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Abstract13

Multiple sclerosis is a complex autoimmune disease which genetic basis has been extensively14

investigated through genome wide association studies. So far, the conducted studies have15

detected a number of loci independently associated with the disease but few have investigated16

the interaction between distant loci, or epistasis. In the present work, we perform a gene level17

epistasis analysis of multiple sclerosis GWAS from the Wellcome Trust Case Control Consortium18

2. We systematically study the epistatic interactions between all pairs of genes within 19 multiple19
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sclerosis disease maps from the MetaCore pathway database. We report 4 gene pairs with20

epistasis involving missense variants, and 117 gene pairs with epistasis mediated by eQTLs. Our21

epistasis analysis is able to retrieve known interactions linked to multiple sclerosis: direct binding22

interaction between GLI-I and SUFU, involved in oligodendrocyte precursor cells differentiation,23

and regulation of IP10 transcription by NF-κB, thus validating the potential of epistasis analysis24

to reveal biological interaction with relevance in a disease specific context.25

Keywords— epistasis, multiple sclerosis, gene-gene interaction, causal inference26

1 Introduction27

Extensive efforts have been deployed to tackle multiple sclerosis, a chronic disease damaging the28

central nervous system (Goldenberg 2012). A number of marketed drugs (Dargahi et al. 2017)29

attenuate the symptoms of the disease. However, an efficient drug targeting its root causes30

is still elusive. This is partially owed to our limited understanding of the mechanisms governing31

multiple sclerosis. Several studies demonstrated that heritability is a major component in multiple32

sclerosis (Dyment 2006; Dean et al. 2007). The development of GWAS has allowed to explore33

the genetic causes of this heritability. In GWAS, large cohorts of cases and controls are jointly34

studied in order to discover new biomarkers and causal loci. In the context of multiple sclerosis,35

at least fourteen studies(Sawcer, Franklin, et al. 2014) have been put in place in order to develop36

new hypotheses. So far, hundreds of loci (Baranzini and Oksenberg 2017; Cotsapas and Mitrovic37

2018) have already been statistically associated with multiple sclerosis. The biology behind some38

of them (Gregory et al. 2007; Jager et al. 2009; Couturier et al. 2011) has been clarified while for39

the majority of retained loci, it remains unexplained (Sawcer, Franklin, et al. 2014).40

GWAS in general, and in particular, the ones related to multiple sclerosis have enjoyed limited41

success (Dyment et al. 2004; Cotsapas and Mitrovic 2018) partially because of the used statistical42

methodology. Indeed, GWAS is classically conducted as a series of univariate statistical tests43

of association (Bush and Moore 2012) between a single-nucleotide polymorphism (SNP) and the44

phenotype. Though the statistical validity of this approach is indisputable, it suffers from a45

lack of statistical power because of high-dimensionality and multiple hypothesis testing (Shaffer46

1995). It also suffers from a lack of interpretability due to the absence of a direct biological47
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explanation for the significant SNPs. In addition, single-locus analyses, by design, do not take into48

account interactions between distinct genes, or epistasis (Phillips 2008). At least two gene-gene49

interactions have been discovered in multiple sclerosis: high levels of c-Jun may cause enhanced50

myelinating potential in Fbxw7 (Harty et al. 2019) and DDX39B is both a potent activator of IL7R51

exon6 splicing and a repressor of sIL7R (Galarza-Muñoz et al. 2017). An additional tripartite52

genic interaction has also been reported (Lincoln et al. 2009): epistasis between HLA-DRB1,53

HLA-DQA1, and HLA-DQB1 loci increases multiple sclerosis susceptibility. This further cements54

the need to study epistasis to understand the genetic basis of multiple sclerosis.55

We perform here a selective gene-level analysis of epistasis in multiple sclerosis. The study56

of epistasis at the gene-level is important because the statistical association at the SNP level57

might not be strong enough to establish a link between the corresponding genes and the studied58

disease. We systematically study interactions between pairs of genes contained in 19 multiple59

sclerosis disease maps from the MetaCore (Ekins et al. 2006) dataset. For this purpose, we apply60

epiGWAS (Slim et al. 2018) on the multiple sclerosis GWAS from the Wellcome Trust Case61

Control Consortium 2 (Sawcer, Hellenthal, et al. 2011). EpiGWAS was originally developed for62

SNP-level detection, but we extended here to the gene-level. Our analysis yielded 4 gene pairs63

with epistasis involving missense variants, and 117 gene pairs with epistasis mediated by eQTLs.64

Among them, two pairs are already known: direct binding interaction between GLI-I and SUFU,65

involved in oligodendrocyte precursor cells differentiation, and regulation of IP10 transcription66

by NF-κB. This confirms the capacity of the statistical study of epistasis to detect biological67

interactions that further our understanding of disease mechanisms.68

2 Methods69

2.1 epiGWAS: from the SNP level to the gene level70

2.1.1 Detecting SNP-SNP synergies with epiGWAS71

In (Slim et al. 2018), we have developed epiGWAS, a new framework for targeted epistasis to detect72

interactions between a given SNP A, which we refer to as the target, and a set of SNPs X = {X1, · · · , Xp}73

