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Abstract 

Viral infection induces the expression of numerous host genes that impact the 

outcome of infection. Here we show that infection of human lung epithelial cells with 

Influenza A virus (IAV) also induces a broad program of alternative splicing of host genes. 

While these splicing-regulated genes are not enriched for canonical regulators of viral 

infection, we find that many of these genes do impact replication of IAV. Moreover, 

specific inhibition of the IAV-induced splicing in several cases also attenuates viral 

infection. We further show that approximately a quarter of the IAV-induced splicing events 

are regulated by hnRNP K, a host protein that required for efficient splicing of the IAV M 

transcript in nuclear speckles. Notably, we find that hnRNP K accumulates in nuclear 

speckles upon IAV infection, which is likely to alter the accessibility of hnRNP K for host 

transcripts thereby leading to a program of host splicing changes that promote IAV 

replication. 
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Introduction 

 Influenza A virus (IAV) is a ubiquitous and significant health threat, resulting in 

290,000 – 650,000 deaths per year worldwide (“WHO | Influenza (Seasonal),” 2019). In 

the United States alone, IAV is estimated to result 12,000 -56,000 deaths annually 

(“Estimated Influenza Illnesses, Medical Visits, Hospitalizations, and Deaths Averted by 

Vaccination in the United States | CDC,” 2019), with an estimated $11.2 billion cost (Putri 

et al., 2018). While efforts are ongoing to treat the virus, there still is no universal 

prevention or cure. This lack of treatment is due, in part, to the virus’s ability to rapidly 

mutate and develop resistance (Hussain et al., 2017). Therefore, it is important to further 

understand how IAV and host cells interact during infection in order to develop new 

avenues for antiviral therapies. 

IAV infection results in large changes to the host gene expression landscape. Our 

understanding of these changes has largely been shaped through studies using 

microarray technology, limiting analyses to the measurement of transcript abundance. 

However, several recent studies have utilized advances in next generation sequencing to 

observe host and viral gene expression during infection in greater detail than ever before. 

For example, IAV infection has been shown to induce a range of gene expression 

phenotypes such as RNA polymerase readthrough (Bauer et al., 2018; Heinz et al., 2018; 

Zhao et al., 2018), translational shutoff (Bercovich-Kinori et al., 2016), altered genome 

architecture (Heinz et al., 2018), and targeted transcript degradation (Gaucherand et al., 

2019). In addition, a recent transcriptome-wide study identified not only transcript 

abundance changes, but also global changes in alternative splicing isoforms (Fabozzi et 

al., 2018). These observations are in agreement with a growing awareness that viral 
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infection can not only alter gene expression but also lead to altered splicing patterns. Host 

splicing changes have been observed during infection with DNA viruses (HSV-1 (Hu et 

al., 2016), HCMV (Batra et al., 2016)) as well as RNA viruses such as reovirus 

(Boudreault et al., 2016), dengue virus (Sessions et al., 2013), and zika virus (Hu et al., 

2017).  However, these studies represent only the tip of the iceberg as they have mostly 

lacked the sequencing depth, and subsequent orthogonal validation, that is needed for a 

comprehensive quantitative analysis of host splicing (Mehmood et al., 2019; Shen et al., 

2012)(Vaquero-Garcia et al., 2016). Therefore, we set out to comprehensively define the 

scope of host splicing changes during IAV infection in order to begin to address the 

underlying mechanisms and functional implications of such viral-induced alterations to 

the host transcriptome. 

Mechanistically, changes in host splicing under any condition are generally due to 

regulation of RNA binding proteins that, in turn, control the host splicing machinery. 

Splicing factors bind at a myriad of sites throughout a nascent pre-mRNA, and influence 

the inclusion or exclusion of specific exons, and in some cases introns, by influencing the 

recruitment of spliceosomal components to splice sites (Fu and Ares, 2014). In some 

cases, it has been shown that that viruses directly interact with the splicing machinery to 

alter splice site choice. For example, dengue virus NS5 alters splicing through interaction 

with the U5 snRNP (De Maio et al., 2016) component of the spliceosome, and the 

piconaviral RdRp interacts with RNA helicase Prp8 to stall splicing (Liu et al., 2014). 

Viruses can also influence the localization and/or expression of splicing factors, as has 

been observed in poliovirus (Álvarez et al., 2013), rotavirus (Dhillon et al., 2018), 

alphavirus (Barnhart et al., 2013), HCV (Shwetha et al., 2015), picornavirus (Florez et al., 
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2005), and HCMV (Batra et al., 2016); and the resulting change in the nuclear 

concentration of splicing regulatory proteins likely contributes to alternative splicing of 

host genes. In the case of IAV, however, it is unclear how and if viral interactions with the 

splicing machinery impact host splicing patterns. While it is known that the IAV protein 

NS1 inhibits splicing in vitro through interaction with the spliceosomal U6 snRNA, the 

relevance of this interaction in cells has not been shown (Qiu et al., 1995). 

Here we demonstrate that infection of human cells with IAV induces widespread 

alternative splicing changes in host genes. Similar changes in splicing are not observed 

upon treatment with interferon, demonstrating that this program of IAV-induced splicing 

is a direct consequence of viral infection rather than a secondary effect of the host innate 

immune response.  Importantly, at least 30 of the 61 genes tested that harbor IAV-induced 

splicing events influence IAV infection.  Moreover, directly manipulating splicing of several 

of these transcripts confirmed that IAV-induced changes in alternative splicing have direct 

consequences on viral replication.  Mechanistically, we found that almost 25% of the IAV-

induced splicing changes are also regulated by hnRNP K, a well-known splicing regulator 

whose subnuclear distribution we show to be altered upon IAV infection. Previously, we 

demonstrated that hnRNP K promotes splicing of the IAV M segment transcript to 

generate the M2 protein (Mor et al., 2016; Thompson et al., 2018; Tsai et al., 2013). This 

suggests that the virus co-opts hnRNP K to promote infection both directly by inducing 

viral gene splicing, and indirectly by altering hnRNP K splicing on pro-viral transcripts 

altogether promoting replication. Altogether this work demonstrates the importance of 

alternative splicing for robust infection and replication of IAV and suggests mechanisms 

for how such viral-induced regulation of host splicing is achieved. 
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Results 

Host gene expression changes are induced upon IAV A/WSN/33 infection. 

