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Abstract 
Ethnicity impacts Alzheimer’s disease risk, especially among Caribbean-Hispanics. We report 

the first RNA-sequencing analysis of brain tissue from 45 Alzheimer’s disease and control 

Caribbean-Hispanics. Data were compared with two independent samples of non-Hispanic 

Caucasians (total n=729). By identifying and characterizing those genes with ancestry- and 

region-specific expression patterns in Alzheimer’s disease, we reveal molecular insights that may 

help explain epidemiological disparities in this understudied aging population. 
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Main text 
Genetic and environmental factors conferring risk for late-onset Alzheimer’s disease (LOAD) 

are known to differ across ethnic groups,1 though genomic studies are still dominated by non-

Hispanic White (NHW) cohorts,2 particularly for neurodegenerative diseases. Here we present 

the first brain gene expression study from Caribbean-Hispanics (CH) with and without LOAD. 

We aimed to identify genes and pathways with ancestry-specific (i.e. those identified in CH 

only) and ancestry-independent (i.e. those replicating across groups) differential gene expression 

by comparing transcriptome-wide association analyses (TWAS) and co-expression network 

based analyses performed in CH and in two independent NHW cohorts, processed with identical 

pipelines. 

We performed RNA-sequencing and whole-genome genotyping on postmortem temporal 

cortex (TCX) tissue from 45 self-reported CH individuals ascertained from the New York Brain 

Bank (NYBB). Global admixture analysis3 revealed that seven individuals did not show all three 

ancestral components (European, African and Native-American) (see Supplementary 

Information, Supplementary Figure 1), resulting in 38 genetically-confirmed three-way 

admixed subjects (nLOAD=20, nnon-LOAD=18); seven carried the PSEN1 G206A mutation, a known 

mutation associated with familial AD in Caribbean Hispanic populations.4 Following data quality 

control (QC), robust regression modeling of LOAD status on gene transcript abundance 

(log2(CPM)) was adjusted for demographic and technical covariates (see Supplementary 

Information) and carried out in three stages: “stage 1”) including all (n=45), “stage 2”) 

excluding genetically non-CH (n=38), and “stage 3”) excluding both non-CH subjects and 

PSEN1 carriers (n=31). Significance testing for differential expression was performed using 

empirical Bayes moderation.  
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In stage 1, 790/17,300 genes were found to be differentially expressed in LOAD vs. 

controls at false discovery rate (FDR)-adjusted p<0.05 (Figure 1A). Stages 2 and 3 found similar 

numbers of LOAD-associated genes: 884 (out of 17,301) and 817 (out of 17,313), respectively 

(Figures 1B-C). Given that stage 2 found the largest number of significant genes, and that all 

individuals in stage 2 were genetically-confirmed three-way admixed, we chose to carry forward 

this model for further analyses (full summary statistics in Supplementary Table 1). 

Transcriptome-wide significant genes encoded several known LOAD loci: CD33, CD2AP, and 

HLA-DRB1. At uncorrected p<0.05, we identified an additional 11 LOAD loci differentially 

expressed (INPP5D, ABI3, FRMD4A, CLU, CR1, FERMT2, TYROBP, FBXL7, MS4A6A, 

MS4A4A, and TREM2 (p=0.051)).  

To compare results between CH and NHW populations, we re-analyzed RNA sequencing 

data from postmortem dorsolateral prefrontal cortex (DLPFC) of 595 NHW subjects from the 

Religious Orders Study and Memory and Aging Project (ROS/MAP) studies.5 A stratified 

sensitivity analysis was performed to ensure that differences in age range between ROS/MAP 

and CH samples did not impact our comparisons (Supplementary Information). After QC, 580 

subjects remained (nLOAD=352, nnon-LOAD=228). We also accessed temporal cortex RNA-

sequencing data from the Mayo RNAseq study.6,7 After identical QC, 149 subjects remained 

(nLOAD=80, nnon-LOAD=69). Full report of QC and statistical modelling can be found in 

Supplementary Information. In ROS/MAP and Mayo, differential expression analyses found 

1,763/17,665 and 10,576/19,380 significant genes, respectively (Figure 1D-E; summary 

statistics in Supplementary Tables 2 and 3). Comparison of these results against published 

TWAS in these cohorts8–10 (Supplementary Information; Supplementary Figure 2 and 3) 

validated these findings. Thus, we carried forward results from three independent RNAseq 
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datasets, including two different brain regions and two different ethnicities (see Table 1 for 

sample demographics).  

