

OR  
(95% CI) 

P-value 

Fibrin fiber 
diameter (nm) 

214  
(170-285) 

120 
(100-144) 

22.732 
(17.085-31.441) 

<0.0001 
**** 

Fluorescent 
citrulline particles 

3279 
(1966-4260) 

1095 
(411-2937) 

2.2268 
(1.2238-4.3527) 

0.0355 
* 

Evaluation of plasma clots using image analysis software (ImageJ) based techniques 
for representative RA (n=10) and Healthy control (n=10) subjects. Fibrin fiber 
diameters were determined from SEM micrographs, while fluorescent particle 
analysis was calculated from CLSM micrographs.  Values are expressed as median 
[interquartile range]. Scaled odds ratios for the logistic regression model are listed 
with their 95% confidence intervals, while level of statistical significance was set at 
p<0.05 for calculated Mann-Whitney test values. *Denotes statistically significant 
differences in variables between RA and controls. 
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Figure 5: Scanning electron micrographs of the fibrin network ultrastructure. 
Representative micrographs of the fibrin network in healthy controls (A) and RA 
patients (B-D). The altered clot ultrastructure in RA, consisting of less permeable 
networks of thicker fibrin fibers, represents a prothrombotic phenotype. 

 

Confocal analysis of plasma clots reveals a higher number of citrullinated 
sites in RA fibrin networks compared to controls 
Additionally, we probed whether autoimmune-related modifications of coagulation 

proteins are distinctive to RA patients compared to healthy individuals. Fibrin and 

fibrinogen are well known extracellular targets for peptidylarginine deiminase (PAD) 

enzymes (37, 68), with citrullinated isoforms eliciting the generation of anti-CCP 

antibodies in large proportions of RA patients (40, 41). Citrullinated fibrin deposits 

are common synovial compartment manifestations, but this has not been 

investigated in plasma. The determination of the net-effect of coagulation factor 

citrullination on hemostatic outcome also remains elusive. To investigate the 

presence and extent of potential citrullination in RA (n=10) and Control (n=10) PPP 

thrombi, fluorescence analysis using a Citrulline-identifying monoclonal antibody with 

CLSM was performed (Figure 6). Acquired image data (Figure 7) suggests a 

A B 

C D 
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relatively higher proportion of citrulline particles in RA fibrin networks versus controls 

(OR=2.2268). 

 

Figure 6: Confocal microscopy of PPP clots stained with a Citrulline monoclonal 
antibody. Confocal micrographs of representative control and RA samples.  Each 
row represents identical areas captured of fibrin clot preparations using transmitted 
light to illustrate fibrin network topography (left-hand column) and a green channel 
(middle column) to identify fluorescent particles corresponding to citrulline residues. 
Fluorescent images are also provided in binary (right-hand column) to better 
illustrate differences seen between RA and control samples with respect to citrulline-
coupled fluorescence. Particle analysis confirmed the observable presence of 
enhanced fluorescent signal in RA samples (n=10) versus healthy controls (n=10). 
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Figure 7: Box-and-whisker plots for micrographs analysis.  Outlier values are 
indicated by black dots. In comparison to healthy individuals, RA subjects exhibited 
significantly increased fibrin fiber diameters (median: 214nm vs 120nm, OR=22.7) 
and detected fluorescent areas (median: 3279 vs 1095, OR=2.23) of fibrin 
citrullination. 
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Discussion 
There is a need to bridge translational gaps between RA immunopathogenesis and 

systemic vascular and hemostatic irregularities. The development of RA auto-

immunogenicity precedes the onset of joint disease (69, 70). The link between RA 

autoimmune patterns and its possible role in exacerbating thrombosis is still poorly 

understood. Crosstalk between immune and hemostatic systems with the 

endothelium represents a critical interface in which both arthritic and cardiovascular 

pathologies are initiated and propagated. We therefore analyzed a panel of 

biomarkers that are representative of this dynamic milieu, is associated with RA 

disease severity and CVD. 