 As a first step toward understanding the impact of IAV infection on the transcriptome, 

human epithelial A549 cells were infected with IAV A/WSN/33 at a multiplicity of infection 

(moi) of 2, to yield ~90% infection of cells (Condit, 2013), and total RNA was isolated at 

0, 6 and 12 h post infection (HPI). These experiments were performed in biological 

triplicate. mRNA from each replicate was poly(A)-selected and used to make cDNA 

libraries for 150 nucleotide, paired-end, Illumina Hi-Seq sequencing. Reads were then 

mapped to human and viral genomes as outlined in Fig. 1a.  At 6 and 12 HPI, IAV RNA 

accounted for >30% of mapped reads (Fig. 1b). Despite the large percentage of reads 

mapping to the viral genome, 60-70 million reads, on average, were mapped to the host 

genome (Supplementary Fig. 1a-b). Importantly, this depth falls within the 

recommended depth (~60 million reads) for robust and reproducible splicing and 

differential expression analyses (Mehmood et al., 2019; Shen et al., 2012). 

Differential expression analysis of host transcripts revealed 3,375 changes (log2 fold 

> 1, p<0.05) at 6 HPI and 8,185 changes at 12 HPI, with an overlap of 2,549 changes 

(Fig. 1c, list of differentially expressed genes found in Supplementary Table S1). Gene 

ontology (GO) analysis of changes at 6 HPI showed an enrichment for genes associated 

with host response to virus, while at 12 HPI, GO terms were enriched for categories such 

as DNA repair and stress (Fig. 1d). GO analysis of the 2,549 genes differentially 

expressed at both 6 and 12 HPI (Fig. 1c, green overlap) also showed the expected 

enrichment for host response to virus. We further confirmed the robust induction of 

individual genes that are frequently used as markers of the innate anti-viral immune 
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response by RT-qPCR at both 6 and 12 HPI (Fig. 1e). Together these data show that 

under the conditions of our experiment, IAV A/WSN/33 infection induces a robust host 

innate immune response within 6 hours. By 12 HPI we observe a further progression of 

infection and a corresponding stress response in the host.  

 

Influenza A/WSN/33 infection results in differential splicing of host transcripts 

Next, we quantified global changes in host splicing changes using a previously 

established algorithm, MAJIQ, that identifies all standard splicing events as well as 

complex splicing patterns (Vaquero-Garcia et al., 2016). Importantly, the detection of 

splicing by MAJIQ is not based on any pre-determined identification of exons, rather 

MAJIQ can identify any de novo pattern of splicing observed in the RNA-Seq reads 

(Vaquero-Garcia et al., 2016).  At 6 HPI, we identified 1,162 splicing differences at 861 

unique genes with a threshold for changes in percent isoform expression (∆PSI) of greater 

than or equal to 10% (Fig. 2a,b). Using an even more stringent cut-off of 20% DPSI, we 

found 1,931 splicing changes at 12 HPI, 896 of which overlapped with those splicing 

events observed to vary at 6 hours (Fig. 2a,b; lists of all splicing changes are provided in 

Supplementary Table S2). We used a more stringent threshold at 12 HPI based on the 

fact that when plotting the ∆PSI values of the overlapping 896 splicing changes against 

each other, we see a trend in which splicing changes increase during the course of 

infection (Supplementary Fig. S2a). This trend in increased ∆PSI over time is consistent 

with host splicing being regulated directly in response to viral load. We have therefore 

focused our further analysis on the 896 splicing events that are observed at both 6 and 

12 hours, as these are both the most reproducible and most correlated with virus levels.   
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We are particularly interested in virus-induced changes in splicing, rather than those 

induced as a secondary consequence of innate immune signaling. Therefore, we tested 

whether the splicing changes induced by IAV infection are also regulated directly by 

interferon. Importantly, we found that of 10 splicing events we validated in orthogonal RT-

PCR assays to change splicing during viral infection, none exhibit splicing regulation upon 

treatment with interferon beta (IFNb), despite the fact that this treatment induces 

expression of known IFNb-target genes (Supplemental Fig. S2b,c).  Therefore, we 

conclude that the majority of the changes in splicing we observed upon IAV infection are 

a direct consequence of viral load and not a secondary effect of interferon signaling. 

The 896 infection-induced splicing events from Figure 2b are encompassed in 631 

genes. Notably, only 43 of these genes also exhibit changes in abundance upon viral 

infection (Fig. 2c), consistent with many other studies that have found that genes 

regulated by splicing and transcription are largely distinct (Gazzara et al., 2017; Ip et al., 

2007; Shinde et al., 2017). Moreover, GO analysis of the 588 genes that are differentially 

spliced, without changes in abundance, finds an enrichment for genes associated with 

RNA processing, not immune defense (Fig. 2d). In summary, IAV infection induces a host 

splicing program that is functionally distinct from the host transcriptional response. 

To focus on genes that are regulated solely by splicing and not expression we have 

removed the 43 differentially spliced and expressed genes from our list of splicing events 

in the remainder of our analysis, leaving 833 distinct splicing changes in 588 genes.  

These 833 overlapping splicing events were then categorized by the type of alternative 

splicing (Fig. 2e). ~25% of the alternative splicing events are “classic” splicing events 

falling into alternative 5’ splice site, alternative 3’ splice site, and simple cassette exon 
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events (211 splicing changes total). We also find many events classified as either 

complex or uncategorized, consistent with previous studies using MAJIQ (Vaquero-

Garcia et al., 2016). While interesting, these complex events are challenging to explore 

in terms of functional consequence or mechanism (Vaquero-Garcia et al., 2016). 

Therefore, we focused our subsequent studies on the more canonical splicing events. 