, which can cover either the whole genome or a predetermined region e.g. a gene or a coding region.74
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The output of epiGWAS is a set of interaction scores {a1, · · · , ap} between each SNP in the set X =75

{X1, · · · , Xp} and the target A. We propose a family of methods to compute the interaction scores. All76

interaction scores account for the relationship between the target and the rest of the genome through a77

propensity score π(A|X). This propensity score models the linkage disequilibrium structure between A78

and X. Taking it into account allows us to account for main effects and recover epistatic effects only.79

If we choose a symmetric binary encoding for the target A ∈ {−1,+1}, we can always write the80

following decomposition for the genotype-phenotype relationship:81

Y = µ(X) + δ(X) ·A+ ε, (1)82

where ε is a zero mean random variable and83


µ(X) =

1

2
[E(Y |A = +1, X) + E(Y |A = −1, X)]

δ(X) =
1

2
[E(Y |A = +1, X)− E(Y |A = −1, X)] .

(2)84

The first term in Eq. 2, µ(X), models the average effect of the target A on the expected phenotype,85

conditionally on X. By contrast, the second term δ(X) models the difference of the expected outcome for86

the two modes of A ∈ {−1,+1}. The term δ(X) explicits any conditional effect of A that can not be solely87

explained through the SNPs in X. This why we interpret the product term δ(X) ·A as an interaction term88

between A and X.89

For a given sample, only one of the two possibilities {−1,+1} is observed. This makes directly estimat-90

ing the term δ(X) impossible. The purpose of epiGWAS is to introduce propensity scores to recover the91

term δ(X). More precisely, we are interested in recovering the support of δ(X), namely the SNPs within92

X interacting with A.93

We notice that by using a second binarized version of the target, Ã = (A + 1)/2 ∈ {0, 1}, we can94

directly derive the desired term δ(X):95

δ(X) =
1

2
E

[
Y

(
Ã

π(Ã = 1|X)
− 1− Ã

π(Ã = 0|X)

)∣∣∣∣∣X
]
.

So, a first straightforward approach is to implement a penalized regression approach for the estimate

of the support of δ(X). We refer to this approach as modified outcome. We use this denomination because

the natural outcome Y is substituted by the modified outcome:

Ỹ = Y
(
Ã/(π(Ã = 1|X))− (1− Ã)/(π(Ã = 0|X))

)
.
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To derive Ỹ , an estimate of the propensity score π(A|X) is needed. The classical and straightforward96

approach for the estimation of π(A|X) is logistic regression. For genomic data, given the high dimen-97

sionality of X, we observed that extreme overfitting ensued. As a solution, we resorted instead to a98

semi-parameterized estimation method. In fastPHASE (Scheet and Stephens 2006), a hidden Markov99

model (HMM) is developed in order to perform imputation. The observed states correspond to SNPs and100

the hidden states to structural dependence states. After fitting the HMM model in a chromosome-wise101

fashion, we applied the forward algorithm (Rabiner 1989) to obtain the scores π(A|X).102

If the estimation error of π(A|X) is large or severe overfitting occurs, the use of the inverse of the103

estimated scores can result in numerical instability and bias the results. Several approaches have already104

been proposed in the literature (Lunceford and Davidian 2004) to tackle this issue.105

Among them, we only use the robust modified outcome method. In a previous work (Slim et al. 2018),106

we have demonstrated its superior performance in comparison with other epistasis detection baselines and107

the other methods of the modified outcome family.108

2.1.2 Gene-level epiGWAS109

EpiGWAS can be ran in an exhaustive fashion for each target Xi against the rest of the SNPs {X1, · · · , Xi−1, Xi+1, · · · , Xp}.110

This procedure generates a list of interaction score vectors. The interpretability and usability of such an111

output is limited because of the large number of interactions and the different covariates for each target112

which makes the comparison of the associated scores difficult. For instance, different regularization grids113

yield different stability curves, and thus, different areas under the curve. Furthermore, despite their ro-114

bustness, the biological significance of the scores is limited. A first step to improve interpretability is to use115

rankings. From a practical point of view, rankings are a sensible choice because only the highest-ranking116

SNPs are used. Rankings also improve comparability between different targets because of the similarity of117

scale and insensitivity to the underlying parameterization. For a target i, we denote rij ∈ {1, · · · , p − 1}118

the rank in a decreasing order of the score of SNP j.119

Another immediate benefit of the use of rankings is the possibility of combining of different rankings.120

For example, for two SNPs i and j, we can define the following epistasis interaction score:121

inter(i, j) = 1

rij + rji
. (3)122

The interaction score in Eq. 3 has the advantages of symmetry and boundedness. The scores are123

comprised between ]0, 1/2]. Additionally, the combination of two pairwise scores rij and rji can help124

control the estimation errors for one of the targets. For example, if two SNPs i and j are in interaction125
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and the result rij is not sufficiently high to reflect that, a good ranking of rji can help compensate that.126