Levels of both acute phase reactants (CRP and SAA) were significantly elevated in 

RA patients (Table 2) and showed a strong association (Figure 4). This was 

expected as acute phase reactant concentrations rise dramatically under acute 

inflammatory states, with both CRP and SAA shown to reliably predict disease 

severity and CVD risk in RA (13, 14, 22, 71, 72). CRP can bind to surface receptors 

on monocytes, endothelial cells and platelets thereby altering their function to 

propagate hypercoagulable conditions (73, 74). The ability of CRP and SAA to 

induce TF expression has been demonstrated in various cell types (13, 14, 22, 71, 

72, 75-81) and by in vivo studies (82, 83). Additionally, acute phase reactants can 

also suppress fibrinolysis by promoting expression of plasminogen activator inbibitor-

1 (PAI-1) (82) and inhibiting TF pathway inhibitor (TFPI) expression (81, 83). CRP is 

also able to activate endothelial cells and cause the expression of cell adhesion 

molecules (ICAM-1 and VCAM-1) (84, 85). It should however be noted that cellular 

effects of CRP have been disputed as being primarily caused by bacterial 

contaminants in CRP preparations rather than the protein itself (86). SAA is the 

precursor to amyloid A (AA) protein, which form insoluble fibrillar depositions in 

major organs as a result of  long-term inflammation (87). RA has been prominently 

implicated as a pre-existing condition for the development of potentially fatal AA 

amyloidosis (88, 89). Known for being primarily hepatically synthesized, synovial 

tissue cells (90-93) and chondrocytes (94) can be articular sources of SAA 

production. Within the synovium SAA promotes pro-arthritic processes through the 

expression of cell adhesion molecules (95, 96), cytokines (96), and matrix degrading 
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enzymes (92, 95) by local tissue. SAA showed slightly weaker association with 

sICAM-1 compared with CRP in our studies (Figure 4).    

Levels of soluble cell adhesion molecules (sICAM-1 and sVCAM-1) are the most 

accessible form in which to determine endothelial activity. They are also strong 

predictive biomarkers for CVD in RA (61, 62, 97). Increased levels of CAMs  indicate  

endothelial dysfunction that facilitates pro-inflammatory and prothrombotic conditions 

(7). ICAM-1 is a prominent receptor for fibrinogen (98), with  interaction fortifying 

endothelial adhesion and migration of leukocytes (99-101), endothelial-platelet 

adhesion (102-104), and causes vasoconstriction (105, 106). ICAM-1 signaling 

pathways can also promote endothelial tissue factor expression (107). The role of 

VCAM-1 in directly promoting coagulation is not as well understood, but does 

contribute to atherosclerotic plaque formation as a result of adhering to PBMCs (108, 

109) sICAM-1 and sVCAM-1 concentrations were elevated in RA (Table 2) but were 

not as strongly associated with coagulation function as CRP and SAA (Figure 4).  

This belies the fact that CAMs present on cell surfaces play more facilitative roles in 

thrombotic diseases rather than instigating them. 

After confirming the presence of a systemic inflammatory state in RA patients, we 

investigated the possible repercussions thereof on the coagulation profile of study 

participants.  Thromboelastography® is a hemostatic function test that measures the 

rate, strength, and stability of clot formation through the viscoelastic changes 

induced by fibrin polymerization. Despite its widespread clinical use, especially as 

point-of-care instruments in surgical settings, TEG® is not often utilized in 

Rheumatology practice. The advantage that TEG® provides over conventional 

coagulation tests [such as prothrombin time (PT), activated partial thromboplastin 

time (aPTT) and D-dimer] is that it measures global hemostatic function and 

outcome rather than single time points or pathways in the coagulation cascade 

(110). Türk et al. (2018) is the only recent study that has assessed thrombotic 

tendency in RA patient with thromboelastographic assessment (60) Using a modified 

version of TEG®, known as rotational thromboelastometry (ROTEM), they found that 

RA disease markers (CRP, DAS-28) correlated strongly with ROTEM parameters.  