 

Infection-induced splicing events encode proteins important for IAV replication 

We next investigated the role of the genes harboring viral-regulated splicing events in 

viral infection, focusing on the 211 classic splicing events (single exon cassettes, 

alternative 5’ splice site, and alternative 3’ splice site) due to their robustness and ease 

of analysis by RT-PCR (Fig. 2e). We further filtered this set of 211 events for alternative 

splicing occurring within the coding sequence of transcripts, which would potentially alter 

the protein sequence. This resulted in a list of 61 alternatively spliced candidate genes 

(Fig. 3a). The functional importance of these 61 genes was tested using an siRNA-based 

screen to define which of these genes alters IAV infection when depleted. Briefly, A549 

cells were transfected with siRNAs (two per gene) for 48 h, then single-cycle IAV 

infections were performed for 24 h and IAV infected cells were scored by staining for IAV 

NP protein via immunofluorescence. We also quantified cell viability and removed any 

candidate gene where cell viability was reduced by 25% or more after siRNA treatment. 

Positive “hits” in this screen were defined by genes where siRNA treatment induced a 

greater than 20% change in the number of IAV-positive cells in duplicate screens (Fig. 

3). Given these parameters, we find that knock down of 25 of the 61 genes yielded a 

change of greater than 20% in the number of IAV-positive cells (Fig. 3b,c). We also 
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wanted to capture genes that might be important for viral particle production and 

subsequent re-infection rather than initial infection. Thus, for the seven genes that 

maintained cell viability but did not alter NP expression in our initial screen, we also 

carried out a multi-cycle infection assay in which we scored viral titer levels. Notably, we 

found that knockdown of 5 of these 7 genes resulted in dramatic (≥5.5-fold) decreases of 

infectious viral particles (Fig. 3d). Therefore, together, approximately half of the 

alternatively spliced genes we tested (30/61) influence the IAV infection cycle.  We note 

that while CREB1 has previously been reported to be pro-viral (König et al., 2010), we 

see little impact of siRNAs of this gene in our screen (Fig. 3c). By contrast, our screen 

did replicate previous studies that found CLK1 and RAB11FIP3 to influence viral infection 

(Bruce et al., 2010; Karlas et al., 2010; Li et al., 2010).  

 

Alternative splicing of host genes alters IAV replication 

 Having shown that many genes which are alternatively spliced during infection impact 

IAV replication, we next wanted to test whether the importance of these genes to infection 

was directly linked to splicing. In other words, in contrast to the experiments in Figure 3 

in which the complete gene was targeted, we sought to test the functional impact of 

specifically blocking expression of the viral-induced isoform. To do so, we employed a 

previously established approach in which antisense morpholino oligonucleotides (AMO’s) 

are targeted to the exon-intron boundaries of alternative exons, promoting the skipping of 

the targeted exons (Fiszbein et al., 2019; Mallory et al., 2011; Martinez et al., 2015). By 

employing this strategy, splicing events where exon usage is increased upon viral 

infection can be blocked. Importantly, this strategy does not impact translation of the 
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target mRNAs, as the AMOs only interact with the pre-mRNA. Of the 30 alternatively 

spliced genes shown to alter viral replication (Fig. 3b-d), 11 exhibited increased exon 

inclusion upon IAV infection. Of these 11, five were successfully modulated by AMO’s: 

CLK1, RAB11FIP3, PPIP5K2, IQCB1, and REPIN1 (Fig. 4a, Supplementary Fig. S3a). 

We also were able to modulate CREB1 splicing (Supplementary Fig. S3a), which we 

included given the previous reports implicating this gene in IAV infection (König et al., 

2010). 

 To assess if AMO treatment influenced IAV infection or IAV titers, A549 cells 

transfected with AMO’s were infected with IAV at a moi of 0.01 for 48 hours. Levels of 

viral replication were measured by RT-qPCR assaying vRNA levels (Fig. 4b). In addition, 

infectious particles were measured via plaque assay (Fig. 4c). Remarkably, switching the 

splicing of CLK1, RAB11FIP3, and PPIP5K2 by AMO resulted in significant changes of 

at least 2-fold at both the titer and vRNA level (Fig. 4b,c) with no general toxicity to the 

cells (Supplementary Fig. S3b). In contrast, CREB1, IQCB1 and REPIN1 AMO 

treatment resulted in little to no changes at the viral titer or vRNA level compared to mock 

treatments (Fig. 4b,c). Given that several splicing changes occur at once during IAV 

infection, we also tested whether modifying multiple splicing changes simultaneously 

would have additive effects. Indeed, a combination AMO treatment targeting CLK1, 

RAB11FIP3, and PPIP5K2 splicing together, resulted in a larger decrease in viral titers 

compared to any of the single AMO treatments (Fig. 4d; ~4-fold instead of ~2-fold). These 

data show that direct alteration of host splicing events upon viral infection impacts viral 

replication, at least for a subset of genes. Even for those genes in which we do not 

observe a direct functional impact of viral-induced splicing (e.g. IQCB1), it is possible that 
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splicing regulation contributes to gene function and viral replication in a manner that is 

beyond the detection of our current assays.   

 

hnRNP K regulates a subset of influenza A sensitive splicing events 

We next set out to investigate how IAV infection impacts alternative splicing. We 

focused on the host protein hnRNP K because it was previously shown to be a pro-viral 

factor that regulates splicing of IAV M segment RNA (Mor et al., 2016; Thompson et al., 

2018; Tsai et al., 2013).  We and others have also shown that hnRNP K regulates splicing 

of host transcripts (Thompson et al., 2018; Venables et al., 2008). Therefore, we first 

tested if hnRNP K is important for IAV replication independent of its regulation of M 

segment splicing. In previous work, we generated an IAV mutant strain in which hnRNP 

K cannot bind to the M segment to regulate splicing (∆K-mut; (Thompson et al., 2018). 

To determine if hnRNP K regulates IAV replication in the context of this virus, we depleted 

hnRNP K in A549 cells using siRNAs and assayed infectious virus particles 48 hours 

post-infection. Importantly, we show that while the ∆K-mut IAV M2 splicing is no longer 

sensitive to hnRNP K levels (Supplementary Fig. 4a,b), viral propagation is still 

attenuated upon hnRNP K knockdown (Fig. 5a). These data indicate that hnRNP K is 

required for IAV replication independent of its role in M splicing. 