We can further aggregate the rankings to detect interactions between genes. More generally, the127

rankings can be combined to detect interactions between any disjoint sets of SNPs e.g. biological pathways,128

regulatory regions, etc. Let p′ be the total number of genes and {G1, · · · , Gp′} the corresponding sets of129

SNPs such that
p′⋃
i=1

Gi = [1. . p]. The easiest way to devise an interaction score between two genes i′ and j′130

is to compute the average of all pairwise scores:131

inter(Gi′ , Gj′) =
1

|Gi′ ||Gj′ |
∑
i∈Gi′

∑
j∈Gj′

1

rij + rji
. (4)132

Thanks to the symmetry of SNP-SNP scores in Eq. 3, the gene-gene scores in Eq. 4 are symmetric,133

too. Moreover, the averaging reduces the impact of the size of the genes. In addition to the mean, we can134

also use the median or the minimum/maximum of all pairwise scores. However, only a single value will135

be taken into account with the latter strategies. Depending on the implemented regression method, with136

respect to a target i, the scores, and hence the rankings, of two nearby variants j and j′ can be similar137

because of linkage disequilibrium. This can make the gene-gene scores more robust through the averaging138

of high nearby rankings. On the other hand, the averaging strategy can be biased by the marginal effects139

of some loci inflating by consequence the interaction scores.140

2.2 Data and experiments141

In this section, we describe the data we integrate to perform our systematic gene-gene interaction analysis142

for MS. For genotypic data, we select the MS dataset from the second release of the Wellcome Trust Case143

Control Consortium (WTCCC2) et al. (Sawcer, Hellenthal, et al. 2011). In order to improve statistical144

power and the downstream biological interpretation, we subset the marker SNPs related to the genes145

referenced in the MetaCore (Ekins et al. 2006) disease maps for multiple sclerosis. Each gene pair within146

a disease map is tested for interaction. Within the same disease map, the included genes affect the same147

MS-related mechanism. Therefore we can use this prior knowledge to evaluate if our method can retrieve148

known interactions and identify new ones. The SNPs can be mapped to the genes in two different ways:149

• Physical mapping: we select all the marker SNPs which positions are within the boundaries of a150

gene. In this case, we take into account SNPs with an effect on the structure and function of the151

corresponding protein.152

• eQTL-SNP mapping: with the selection of eQTL SNPs, we study epistasis through the variation in153

expression of the associated genes.154
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2.3 Genotypic data155

The WTCCC2 study includes 9 772 MS cases and 17 376 controls hailing from 15 different countries. The156

presence of population structure, confirmed by a genomic inflation factor (GIF) of 3.72, is poised to lead157

to inference issues. To avoid this problem, we only use Caucasian British samples in both cases and158

controls. The resulting dataset consists of 2048 cases and 5733 controls with a GIF of 1.06 which proves159

the homogeneity of the dataset. The selected controls come from two distinct cohorts from the UK Blood160

Services (NBS) and the 1958 British Birth Cohort (58C). The careful reader may notice the important161

imbalance between the total number of cases and controls which may distort the results. To equalize the162

field, we randomly subsample controls to obtain a number of controls equal to the number of cases. We163

also note that we discarded the samples singled out for quality control by the WTCCC.164

2.3.1 Variant selection165

Table 1. Titles and internal IDs of MetaCore disease maps related to MS.

internal ID Title

3302 Notch signaling in oligodendrocyte precursor cell differentiation in multiple sclerosis
3305 SHH signaling in oligodendrocyte precursor cells differentiation in multiple sclerosis
3306 Inhibition of oligodendrocyte precursor cells differentiation by Wnt signaling in multiple sclerosis
4455 Inhibition of remyelination in multiple sclerosis: regulation of cytoskeleton proteins
4593 Axonal degeneration in multiple sclerosis
4693 Role of Thyroid hormone in regulation of oligodendrocyte differentiation in multiple sclerosis
4703 Demyelination in multiple sclerosis
4791 Role of CNTF and LIF in regulation of oligodendrocyte development in multiple sclerosis
4794 Retinoic acid regulation of oligodendrocyte differentiation in multiple sclerosis
4843 Growth factors in regulation of oligodendrocyte precursor cells proliferation in multiple sclerosis
4846 Growth factors in regulation of oligodendrocyte precursor cells survival in multiple sclerosis
4901 Inhibition of remyelination in multiple sclerosis: role of cell-cell and ECM-cell interactions
5199 Cooperative action of IFN-γ and TNF-α on astrocytes in multiple sclerosis
5288 Impaired inhibition of Th17 cell differentiation by IFN-β in multiple sclerosis
5378 Role of IFN-β in the improvement of blood-brain barrier integrity in multiple sclerosis
5398 Role of IFN-β in activation of T cell apoptosis in multiple sclerosis
5518 Role of IFN-β in inhibition of Th1 cell differentiation in multiple sclerosis
5601 IL-2 as a growth factor for T cells in multiple sclerosis
5611 Role of IL-2 in the enhancement of NK cell cytotoxicity in multiple sclerosis