Our findings show that coagulation initiation was amplified in RA patients with 

shortened velocity parameters of clot formation (R, K, α, TMRTG) (Table 3) and 

these indices were moderately associated with levels of SAA and CRP (Figure 3). 
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Parameters relating to clot strength (MA, TTG) were attenuated in the RA sample 

group, but did not statistically differ from healthy controls (Table 3). Thus, although 

the blood clots form rapidly it leads to a weak clot. The mechanics of clot formation 

as measured by TEG® have been related to the risk of adverse ischaemic events 

(111). Excessive hepatic production of fibrinogen is highly prevalent in RA (10). 

Increased plasma fibrinogen concentration is a strong contributing factor to 

hypercoagulation (112). Fibrin(ogen) is susceptible to structural and functional 

modifications by certain inflammatory molecules, including CRP (25), SAA (26), and 

certain bacterial virulence factors (113-115). Fibrin(ogen) is also prone to post-

translational modification that relates to the generation of auto-immunogenicity in RA 

– the relevance of this process was investigated and is discussed below.     

Evaluating fibrin gel matrices visually can reveal much about thrombotic potential 

under inflammatory conditions. Denser fibrin fiber networks are accompanied with 

increased resistance to fibrinolysis  and is associated with the risk for thrombotic 

events (reviewed by Undas and Ariëns, 2011) (116). These structural properties can 

be viewed and functionally assessed with a high degree of resolution using SEM (57) 

Our analysis revealed denser fibrin networks in RA prepared ex vivo PPP clots 

compared to controls  (Figures 2 and 5). This is consistent with a prothrombotic 

phenotype observed in previous studies that have inspected the fibrin network in RA 

(29, 30). Furthermore, we determined a relative measure of fibrin fiber diameter 

using an image analysis software-based technique (Figure 2). The average diameter 

of fibrin fibers was larger in RA clots compared to controls (Figure 7). This can be 

clearly seen in the presented micrographs, were there is an apparent amalgamation 

of single fibrin fibers in RA preparations (Figures 2 and 5). The appearance of very 

thin fibrin strands (approximately 100nm in diameter) was not readily detectable in 

the RA fibrin networks. Some studies have indicated that thin fibrin fibers have 

higher tensile strength than thicker fibers, concluding that dense networks consisting 

of predominantly thin fibers are more resistant to degradation (117, 118). Fibrin 

networks of this nature in RA were observed by Vrancic et al. (2019) (119).  

However, study by Buclay et al. (2015) concluded that thicker fibers are more 

resistant to plasmin degradation than thinner fibers, owing to their ability to elongate 

during lysis (120). It is apparent that our investigation into the structural properties of 

fibrin networks in RA and its relation to hemostatic function has a rather deceptive 
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appearance. Our group has previously shown that fibrin networks in multiple 

inflammatory conditions (113, 121-123) and in plasma exposed to inflammatory 

stimuli (26, 114, 124) stain positive for amyloid-specific dyes. This constitutes the 

appearance of misfolded, protein aggregates with enriched β-sheet content that 

confers a higher degree of insolubility (125). It may therefore be possible that the 

fibrin network in RA may undergo a similar transition. This, coupled with impairment 

of fibrinolytic pathways, presents a possible explanation for high thrombotic risk seen 

in RA patients. 

Distinct protein modifications related to the generation of autoimmunity in RA could 

present an additional complication when attempting to expound underlying 

mechanisms responsible for excessive thrombotic risk. Citrullination is a post-

translational modification in which positively charged arginine are deiminated by 

peptidylarginine deiminase (PAD) enzymes to form neutrally charged citrulline (126). 