To determine if any of the IAV-sensitive alternative splicing events are dependent on 

hnRNP K, we depleted hnRNP K in A549 cells by stably expressing a doxycycline-

inducible shRNA (Fig. 5b). Splicing changes that occur in response to hnRNP K 

knockdown were quantified using MAJIQ, filtering for significant changes of 10% or more 

in percent splicing (DPSI). In agreement with previous studies, we observe large changes 
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in host splicing upon hnRNP K depletion (Supplementary Table S2)(Thompson et al., 

2018; Venables et al., 2008).  Importantly, 21% of the influenza-induced splicing changes 

are also hnRNP K-responsive (Fig. 5c). To determine if hnRNP K positively or negatively 

regulates splicing of the IAV-dependent splicing events, we plotted the impact of hnRNP 

K and IAV infection on PSI values of the 179 common splicing events (Fig. 5d). We find 

65% of splicing changes are regulated similarly by hnRNP K depletion and IAV infection, 

whereas for the remainder, hnRNP K depletion has the opposite effect of infection. We 

validated many of these splicing changes in response to both IAV infection and hnRNP K 

knockdown by RT-PCR, including both those that exhibit a similar and an opposite 

change under these two conditions (Fig. 4a, Supplementary Fig. 2b). The observed high 

validation rates are consistent with previous studies with MAJIQ (Vaquero-Garcia et al., 

2016). 

 

hnRNP K nuclear distribution is altered during infection 

Based on the two populations of hnRNP K and IAV-responsive splicing events, we 

propose at least two models for how hnRNP K-dependent splicing is regulated during 

infection. The abundance of splicing events for which hnRNP K depletion phenocopies 

infection at the splicing level suggests that hnRNP K may be functionally depleted or 

inhibited during infection. By contrast, for events with opposite DPSI values between 

hnRNP K depletion and infection, hnRNP K activity may be enhanced by a co-factor that 

is increased or activated upon infection. Both of these models imply a change to hnRNP 

K activity upon infection. However, western blot analysis revealed little to no differences 

in hnRNP K expression or nucleocytoplasmic localization. (Fig. 6a). Analyses of hnRNP 
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K phosphorylation via phos-tag SDS-PAGE showed no reproducible changes overall, 

although we do note a minor increase in phosphorylation, particularly in the nuclear 

fraction (Fig. 6a). These results are in agreement with previous mass spectrometry-based 

studies showing that total hnRNP K level and phosphorylation do not significantly change 

during IAV infection (Coombs et al., 2010; Dapat et al., 2014). 

Although hnRNP K levels did not appear to change between the cytoplasm and 

nucleus, it is possible more subtle changes in hnRNP K sub-cellular localization occur 

during infection. In past work we showed that hnRNP K activates IAV M RNA splicing 

within nuclear speckles, as opposed to the nucleoplasm where most splicing of host 

transcripts is thought to occur (Mor et al., 2016; Thompson et al., 2018). Therefore, we 

asked if the speckle-associated pool of hnRNP K is altered during IAV infection. To test 

this, hnRNP K colocalization with nuclear speckle associated protein, SC35, was 

measured using fluorescence microscopy in mock and IAV infected A549 cells (Fig. 6b-

c).  Strikingly, we observed that hnRNP K levels at nuclear speckles significantly increase 

during IAV infection (Fig. 6d).  Therefore, we propose that at least one of the mechanisms 

by which IAV results in alterations in hnRNP K-regulated splicing events is through 

enhanced recruitment of hnRNP K to nuclear speckles. Such re-localization effectively 

depletes hnRNP K from co-transcriptional splicing processes in the nucleoplasm, and 

potentially enhances hnRNP K activity on splicing events that occur at nuclear speckles, 

including the IAV M transcript. 
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Discussion 

 Previous studies have established that the host transcriptome is profoundly altered 

upon IAV infection. While much of this work has shown that regulation of host transcription 

is a major component of these changes, only recently have post-transcriptional events, 

such as alternative splicing, begun to be analyzed (Fabozzi et al., 2018). Here we identify 

a program of host splicing that is regulated by IAV infection, and show that many of these 

splicing changes occur within genes that promote IAV replication. Furthermore, directly 

manipulating a subset of these IAV-induced splicing changes, using splice-blocking 

AMO’s, also attenuates infection. Together these data implicate infection-induced 

changes in host splicing as a previously unrecognized mechanism by which viruses 

promote infection. 

 Our RNA-seq analyses of A/WSN/33 infected A549 cells revealed functionally distinct 

categories of genes that are regulated by transcriptional and splicing responses. Genes 

that exhibit differential expression are enriched for genes involved in immune response 

and viral defense, consistent with previous studies (Fabozzi et al., 2018; Ioannidis et al., 

2012). By contrast, GO analyses of genes that harbor splicing changes demonstrates 

enrichment for RNA processing categories. Moreover, we observe very little overlap 

between the genes that are differentially spliced versus those that show differential 

expression. These data suggest that the host splicing response to virus is functionally 

distinct from the transcriptional response. We are unable to directly compare our data to 

other RNA-Seq studies due to differential experimental design and depth of sequence; 

however, our findings are generally consistent with the prediction that IAV infection 

induces changes in host splicing in addition to, and separate from, changes in 
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transcription. Patterns similar to this have been observed in other systems. For example, 

T-cell stimulation results in robust transcriptional and splicing changes, however very little 

overlap is observed between the categories (Martinez et al., 2012). 

 Our analyses of host splicing changes adds to a pattern of IAV inducing a variety 

transcriptomic phenotypes. Recent studies observing altered genome architecture, 

transcript 3’ end defects, and PA-X targeted transcript degradation during infection all 

have links to splicing (Gaucherand et al., 2019; Heinz et al., 2018; Zhao et al., 2018). One 

observation was that of transgenic, defective, and unannotated splicing in relation to 

transcription termination (Heinz et al., 2018; Zhao et al., 2018). While our splicing 

analyses did not account for these specific splicing types, we would predict for them to 

be present in our experiments to some extent. Importantly, the alternatively spliced 

transcripts we describe here are not products of defective or transgenic splicing, and are 

likely not induced by the same transcription defects described in other studies. 