We give in Table 1 the full list of MS disease maps. For ease of reproducibility, we also give the internal166

ID of the disease maps, as indicated in MetaCore. The number of genes within each map greatly varies.167

It ranges from 13 genes for disease map (DM3305) to 100 genes (DM4593). Even for the larger maps, the168

total number of genes is still low enough to perform exhaustive pairwise analysis for all SNPs mapped to169
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the selected genes. Similarly for sample-wise QC, we first discarded all low quality SNPs designated by170

the WTCCC2. We then selected SNPs according to the following mappings:171

• Physical mapping: corresponds to retrieving all marker SNPs located on a given gene. We use the172

accompanying R package metabaser (Ishkin 2019) to first define the boundaries of a given gene, and173

then subset all SNPs according to their positions, as referenced in dbSNP version 144 (Pagès 2017).174

• eQTL mapping: we use the cis-eQTL dataset from the eQTLGen consortium (Võsa et al. 2018),175

which provides for each gene a list of significant eQTL-SNPs. The dataset combines 31 684 whole176

blood samples from 37 cohorts.177

For our present study, we chose cis-eQTLs instead of trans-eQTLs because of their higher degree of178

association to gene expression. The higher association can be attributed to the proximity of the SNPs to179

the genes: cis-eQTL are located within 1 Mb window from a gene and they often closely map to either180

the transcription start site or the transcription end site of a gene. The application of a false discovery181

rate (FDR) of 0.05 resulted in the identification of eQTL-SNPs for 16 989 genes, or approximately 88.3%182

of all autosomal genes expressed in blood and tested in the cis-eQTL analysis. We restricted ourselves to183

the genes present in the metaCore disease maps. We observed that the obtained eQTL-mapping datasets184

were larger than the physical mapping datasets in terms of number of SNPs: the median number of SNPs185

per disease map is 392 for the physical mapping analysis and 999 for the eQTL-mapping analysis. In186

Appendix A, we give the exact number of SNPs per disease map for each type of mapping. We also187

included the average number of SNPs per gene for each disease map and for both mappings.188

Even though the two analyses are unrelated and use different sets of SNPs, some concordance for the189

top-scoring genes is to be expected. In fact, for the eQTLGen consortium, (Võsa et al. 2018) show that out190

of 15 317 trait-associated SNPs, 15.2% were in high LD with the lead eQTL SNP showing the strongest191

association for a cis-eQTL gene. Although the mentioned association is far from perfect, it demonstrates192

the often-overlooked link between the two analyses.193

3 Results194

We exhaustively apply our gene-gene interaction scores in Eq. 4 to obtain p′(p′ − 1)/2 interaction scores195

per disease map, where p′ is the number of genes. Given the size of the maps (see Appendix A), the196

interpretation of the full results is rather difficult. We instead focused on the 2% top-scoring pairs for the197

two analyses. The 2% threshold was manually set with respect to the obtained result. We remarked that198

the top-scoring edges often constituted connected sub-components. We also remarked that the obtained199
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Figure 1. The 2% top-scoring pairs in DM 3306 for eQTL and physical mappings.

sub-components for the eQTL and physical mappings are often interlinked. These two remarks are more200

commented in the following paragraphs. We give an illustration of the results in Figure 1 in which we plot201

the obtained subnetworks in addition to the original edges for DM 3306. We relegate the results of the202

other disease maps to Appendix B.203

We notice a general consistency of the results between the different disease maps, which can be for-204

mulated through the characteristics below. We also conduct an enrichment analysis, from which we derive205

empirical p-values to measure the statistical significance of the observed characteristics (see Appendix C206

for the full results).207

• Connectedness: the obtention of connected components for both mappings is the most important208

aspect of the results. With the exception of DM 3305, 3306 and 4794 consisting of 1 or 2 edges, all209

disease maps have a p-value lower than 0.05. Of particular interest are large components because210

of their significance. In many cases, we obtained an empirical p-value of 0 despite using 104 simula-211

tions. The discovery of these novel subnetworks can help the understanding of multiple sclerosis by212

unraveling new disease mechanisms.213
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• Complementarity: with the exception of disease map 4593, the subnetworks of the two mappings214

are connected i.e. they share at least one common node. In fact, they are often connected through215

multiple nodes without a significant overlap between the edges of the two networks. For instance,216

they share 5 vertices in DM 4901. In Appendix C, we quantify the significance of having 1, 2 or 3217

genes in common. We particularly note that 3 edges are in common in DM 3302 for a p-value of 0.038.218

Therefore, the two types of mappings recover distinct, though connected, interactions, which suggests219

the complementarity of the two mappings. We can then consider the union of the two subnetworks220

for further study.221

• Centrality: we observed a high degree of connectivity for certain nodes. For example, we mention222

FAK in DM 4901 (pFAK = 0), SHP-2 in DM 4843 (pSHP-2 = 0.014) and TRADD in DM 4843223