PADs are usually localized to intracellular environments and requires calcium for 

catalysis (127). PADs become active under inflammatory and apoptotic conditions 

where enzymes are liberated to extracellular spaces and exposed to sufficient 

calcium concentrations for catalytic function (126). Two isoforms of PAD (PAD2 and 

PAD4) are primarily responsible for generating citrullinated antigens that incite the 

generation of anti-citrullinated protein antibodies (ACPAs), a hallmark serological 

feature of RA (128). Fibrinogen and fibrin are prominent substrates for PAD2 and 

PAD4 and autoantibodies targeting citrullinated fibrin(ogen) have been identified (40, 

43, 68, 129-131). The pathogenicity of citrullinated fibrin(ogen) immune complexes 

have been demonstrated both in vitro(33) and in vivo(132, 133). Citrullinated fibrin 

deposits are also common manifestations within synovial cavities, where it 

contributes to self-perpetuating inflammatory processes (48, 134). Our findings 

provide novel evidence for the citrullination of fibrin within vasculature which is more 

prominent in RA plasma compared to control plasma (Figures 6 and 7). Previously 

the presence of citrullinated fibrinogen could only be detected in RA synovial fluid 

(41). Later research by Zhao et al. (2008) confirmed the presence of citrullinated 

fibrinogen containing immune complexes in RA plasma (131). The insolubility of 

fibrin may increase the likelihood of it being citrullinated in circulation.  As we could 

not stain specifically for citrullinated residues in fibrin only, detected fluorescence 

could also have originated from citrullinated histone derived from neutrophil 
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extracellular traps (135). Nevertheless, binding of ACPAs to fibrin could render it less 

degradable, by decreasing available binding surface to plasmin (136). There remains 

conjecture as to the effect of citrullination on hemostatic outcome. Citrullination of 

proteins results in structural unfolding (42) and loss of function (137), which 

increases its antigenic shelf-life. It has been demonstrated that citrullinated 

fibrinogen is resistant to thrombin digestion, as preferential epitopes for PADs  

overlap with thrombin binding sites (45, 46, 138). Despite this, fibrinogenesis in RA is 

by no means impaired, as evidenced by this study and others. It is plausible that high 

levels of fibrinogen (10) and thrombin activity (17, 139) in RA has much stronger 

influence on the fate of fibrinogen than PAD enzymes. There is also evidence that 

upstream coagulation factors and fibrinolytic components are susceptible to 

citrullination (140, 141). It is therefore difficult to predict a hemostatic endpoint based 

on overall citrullination and the effect of citrullination on thrombosis cannot be 

postulated on singular reactions. The implications that citrullination could have on 

fibrin, being the end-product of coagulation and a major determinant of thrombotic 

risk, remains intriguing and should be further investigated.    

Future investigations would be to determine the effect of citrullination on the 

thrombotic potential of formed thrombi. Our research has previously implicated the 

role of amyloid resembling structures in fibrin clots that confer a prothrombotic 

phenotype. There is evidence to suggest that the processes of citrullination and 

amyloidogenesis may overlap. Citrullination has been shown to affect the 

aggregation and oligomerization of β-amyloid proteins (142) and that citrullination of 

human myelin oligodendrocyte glycoprotein (MOG) can lead to amyloid-like behavior 

shift that has pathogenic implications for multiple sclerosis (143). 