Additionally, the IAV endonuclease PA-X was shown to preferentially target spliced 

transcripts (Gaucherand et al., 2019). However the alternatively spliced genes we define 

here do not overlap with PA-X targeted genes (Gaucherand et al., 2019). Therefore, while 

splicing appears to contribute to many facets of IAV-induced transcriptome changes, we 

propose that a portion of the functional splicing events described here are independent 

of previously described mechanisms.  

 Although the set of genes that we identify to undergo alternative splicing upon IAV 

infection are not enriched for known regulators of viral replication, we demonstrate that 

half of the splicing-regulated genes we tested (30/61) do impact IAV infection or 

propagation. This includes genes involved in cell signaling, intracellular trafficking and 
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gene expression. In addition to demonstrating that many of the host genes that undergo 

IAV-induced splicing changes are involved in controlling infection, in several cases we 

directly show that changing the splicing of these genes alters IAV replication (Fig. 4). For 

example, IAV infection induces inclusion of alternative CLK1 exon 4, which results in 

expression of the canonical full-length isoform of the protein (Fig. 4a). By contrast, 

skipping of exon 4 is observed in uninfected cells and introduces an early stop codon that 

truncates the kinase domain of protein (Duncan et al., 1997; Uzor et al., 2018). Therefore, 

in the case of CLK1, both the AMO that blocks exon 4 inclusion (Fig. 4), and the siRNA 

(Fig. 3), are expected to decrease the expression of active protein. Given that previous 

studies have established CLK1 to be required for efficient IAV replication (Artarini et al., 

2019; Karlas et al., 2010; Zu et al., 2015), our data is consistent with a model in which 

IAV infection promotes exon inclusion to increase production of full-length functional 

CLK1 kinase that, in turn, promotes viral growth. 

For RAB11FIP3, IAV induces the inclusion of a non-canonical in-frame alternative 

exon (Fig. 4a), resulting in expression of an alternate isoform of this protein. The function 

of the additional protein sequence remains unclear, as it lies upstream of the defined 

RAB11 binding domain (Shiba et al., 2006) and does not contain known phosphorylation 

sites (Collins et al., 2012). Regardless, this non-canonical isoform appears to promote 

IAV infection, as blocking the variable exon up-regulates the canonical isoform and limits 

IAV replication in multi-cycle infections (Fig. 4b). Interestingly, a previously established 

model suggests that RAB11FIP3 may compete with IAV vRNPs for RAB11 on 

endosomes in the particle assembly pathway (Vale-Costa et al., 2016). Therefore, it is 

possible that the canonical RAB11FIP3 isoforms may interfere with particle assembly, 
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such that it is beneficial to the virus for this canonical isoform to be decreased through 

splicing. 

PPIP5K2 exon inclusion is also increased upon viral infection, producing increased 

levels of the canonical full-length isoform of the RNA (Fig. 4a). By contrast, forced 

skipping of this exon results in decreases in viral titers and vRNA (Fig 4a-c). Interestingly, 

PPIP5K2 has been previously thought to limit to influenza A replication (Pulloor et al., 

2014), as it was shown that catalytic activity of PPIP5K2 is required for efficient IFNb 

production, and in turn, that knockdown of PPIP5K2 resulted in viral load increases. The 

exon that is skipped in uninfected cells removes a portion of peptide sequence without 

altering the downstream reading frame. It is possible that the resultant smaller protein has 

increased catalytic activity, perhaps through removal of an inhibitory interaction, such that 

altering the splicing of PPIP5K2 may reduce PPIP5K2 function. 

 Importantly, we show a previously established pro-viral host factor, hnRNP K, 

regulates a subset of the splicing events that change in response to IAV infection, 

including CLK1, RAB11FIP3 and PPIP5K2. Notably, hnRNP K undergoes increased 

sequestration into nuclear speckles upon viral infection, suggesting that this may 

functionally deplete this protein from host genes that are typically spliced outside of 

speckles. HnRNP K was previously established to be important for IAV M segment 

splicing regulation (Mor et al., 2016; Thompson et al., 2018; Tsai et al., 2013). However, 

IAV replication is sensitive to hnRNP K expression even in the context of a mutant IAV in 

which hnRNP K is not required for M segment splicing regulation, consistent with hnRNP 

K regulating important pro-viral splicing events in host genes (Fig. 5a, Supplementary 

Fig. S4a,b). It is possible, however, that hnRNP K is also important for additional viral 
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processes such as regulating transcription or translation of viral transcripts, as hnRNP K 

has been implicated to regulate many facets of RNA processing other than splicing 

(Bomsztyk et al., 2004). Nonetheless, given that hnRNP K levels regulate 21% of 

detected IAV-induced splicing changes (Fig. 5c), many of which encode for proteins that 

influence viral replication (Fig. 3c), we contend that hnRNP K regulation of host transcript 

splicing is an important process during IAV infection.  

 While our data clearly shows changes in host splicing upon IAV infection (Fig. 2), 

many of which are regulated by host splicing factor hnRNP K (Fig. 5c), it is not clear if 

these splicing changes are induced through host or viral mechanisms. A virus-centric 

model would suggest that viral manipulation of host splicing-related pathways causes the 

splicing changes observed during infection. By contrast, a host-centric model would 

predict the splicing changes observed during infection are part of a host response to 

pathogen.  Likely, the changes we observe here are a mixture of both models. However, 

RT-PCR analysis of a panel of IAV-sensitive splicing events in the context of IFNb 

treatment identified no significant splicing changes, thus ruling out a model in which 

splicing changes are primarily triggered indirectly by interferon secretion, as a secondary 

consequence of the innate immune response.  