(pTRADD = 0.052). We attribute this centrality to the existence of important marginal effects that224

were not completely filtered out. Interestingly, the role of these genes in MS has already been225

established (Sun et al. 2010; Ahrendsen et al. 2017; Reuss et al. 2014).226

• Commonality: despite using the top 2% of all p′(p′ − 1)/2 possible edges for each disease map, some227

of the retained edges were already present in the original disease maps. In at least 9 out of 19 disease228

maps, a single edge already exists in the original disease map, and in at least four of them two229

edges. In DM 3306, we even recover three edges (p = 0.099). Nonetheless, drawing conclusions about230

the underlying biology is challenging given the potential mismatch between biological epistasis and231

statistical epistasis (Moore and SM Williams 2005).232

3.1 Enrichment analysis for obtained subnetworks233

Beyond the validation with existing edges, the main goal of the systematic analysis we conduct here is to234

discover novel gene-gene interactions in multiple sclerosis. Their biological validation requires laboratory235

experiments to confirm the observed statistical synergy. As we do not have access to such facilities, we use236

the enrichment of the recovered networks in terms of existing therapeutic targets as a validation metric.237

The chosen metric can be criticized in two ways: it is biased in the sense that therapeutic targets only238

reflect our current understanding of the disease and the existence of effective molecules for the targets. In239

addition, the targets were often selected on an univariate basis, while the subject of the current study are240

epistatic interactions. However, an enrichment analysis in terms of therapeutic targets has the advantages241

of being a trustworthy background thanks to the proven effect of the included genes and its relevance in242

terms of development of future therapies. For instance, combination therapies if an existing therapeutic243

target is shown to be interacting with another gene within the recovered subnetworks. Moreover, in light244
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of the new FDA guidance for the co-development of two or more drugs I, our study pipeline can be of245

special interest because of its focus on synergistic effects instead of separate additive effects.246

In our case, we use OpenTargets (Carvalho-Silva et al. 2018a) as a dataset for therapeutic targets.247

The dataset is a collaborative effort to create an up-to-date and comprehensive repository to link genomic248

information of drug targets to a disease of interest. The enrichment analysis studies the overpresence of249

OpenTargets targets in the obtained networks in comparison with the original disease maps. We use for250

this matter a classical hypergeometric test (Rivals et al. 2006) to determine the statistical significance of251

their overpresence. We give the resulting p-values in Appendix D. For twelve disease maps, we found at252

least one common gene between our subnetworks and OpenTargets. Given a significance threshold of 0.05,253

we found two significant disease maps DM 4593 and DM 5378 with respective p-values of 0.008 and 0.02.254

The enriched subnetworks require further investigation, especially to study the links within the known255

targets and between the known targets and the rest of the subnetwork.256

3.2 Directionality of the synergy257

As shown before, our gene-level pipeline with epiGWAS robustly detects the presence of epistatic synergies258

between two genes. However, the obtained interaction scores do not allow to determine the directionality259

of the synergy. The synergy can be either positive or negative by respectively increasing or decreasing the260

disease risk probability. We can nonetheless get a partial answer by studying the nature of interaction261

between the top-scoring SNPs for each gene pair. We only selected the top-scoring pair because of its262

disproportionate impact on the corresponding gene-gene score. For example, we can consider the extreme263

case where for a pair of SNPs (i, j), we have rij = rji = 1. The next possible best scoring pair is264

ri′j′ = rj′i′ = 2 and it further decreases in a hyperbolic manner for the lower rank pairs. So, in the best265

cases, the top pair will be at least twice as important as the following one.266

The direction of the synergy between two uni-dimensional variables can be studied in various ways (Van-267

derWeele and Knol 2014). In particular, for a binary outcome Y and two variables X1 and X2, we268

can study the sign of the interaction coefficient α12 in the following logistic model: logitP (Y |X1, X2) =269

α0+α1X1+α2X2+α12X1X2. Logistic models are widely used for the study of epistasis. For the physical270

mapping strategy, we conduct a similar analysis. As for the eQTL mapping strategy, the methodology we271

use for physical mapping can be refined to amount to the desired gene-level interactions. The effect of a272

SNP i on the expression level ei of the corresponding gene Gi can be examined through a model of the273

Iavailable for download from https://www.fda.gov/media/80100/download
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form ei = γi + βiXi. The directionality of the synergy can be deduced from the sign of the following ratio:274

dir(G1, G2) = sign α12

β1 · β2
(5)275

To get a better grasp of the meaning of the score in Eq. 5, it suffices to replace the two linear expression276

models directly in the interaction logistic model. Precisely, we obtain:277

logitP (Y |X1, X2) =α0 + α1
e1 − γ1

β1
+ α2

e2 − γ2
β2

+
α12

β1 · β2
(e1 − γ1)(e2 − γ2)