This study did present some limitations and challenges. The relatively small sample 

population complicates the determination of correlative associations between 

inflammatory and hemostatic indices. The determination of true overall fibrin 

diameter was also not possible with current techniques – statistical analysis revealed 

a measurement accuracy of 82%. The detection of citrullination in fibrin networks 

using fluorescent techniques were unspecific to fibrin(ogen) in this study. However, 

the current study included this analysis only as a preliminary probe into determining 

if citrullination of clots was a discerning factor between RA and non-RA individuals.  
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Concluding remarks 
Inflammatory and thrombotic processes are highly pertinent to the development of 

joint disease and cardiovascular complications. There is a need to study changes 

that occur within synovial environments in unison with simultaneously occurring 

changes within circulatory tracts. Further investigation into overlapping processes 

that are crucially involved in the concurrent development of both RA and CVD could 

reveal improved global disease markers and novel targets for therapeutic 

intervention. The formation and structure of fibrin clots in RA shows an atypical 

pattern compared to conventional observations of hypercoagulation under 

inflammatory conditions. We propose determining if citrullination causes a structural 

and functional shift in the nature of fibrin to represent an amyloid-like state. This 

protein modification could potentially contribute to the formation of aberrant fibrin 

clots in RA patients that confer a higher degree of thrombotic risk. 
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FIGURE AND LEGENDS 
Figure 8: Overview of the overlapping processes of inflammation and coagulation in both 
synovial and vascular compartments. 1. The chronic and systemic nature of the 
inflammatory response in RA characterizes the disease as an independent risk factor for 
CVD. 2. The movement of leukocytes, inflammatory cytokines, procoagulant factors and 
immune complexes are aided by vascular endothelial dysfunction and neovascularization of 
hyperproliferative joint tissues. 3. The role of fibrin(ogen) is integral to the formation of 
hyperplastic and destructive synovial tissue (pannus) and vascular thrombosis, while being a 
prominent self-protein target of aberrant citrullination and autoimmunogenicity in RA. 
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Figure 9: Fibrin fiber diameter measurement scheme. SEM micrographs of a prepared PPP 
clot from a representative healthy control (top) and RA (bottom). 

 

Figure 10: Box-and-whisker plots for statistically significant TEG® and V-plex parameters.  
Boxes represent the median and IQR. Whiskers indicate upper (75th percentile + 1.5*IQR) 
and lower (25th percentile -1.5*IQR) extremes. Outlier values are indicated by black dots 

Figure 11: Lattice of cross-plots and correlation values across statistically significant TEG® 
and V-Plex measurements. The sample values are indicated by crosses (RA: red, Control: 
black). Strong intra-analysis correlation exists between CRP with SAA and sICAM-1, 
between sICAM-1 and VCAM-1, and between all TEG parameters (R, K, Angle, TMRTG).  
CRP and SAA show moderate correlation with inflammatory and endothelial markers. 

Figure 12: Scanning electron micrographs of the fibrin network ultrastructure. 
Representative micrographs of the fibrin network in healthy controls (A) and RA patients (B-
D). The altered clot ultrastructure in RA, consisting of less permeable networks of thicker 
fibrin fibers, represents a prothrombotic phenotype. 

 

         Figure 13: Confocal microscopy of PPP clots stained with a Citrulline monoclonal antibody. 
Confocal micrographs of representative control and RA samples.  Each row represents 
identical areas captured of fibrin clot preparations using transmitted light to illustrate fibrin 
network topography (left-hand column) and a green channel (middle column) to identify 
fluorescent particles corresponding to citrulline residues. Fluorescent images are also 
provided in binary (right-hand column) to better illustrate differences seen between RA and 
control samples with respect to citrulline-coupled fluorescence. Particle analysis confirmed 
the observable presence of enhanced fluorescent signal in RA samples (n=10) versus 
healthy controls (n=10). 

Figure 14: Box-and-whisker plots for micrographs analysis.  Outlier values are indicated by 
black dots. In comparison to healthy individuals, RA subjects exhibited significantly 
increased fibrin fiber diameters (median: 214nm vs 120nm, OR=22.7) and detected 
fluorescent areas (median: 3279 vs 1095, OR=2.23) of fibrin citrullination. 

Table 5: Demographic and clinical characteristics of study participants. 

Table 6: Vascular injury panel (V-Plex) analysis. 

Table 7: Thromboelastography® analysis. 

Table 8: Microscopy Image Analysis. 
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