In sum, we demonstrate here a feedback loop between viral-induced regulation of 

splicing of host genes and subsequent viral infection. This is yet another example of the 

intricate competition between host and virus, involving multiple layers of regulation and 

counter-regulation53,54. We also demonstrate one of the mechanisms driving this IAV-

induced regulation of splicing.  Future studies will be required to further uncover additional 
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underlying mechanisms by which IAV control host splicing, and to determine if 

manipulation of these mechanisms has potential for anti-viral therapeutic intervention. 
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Methods 

Cell culture and Viruses 

Human lung adenocarcinoma epithelial cells (A549) were cultured in RPMI 1640 

(Corning: 10-040-CV), 10% heat-inactivated FBS (Gibco: 16000-044), and 100 units ml−1 

Pen/Strep antibiotics. MDCK cells were cultured in high-glucose DMEM (Corning: 10-

013-CV), 10% heat-inactivated FBS (Gibco) and 100 units ml−1 Pen/Strep antibiotics. All 

cells were maintained at 37 °C with�5% CO2. Cells were tested negative for mycoplasma. 

Cell lines were obtained and authenticated by ATCC (A549: CCL-185, MDCK: PTA-

6500). A/Puerto Rico/8/1934 (PR8) and A/WSN/33 (WSN) strains were used as specified 

for individual experiments. DK-mut virus was generated as previously described in 

another study (Thompson et al., 2018). Viral titers were determined via plaque assay in 

MDCK cells as the average to technical replicates.  

 

Infections 

For infections, A549 cells were grown to 80% confluency, washed with PBS, and 

inoculated with viral titer diluted in PBS•BA (DPBS with Ca and Mg (Corning: 21-031-

CV), 0.2% BSA (Lampire: 7500810), and 100 units ml−1 Pen/Strep antibiotics) for 1 h at 

room temperature (22˚C). Cells were then washed with PBS and incubated in Infection 

media (1X MEM, 0.2% BSA, 10 mM HEPES buffer, 0.12% NaHCO3, 100 units ml−1 

Pen/Strep antibiotics) at 37˚C with 5% CO2 until desired time-point. At time-points, media 

was collected for plaque assay analyses. For protein and RNA analyses, wells were 

rinsed with PBS and either pelleted and lysed with RIPA buffer for Western blot analysis 

or RNA was extracted using RNA-Bee (amsbio: CS-501B). 
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Plaque assays 

MDCK cells were grown to 100% confluency in 12-well plates. Viral titers to be assayed 

were serially diluted in PBS•BA (DPBS with Ca and Mg (Corning: 21-031-CV), 0.2% BSA 

(Lampire: 7500810), and 100 units ml−1 Pen/Strep antibiotics). MDCK cells were then 

washed in PBS and viral dilutions were added to each well and left to inoculate for 1 h at 

room temperature (22˚C). Viral dilutions were then removed and 1 ml of plaque overlay 

media was added to each well (1X MEM, 0.2% BSA, 10 mM HEPES buffer, 0.22% 

NaHCO3, 0.01% DEAE Dextran, 100 units ml−1 Pen/Strep antibiotics, and 0.6% Agar 

(Oxoid). Plates were stored upside-down at 37˚C with 5% CO2 for 48 h at which point 

cells were fixed with 3.6% formaldehyde. Gel plugs were then removed, cells were 

stained with Crystal violet, and plaques were counted.  

 

Depletion of hnRNP K from A549 cells.  

For knockdown of hnRNP K to test viral replication (Fig. 5a), A549 cells were treated with 

50 nM siRNA (Dharmacon, SMARTpool, M-011692-00) as previously described 

(Thompson et al., 2018). For RNA-Seq and validation experiments, hnRNP K was stably 

depleted from A549 cells using a lentiviral expressed doxycycline-inducible shRNA with 

sequence:  

agcgGGACCTATTATTACTACACAATAGTGAAGCCACAGATGTATTGTGTAGTAATAA

TAGGTCC (target underlined)  This shRNA vector and its use are described in detail 

previously (Martinez et al., 2015). 
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RNA-seq of infected or hnRNP K knockdown cells 

For infections A549 cells were grown to 80% confluency in 15 cm plates and infected with 

WSN IAV at moi = 2. At the 0, 6, and 12 h post infection, total RNA was extracted from 

cells. For hnRNP K knockdowns, either stable shRNA expressing or WT A549 cells were 

grown to 90% confluency in 15 cm plates over a span of 48 h in the presence of 

doxycycline. At 48 h total RNA was extracted. RNA was then DNase treated and further 

purified using RNeasy mini kit (Qiagen). RNA quality assessed for quality using a 

Nanodrop and Agilent 2100 Bioanalyzer. Samples were required to have a 260/280 ratio 

of >1.8 as well as a RIN value of >6 to be used for library preparation. Poly(A) selected 

cDNA libraries were generated on site at the University of Iowa sequencing core using 

standard methods. cDNA libraries were then sequenced for paired-end, 150-nt, reads on 

an Illumina HiSeq 4000. RNA-Seq data is accessible in GEO under study GSE142499. 

 

RNA-seq mapping, differential expression analysis 

Raw reads were aligned to the human or viral WSN genome using STAR (Dobin et al., 

2013). Differential gene expression of host transcripts was performed using the R-

package, DESeq2 (Love et al., 2014). Significantly changing genes were defined as those 

with a log2 fold-change greater than |1| and a corresponding p-value <0.05.   

 

Splicing analysis 

Spicing analyses was performed using MAJIQ (ver. 1.1.3a) as described previously 

(Vaquero-Garcia et al., 2016). Initial splicing analyses of 0 HPI, 6 HPI, 12 HPI, mock dox-

treatment, and sh-hnRNP K samples were performed in parallel using MAJIQ builder with 
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default settings. DPSI values were quantified with the MAJIQ package, VOILA, using the 

following settings. 6 HPI samples were quantified against 0 HPI set at a threshold of 10. 

12 HPI samples were quantified against 0 HPI set at a threshold of 20. sh-hnRNP K 

samples were quantified against mock dox-treated samples at a threshold of 10. 

Significant splicing events were those with probability values > 0.95 and a DPSI value 

greater than 10 (for 6 HPI and sh-hnRNP K) or 20 (for 12 HPI). 