(6)278

The synergy of the two gene expressions is given by the coefficient α12/(β1 · β2) which sign determines279

the directionality of the epistatic interactions between the two genes. To the best of our knowledge, this is280

the first study which studies epistasis from such a perspective by including eQTL scores in this way and by281

moving back and forth between SNP-level and gene-level epistasis. Furthermore, the synergy score in Eq. 5282

can also be interpreted as an extension of Mendelian randomization (Davies et al. 2018) to second-order283

interaction effects.284

The eQTLGen consortium (Võsa et al. 2018) does not directly supply the effect sizes β1 and β2 in the285

linear expression models. For each SNP, the effect size β is derived from the corresponding Z-score using286

the following relationship:287

β =
Z√

2 q(1− q) (m+ Z2)
, (7)288

where q is the MAF of the SNP of interest, as reported in the 1kG v1p3 ALL reference panel and m289

is the cohort size.290

For the significant interactions, we provide a csv file containing the list of coefficients α12 in addition291

to (m1, q1, Z1), (m2, q2, Z2) and the directionality of the synergy dir(G1, G2) ∈ {−1,+1} for the eQTL292

strategy. One possible approach to appraise the results is to consider a number of summary statistics to293

get an overview of the kind of synergies occurring within biological pathways. Interestingly, for all SNP294

pairs, the interaction coefficient α12 is positive in 47% of all cases and the directionality of the synergy295

dir(G1, G2) is equally split between positive and negative. For the eQTL strategy, we found that α12296

and dir(G1, G2) agree approximately half of the time (48%). This gives further credence to our gene-gene297

approach by showing that a different type of information can be obtained by considering more biologically-298

relevant gene-level interactions.299
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For each SNP, we also include its PolyPhen (Adzhubei et al. 2013) and SIFT (Ng 2003) scores reported300

in BioMart (Kinsella et al. 2011) to better understand its potential deleterious impact on MS. If available,301

both scores are comprised between 0 and 1, but with opposite interpretations. For SIFT, 0 denotes a302

deleterious amino-acid substitution, while for PolyPhen, 1 denotes an benign substitution. In total, we303

obtained 5 variants which were predicted as deleterious by at least one of the two methods.304

3.3 Biological interpretation305

In addition to the preceding statistical analysis, we also conduct a biological analysis of the results for both306

mappings. Our analysis is built upon existing information in MetaCore disease maps in conjunction with307

relevant literature.308

3.3.1 Physical mapping309

In total, we obtained 136 epistatic interactions in the 19 disease maps. As an exhaustive analysis of all310

interactions is out of reach, an a posteriori filtering is needed. In physical mapping, an epistatic interaction311

between two genes corresponds to a change of their protein structure. We therefore retain an interaction312

if at least one of the SNPs in the top-scoring pair can lead to a loss of function at the protein level. For313

that matter, the SNPs are selected according to the following criteria:314

• Frameshift variant or incomplete terminal codon variant or missense variant or start loss variant,315

• Stop-gained, stop-lost or stop-retained variant,316

• Terminal codon variant.317

The filtering process yielded 4 gene pairs where one of the the genes presents a missense variant318

(Appendix G). For each of these gene pairs, the impact on the MS phenotype is given as specified (activation319

or inhibition) or unspecified (unknown), as depicted in Fig 2. Among the obtained 4 pairs, GLI-1 and SUFU320

appear to be particularly interesting, since both genes are in direct binding interaction in DM 3305, which321

illustrates the SHH (Sonic Hedgehog) signaling in oligodendrocyte precursor cells differentiation in MS322

(Appendix E.1).323

3.3.2 eQTL mapping324

In eQTL mapping, an epistatic interaction consists of a gene pair, the simultaneous up/down-regulation325

of which induces a synergistic effect which lowers or increases the risk of MS. To better understand the326
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Disrupts in disease
Weakens in disease
Emerges in disease
Enhances in disease
Species specific
interactions

Positive / activation

Negative / inhibition

Unspecified

EffectsLinks on maps

Figure 2. The different types of links between proteins/proteins or proteins-phenotypes in MetaCore
maps

impact of simultaneous gene up-regulation on disease propensity, we differently rewrite Equation 6:327

logitP (Y |X1, X2) = α0 + β
1
e1 + β

2
e2 + βsynere1e2, (8)328

where βsyner = α12/(β1 · β2) and the constants α0, β1 and β2 are functions of (α0, α1, α2, α12), (γ1, γ2)329

and (β1, β2).330

The impact of gene up-regulation can be assessed through the signs of (β1, β2, βsyner). For instance, if331

β1, β2 and βsyner are positive, an increase in the expression of either genes leads to a higher disease risk.332

Hence, a joint inhibition of the two genes reduces the risk. In Table 2, we similarly study all possible sign333

combinations of (β1, β2, βsyner) to devise a number of recommendations for the application of epistasis to334

the development of combination therapy.335

Table 2. Analysis of the impact of genes up-regulation on the risk for humans to develop MS, for each
gene individually (signs of β1 and β2), and for the pair of genes synergistically (sign of βsyner) which is
epistasis.