 

siRNA screen 

The siRNA screen was done as previously described (Panda and Cherry, 2015). In brief, 

siRNA libraries targeting each gene were ordered from Ambion and aliquoted into 384-

well plates. siRNAs were then transfected into 2,000 A549 cells in each well using 0.5 µl 

HiPerFect (Qiagen) in a total volume of 50 µl and a final concentration of 20 nM siRNA. 

siRNA treatment proceeded for 72 h. siRNA transfection efficiency was monitored using 

the siDeath control RNA. Cells were then infected with IAV PR8 at an moi of 0.1 or 0.5 

for 24 h. After infections cells were fixed with 4% formaldehyde, washed twice with 

phosphate-buffered saline (PBS), blocked for 1 h in blocking solution consisting of PBS 

containing 2% bovine serum albumin (BSA), 0.1% Triton X-100, and 0.02% sodium azide, 

and stained with mouse anti-IAV NP primary antibody at a 1:2000 dilution in blocking 

solution overnight at 4 °C. The primary antibody was then replaced with blocking solution 

containing 5 µg/mL bisBenzimide H 33342 trihydrochloride (Sigma-Aldrich, B2261) and 

goat anti-mouse Alexa Fluor 488 secondary antibody (Invitrogen, A11029) at a 1:1000 

dilution and incubated for 1 h at room temperature. The cells were then washed three 

times with PBS containing 0.1% Triton X-100 before imaging. Imaging of cells was 
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performed using an ImageXpress autoscope and MetaXpress software. 4 images were 

collected per well and a median % IAV cell score was calculated. Changes in % IAV 

positive cells were calculated relative to wells treated with siControl siRNA. Final values 

were determined as an average % change in IAV positive cells across duplicate 

experiments. 

 

Antisense morpholino oligonucleotide treatment and infections 

For each AMO treatment, 500,000 A549 cells were electroporated with a total of 5 nmoles 

AMO using a Bio-Rad Gene Pulser Xcell (settings used were default A549 cell program). 

AMO sequences are detailed in Supplemental Table S3. Electroporations were performed 

in RPMI media without FBS or antibiotics. 200,000 treated cells were seeded into 6-well 

plates and allowed to grow for 48 h. Splice-blocking activity each AMO at 48 h was 

validated using radio-labeled RT-PCR (Fig. 4a, Supplementary Fig. 5a). Cells were then 

infected with WSN IAV at the specified moi and time-course. At the specified time points 

media was collected for downstream plaque assays and total RNA was collected for 

further experiments. 

 

Microscopy and quantification of subnuclear localization of hnRNP K 

For subnuclear localization of hnRNP K, immunofluorescence was performed as 

previously described (25) using SC35 (ab11826, Abcam), hnRNP K (GTX101786, 

Genetex) and anti-influenza A virion polyclonal antibodies (B65141G, Meridian Life 

Science). For quantification of hnRNP K localization, images were captured as previously 

described (25). AutoQuant software was used to deconvolve z stack images. 
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Deconvolved images were used for surface generation and quantification using Imaris 

(Bitplane) software. Surface was generated for nuclear speckles using the SC35 channel. 

Display minimum and maximum values were adjusted to distinguish SC35 at nuclear 

speckles from the nucleoplasm pool. Display minimum and maximum values were kept 

constant for all images. DAPI channel was used for generating the nuclear surface. 

Threshold was adjusted manually during surface generation. Number of voxels above 10 

was used as filter. Intensity sum of hnRNPK from nuclear speckle surface and nucleus 

surface was quantified using the Imaris software. Statistical analysis was done using an 

unpaired, two-tailed, t-test with Welch’s correction was performed. 

 

Interferon treatment 

A549 cells were grown 80% confluency in 10 cm plates. At time of interferon treatment, 

fresh, pre-warmed media containing 10 ng/ml beta-interferon (STEMCELL Technologies, 

Cat #78113) was added to cells. Total cellular RNA was harvested 12 h post treatment 

using RNA-Bee (amsbio: CS-501B). IFIT1 expression was assessed via qPCR 

(Supplementary Figure 2) to validate innate immune stimulation. 

 

qPCR analyses 

cDNA was produced in a 24 µl reaction using 500 ng total cellular RNA, 1 ng of gene-

specific reverse primer, and MMLV reverse transcriptase enzyme. 3 µl of cDNA was 

added to 10 µl qPCR reactions containing 0.5 µM forward and reverse primers as well as 

1X PowerUP SYBR green master mix (ThermoFisher) in 384-well plates. Expression 

levels of targeted genes were calculated relative to GAPDH. qPCR primers are detailed 
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in Supplemental Table S3. All qPCR data is from triplicate biologic replicates, each 

analyzed in technical duplicate. 

 

RT-PCR analyses 

RT-PCR was carried out as described in detail previously (Martinez et al., 2015; 

Thompson et al., 2018). RT-PCR primers are detailed in Supplemental Table S3. All RT-

PCR data is from analysis of triplicate biologic replicates. 
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Figure 1. RNA-seq and differential expression analyses of IAV infected A549 cells. 

(a) Schematic of infections, RNA-seq, and data processing work-flow. (b) Proportion of 

aligned, mapped reads corresponding to host (hg19) and virus (A/WSN/33) in each of the 

indicated samples. (c) Overlap of differentially expressed genes with a log2-fold change 

> 1.0 at 6 and 12 h PI. (d) Top gene ontology categories for differentially expressed genes 

enriched at 6 h PI (left), 12 h PI (middle), and overlap of 6 and 12 h PI (right). P-values 

were <0.05 in all categories. (e) Normalized counts of known viral responsive genes. 
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Figure 2. Alternative splicing analyses of host genes during IAV infection. (a) 

Schematic of splicing analyses and downstream processing pipeline. (b) Overlap of 

alternatively spliced genes (DPSI ≥ 10 at 6 HPI (hours post-infection), DPSI ≥ 20 at 12 

HPI) at 6 and 12 HPI (number of unique splicing changes (SC) shown in parentheses). 

(c) Overlap of alternatively spliced and differentially expressed genes at 6 and 12 HPI 

(number of unique splicing changes (SC) shown in parentheses, log2 fold-change > 1.0). 

(d) Top gene ontology categories enriched within 588 exclusively alternatively spliced 

genes at 6 and 12 HPI. P-values were <0.05 in all categories. (e) Categorization of 833 

exclusively alternative splicing events (588 genes) at 6 and 12 HPI. 
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Figure 3. IAV-sensitive splicing events encode genes that modulate IAV replication. 

(a) List of 61 alternatively spliced genes sensitive to IAV infection chosen for siRNA 

screening. (b) Percent change of IAV positive scoring cells in the context of siRNA 

knockdown. Bar indicates the average of two independent screens, dots and error bars 

represent individual data points. Genes with an average change of ≥20% are plotted. (c) 

Representative images of immunofluorescence imaging of IAV infected cells in the 

context of control or gene targeting siRNA treatments. Blue staining denotes individual 

nuclei (DAPI) and green staining denotes IAV positive cells (NP). (d) A549 cells were 

treated with 20 nM siRNA for 72 hours and infected with IAV at moi = 0.01 for 48 hours. 

Shown is the measurement of plaque forming units in media via plaque assay. Bar 

indicates the average of two independent screens, dots and error bars represent 

individual data points. 
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Figure 4. Altering splicing of host genes results in IAV replication changes. (a) A549 

cells were infected (WSN), treated with shRNA against hnRNP K, or treated with splice-

blocking antisense morpholino oligonucleotides (AMOs). Splicing was analyzed using 

RT-PCR analyses (additional gels in Fig. S3a) (b) RT-qPCR analyses (values normalized 

to mock AMO treatment) of PA segment vRNA 48 HPI with IAV (moi = 0.01) in the context 

of AMO treatment (targeted genes indicated on x-axis). Values are means ± s.d. from 

three independent experiments. (c) Measurement of plaque forming units (values 

normalized to mock AMO treatment) in media 48 HPI with IAV WSN (moi = 0.01) in the 

context of AMO treatment (targeted genes are indicated on x-axis). Values are means ± 

s.d. from three independent experiments. (d) Measurement of plaque forming units 

(values normalized to mock AMO treatment) in media 48 HPI with IAV WSN (moi = 0.01) 

in the context of AMO treatment. In combo treated cells CLK1, RAB11FIP3, and PPIP5K2 

were simultaneously targeted with AMO’s. Values are means ± s.d. from three 

independent experiments. Statistical significance was determined via two-tailed student’s 

t-test where p<0.05 = * and p<0.005 = ** when comparing mock AMO treatments vs  AMO 

treated samples. 
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Figure 5. hnRNP K regulates a subset of IAV-induced splicing events during 

infection. (a) A549 cells were infected with WT and DK-mut IAV in the context of 

scrambled or hnRNP K targeting siRNA. Plaque forming units in media were assayed at 

48 HPI. Values are means ± s.d. from three independent experiments. p<0.005 = **. 

Statistical significance was determined via two-tailed student’s t-test where p<0.05 = * 

and p<0.005 = ** when comparing scramble vs siRNA treated samples. (b) Western blot 

of shRNA treated cells. Tubulin is shown as a loading control. (c) Proportion of IAV 

sensitive splicing events (observed at 6 and 12 HPI) that are also sensitive to hnRNP K 

knockdown. (d) DPSI value comparison of 179 splicing events at 6 HPI or after hnRNP K 

knockdown. Percentage values denotes proportion of 179 splicing events residing in each 

quadrant.  
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Figure 6. hnRNP K levels increase at nuclear speckles during influenza A virus 

infection. (a) Western blot analyses of total, cytoplasmic, or nuclear A549 cell extracts 

0, 6, and 12 hours post infection (HPI). hnRNP K was analysed via traditional SDS-PAGE 

or Phos-tag to separate phosphorylated isoforms of hnRNP K. (b) Approximately 100% 

of A549 cells were infected with influenza virus (WSN) for 5 h and then subjected to 

immunofluorescence microscopy to detect SC35, hnRNP K, and viral proteins. Nuclear 

speckles were marked with anti-SC35 antibody. Scale bar = 10µm. (c) Voxel outside 

surface generated for nuclear speckles was set to 0 for hnRNP K channel to visualise 

hnRNP K at nuclear speckles. The marked region is enlarged. (d) Quantification of 

hnRNP K at nuclear speckles was performed using the Imaris software. hnRNP K 

intensity sum at nuclear speckles was normalized to the intensity sum in the nucleus. 

Values are means ± s.d. measured in 35 mock and 35 WSN infected cells from biological 

triplicates. **t-test P<0.01. 
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Figure S1. (a)  Unique RNA-seq reads mapped to human genome in mock, 6 h, and 12 

h IAV infections in A549 cells across 3 replicates. (b) Unique RNA-seq reads mapped to 

A/WSN/133 reference genome at 6 and 12 HPI in A549 cells across 3 replicates 
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Figure S2. (a) Percent change in splicing values at 6 and 12 HPI vs. mock, for the 896 

splicing events that are persistently changed upon viral infection (see Fig. 2b). (b) A549 

cells were treated with interferon beta (IFNb), infected with virus (WSN), or treated with 

shRNA against hnRNP K. Splicing was quantified using radioactive RT-PCR. DPSI values 

were determined by subtracting percent-exon-included in mock conditions from 

experimental conditions. Values are means ± s.d. from 2-3 biologically independent 

experiments. (c) Quantification of interferon inducible gene IFIT1 relative to Actin, by 

qPCR, in samples from panel b. 
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Figure S3. (a) A549 cells were infected (WSN), treated with shRNA against hnRNP K, or 

treated with splice-blocking antisense morpholino oligonucleotides (AMOs). Splicing was 

analyzed using RT-PCR analyses (b) Normalized cell counts of mock or AMO treated 

A549 cells (values normalized to mock AMO treated cells) 
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Figure S4. (a) Quantification of M segment isoform levels in A549 cells infected with WT 

IAV in the context of scrambled or hnRNP K targeting siRNA using radioactive primer 

extension and densitometry. (b) Quantification of M segment isoform levels in A549 cells 

infected with DK-mut IAV in the context of scrambled or hnRNP K targeting siRNA using 

radioactive primer extension and densitometry. Values are means ± s.d. from three 

biologically independent experiments. 
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