β1 β2 βsyner Impact of β1 and β2 on MS Recommendation for combination therapy

> 0 > 0 > 0 detrimental inhibition of the two genes reduces the risk for MS
> 0 > 0 < 0 beneficial genes must not be inhibited
< 0 < 0 < 0 beneficial genes could be activated at the same time
< 0 < 0 > 0 detrimental genes must not be activated
> 0 < 0 NC NC NC

A total of 117 gene pairs in 19 disease maps were obtained with the eQTL mapping strategy. As in336

physical mapping, an additional filtering is needed. We selected the gene pairs in which the coefficients337

(β1, β2, βsyner) share the same sign (all positive or negative). If positive, the inhibition of both genes reduces338

the risk for MS. By contrast, if negative, the two genes should be jointly activated to reduce MS risk. This339

filtering led to 25 gene pairs of interest across 13 maps. Since a thorough study of all 25 pairs is impossible,340

we implemented an additional filtering criterion: existence of a specified effect on MS-related phenotypes341
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e.g. demyelination, remyelination failure, oligodendrocyte death, damage of neural axons, etc. The effect342

nature is given by the arrow types (see Figure 2). This final filter led to 9 gene pairs to consider (see343

Appendix F).344

Confident in the single gene pair where both genes have a specified impact on the phenotype, NF-κB345

and IP10 (see Appendix H), we have investigated in further details their role in MS in the aim of assessing346

their synergistic effect on MS physio-pathology. Our analysis is focused on DM 5199 (see Appendix E.3)347

where both genes belong to essential pathways.348

Role of IP10 in MS: recruitment of T cell in the CNS IP10 (or IP-10 / CXCL10 (C-X-C349

motif chemokine ligand 10) / Interferon-Inducible Cytokine IP-10) is an antimicrobial gene which encodes350

a chemokine of the CXC subfamily, and is a ligand for the receptor CXCR3. This pro-inflammatory351

cytokine is involved in a wide variety of processes such as chemotaxis, differentiation, and activation of352

peripheral immune cells, like monocytes, natural killer, T-cell migration, and modulation of adhesion353

molecule expression (Romagnani et al. 2001; Antonia et al. 2019; Tokunaga et al. 2018).354

IP-10 is strongly induced by IFN-γ as well as by IFN-α/β (Qian et al. 2006). In vitro, CXCL10 can355

also be induced by NF-κB, and has been shown to have an early role in hypoxia-induced inflammation356

(Schmid et al. 2006; Xia et al. 2016). Indeed, in the disease map, the activation of IP10 by NF-κB is357

clearly indicated by an activation arrow (green arrow). Thus, the two genes are in direct interaction, where358

NF-κB regulates the transcription of IP10.359

DM 5199, which contains IP10 and NF-κB, is focused on the impact of beta-2 adrenergic receptors,360

which are lacking in astrocytes in MS. This lack enables IFN-γ and TNF-α to trigger the expression of361

several key pro-inflammatory genes (Keyser, Zeinstra, et al. 2004; Keyser, Laureys, et al. 2010). Whereas362

human astrocytes are only partially competent antigen presenting cells, the upregulation of MHC-II by363

IFN-γ alone or in combination with TNF-α enables astrocytes to present myelin as an auto-antigen, and364

triggers the production of the co-stimulatory molecules C80 and CD86 at their surface. Experimentally,365

the expression of MHC-class I and MHC-class II, together with the co-stimulatory molecules CD80 and366

CD86, is detectable in astrocytes in MS plaques (TRAUGOTT and LEBON 1988).367

After the transformation of astrocytes in immuno-competent cells, IP10 plays a major role by activating368

the recruitment of Th1 cells into the CNS (Fig 3a). Indeed, in MS, activated CXCR3+ T-cells (IP10 is369

the ligand for the receptor CXCR3) enter the CNS, and can be located in the cerebrospinal fluid or in370

the brain parenchyma (Lassmann and Ransohoff 2004). This transport is made possible due to the blood371

Brain Barrier disruption in MS (Minagar and Alexander 2003).372

Arriving in the CNS, T lymphocytes recognize astrocytes via their MHC-II, and anchor them via373
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Absence of β2-adrenergic receptor
expression of CD80/CD86 and MHCI/II on astrocytes

Neuron

Oligodendrocyte
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IFNγ
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Activation of NF-κB
pathway
Immune cells recruitment
via IP10

NF-κB

IP10

IP10

CD80/CD86CD28

CD4/CD8
Peptide

MHCI/II

(a) Transformation of astrocytes in immuno-competent celles and T-cells recruitment
following the NF-κB/IP10 axis activation in MS.

Neuron

Oligodendrocyte

Astrocyte

Macrophage

Recognition and adhesion of
T-cells to astrocytes

T-cell

Inflammatory and immune response
Cytokines/chemokines release
Macrophages recruitment
Oxidative stress
Demyelination
Neuronal death

CD80/CD86

CD28

CD4/CD8

MHCI/II

Antibodies

(b) After recruitment of T-cells, adhesion of T-cell/astrocyte leads to inflammatory
and immune response inducing neuron damage.

Figure 3. Schematic representation of the role played by the gene pairs NF-κB/IP10 in the development
of demyelination in MS.

their CD28 which binds to CD80 and CD86 on astrocytes. This intercellular contact between T cells and374

astrocytes presenting myelin antigens induces the reactivation of T cells in the CNS (Cornet et al. 2000). T375

cells then secrete pro‐inflammatory cytokines; demyelination occurs and macrophages are activated. This376

further damages myelin and releases cytokines - but also phagocytosing myelin debris - which leads to the377

damage of neural axons (A Williams et al. 2007) (see Fig 3b).378
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Role of NF-κB in MS: transcription regulation Astrocyte reactivity is regulated by key canon-379

ical signaling cascades, among which the NF-κB pathway is qualified as pivotal for establishing neuroin-380

flammation (Ponath et al. 2018). TNF-α binds to TNF-R1, which is constitutively expressed in astrocytes,381

and activates NF-κB signaling pathway (Liang et al. 2004). In cytoplasm, NF-κB is inhibited by I-kB382

proteins. Phosphorylation of I-κB by IKK (cat) kinase complex marks I-kB for destruction via the ubiqui-383

tination pathway, thereby allowing activation of NF-κB complex (Liang et al. 2004). The activated NF-κB384

translocates into the nucleus and upregulates transcription of target genes including IP10 (Majumder et al.385

1998).386

Status of IP10 and NF-κB as potential targets in MS treatment assays Human IP10387

is a secreted protein, and is mainly located in the extracellular space, but also in the plasma membrane,388

and to a lesser extent in the cytosol and nucleus (Source: UniProtKB/Swiss-Prot). Today, the ChEMBL389

database indicates that two antibodies of IP10 are studied in clinical trials: NI-0801 (Phase I completed for390

allergic contact dermatitis, Phase II terminated for primary biliary cirrhosis) and ELDELUMAB (phase391

II mainly for rheumatoid arthritis, ulcerative colitis and Crohn’s disease; source: Open Targets (Carvalho-392

Silva et al. 2018b)). The fact that, except for allergic contact dermatitis, all of these diseases belong to the393

auto-immune diseases family like MS, suggests that IP10 can be a valuable target for MS.394

NF-κB is extensively present in the cytosol and the nucleus, to a lesser extent in the extracellular395

space, but not in the plasma membrane (Source: UniProtKB/Swiss-Prot). No small molecule or antibody396

is currently under clinical study for a direct blockade of NF-κB, since it is inhibited by IκB proteins in397

cytoplasm.398

Clinical assays trying to inhibit NF-κB have so far focused on its upstream regulators. The phos-399

phorylation of I-κB by the IKK (cat) kinase complex marks I-κB for destruction via the ubiquitination400

pathway, thereby allowing the activation of the NF-κB complex (Iwai 2012). Different research groups401

tried to inhibit undesired NF-κB activity at several regulatory levels (Calzado et al. 2007). For example,402

inhibitors of IKKB-beta (or IKBKB: Inhibitor Of Nuclear Factor Kappa B Kinase Subunit Beta) aim at403

blocking the kinase which phosphorylates inhibitors of NF-kappa-B on two critical serine residues. Several404

small molecules antagonists targeting IKBKB are in phase I, II and III clinical trials for several diseases405

(source: Open Target (Carvalho-Silva et al. 2018b)).406

Downstream of NF-κB, glucocorticoids receptors (GR) also constitute an interesting research direction.407

Ligand-bound GR is able to antagonize the activity of immunogenic transcription factors such as nuclear408

factor-κB (NF-κB)3, AP-14,5, and T-bet6; resulting in a potent attenuation of inflammation (Hudson et al.409

2018).410
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Altogether, these clinical assays for IP10 and NF-κB pathway inhibitors strengthen the potential of411

the pair as MS targets, where their simultaneous inhibition lowers the risk for MS.412

4 Discussion413

We study gene-gene interactions for a number of disease maps related to multiple sclerosis. Nonetheless, the414

pipeline we describe here can be generalized to other diseases. It is based on epiGWAS, a SNP-level epistasis415

detection tool that we extend to the study of gene-level epistasis. Within each disease map, we obtained a416

number of significant interactions that formed novel subnetworks. Notably, we have shown complementarity417

between two different SNP-to-gene mappings: eQTL mapping and physical mapping. We identified 4 gene418

interactions mediated by potential function modifying variants. Among these interactions we retrieve419

one known direct binding interaction between GLI-I and SUFU, involved in oligodendrocyte precursor420

cells differentiation in MS. We also identified 25 gene interactions mediated by eQTLs, in particular a421

IP10-NFKB interaction where each gene separately has a known impact on MS. We show that the epistasis422

mechanism probably pass through the known regulation of IP10 transcription by NFKB. These observations423

validate that epistasis analysis can reveal biological interactions and confort the use of this methodology to424

predict new biology. To the best of our knowledge, our work is the first application of an epistasis detection425

tool to a specific disease which is followed by an in-depth statistical analysis and biological interpretation426

of the results. Nonetheless, more biological and experimental validation is needed to confirm the discovered427

interactions.428

5 Data access429

This study makes use of data generated by the Wellcome Trust Case-Control Consortium. A full list of the430

investigators who contributed to the generation of the data is available from www.wtccc.org.uk. Funding431

for the project was provided by the Wellcome Trust under award 076113, 085475 and 090355.432
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