We initially focused on genes with ancestry-independent effects, i.e. replicated across 

Caribbean Hispanic and at least one non-Hispanic white cohort. Considering the number of 

significant genes per dataset, we observed a greater proportion of replicated signals between 

Caribbean Hispanic and Mayo (656 in common out of 884 in CH = 74% replication) than 

between CH and ROS/MAP (127/884 = 14% replication), suggesting that differences in brain 

region supersede those due to ancestry. In total, 114 genes were genome-wide significant in all 

three TWAS; 111 with concordant directions of effect. Among these 111 concordant genes, 

several were of known significance to LOAD, including LINC1904, FYN, VIM, NFKB1, LTBP2, 

KHDRBS1, PLCE1, CRK, and SYNM. At uncorrected p<0.05, 863 genes were significant in all 

three TWAS, 808 with concordant directions of effect. Notably, we found the known CH 

GWAS-implicated LOAD risk gene FBXL711 overexpressed in LOAD at uncorrected p<0.05 in 

all three samples. In addition, CD33 was the second most strongly LOAD-overexpressed gene in 

CH (pFDR=3.0x10-4) as well as genome-wide significant in Mayo (pFDR=3.1x10-3). 

We then aimed to identify genes with ancestry-specific effects by combining summary 

statistics from genes common across the three studies (ngenes=15,857) and comparing effects 

between 1) CH vs. ROS/MAP, 2) CH vs. Mayo, 3) ROS/MAP vs. Mayo (Figure 2). We then 

performed AUC-based gene ontology (GO) term enrichment, with resulting significant GO 

groups consolidated to minimize redundancy and overlap using the REVIGO tool.12 Pairwise 

comparisons of moderated t-statistics revealed moderate positive correlations (CH vs. Mayo 

r=0.54, C.I.99%=[0.53,0.56]; CH vs. ROS/MAP r=0.37, C.I.99%=[0.35,0.39]; ROS/MAP vs. Mayo 

(r=0.44, C.I.99%=[0.42,0.46]), suggesting again that sharing of LOAD-related molecular changes 
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are more pronounced when comparing the same brain region. We then ranked genes according to 

concordance of effect between samples, specifically, by the product of their t-statistics (“tprod”) 

for association with LOAD, assigning the highest ranks to genes with the largest discrepancy in 

direction and effect size between NHW and CH. Thus, higher ranks indicate sample-specific 

effects vs. lower ranks indicating common effects.  

Enrichment analyses revealed eight unique, non-redundant (REVIGO dispensability = 0) 

biological processes with either significantly discordant or concordant LOAD-related effects 

(Figure 3). First, comparing CH vs. Mayo, those genes ranking highly were significantly 

enriched for “protein localization to endoplasmic reticulum” (pFDR=6.5x10-25) and 

“nuclear−transcribed mRNA catabolic process, nonsense−mediated decay” (pFDR=9.3x10-24), 

whereas low-ranking genes were enriched for “lymphocyte proliferation” (pFDR=8.2x10-8) and 

“cell killing” (pFDR=2.4x10-3). Notably, the “response to beta-amyloid” (pFDR=1.4x10-4) category 

was also concordantly downregulated in both datasets, though it was not assigned a 

dispensability score of 0 (disp=0.057). Second, ROS/MAP vs. Mayo, only “neurotransmitter 

secretion” (pFDR=8.2x10-8) was significantly enriched with concordant downregulation. Finally, 

comparing CH vs. ROS/MAP, “protein localization to endoplasmic reticulum” (pFDR=8.2x10-8) 

and “viral transcription” (pFDR=8.2x10-8) both showed significant discordance, whereas 

“exocrine system development” (pFDR=8.2x10-8) was concordant. Importantly, three of the eight 

GO groups identified had significant overlap in gene membership, namely “protein localization 

to endoplasmic reticulum”, “nuclear−transcribed mRNA catabolic process, nonsense−mediated 

decay “, and “viral transcription”, with 78 genes in common (Supplementary Figure 4). These 

78 genes belong to the class of large and small ribosomal subunits, with the strongest 
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representation in the “SRP-dependent co-translational protein targeting to membrane” GO 

ontology (78/98 genes). 

Finally, we sought to characterize network-level effects of expression between ancestry 

and brain region. First, consensus gene co-expression modules were defined across all three 

samples using Weighted Gene Co-Expression Analysis (WGCNA).13 Then, modules were 

characterized for GO enrichment and tested for association with LOAD and cell type proportions 

in each sample separately to identify sample-specific processes. Cell type proportions were 

estimated using human marker genes from the Brain Cell Type Specific Gene Expression 

Analysis (BRETIGEA)14 package (see Supplementary Information). A total of 39 discrete 

consensus co-expressed gene modules were identified, ranging from 43 to 1,710 genes in size 

(Figure 4A; Supplementary Table 4), with 21 modules significantly enriched for at least one 

biological process (Table 2; extended enrichment results for uncorrected p<0.05 in 

Supplementary Table 5). Association tests of module eigengenes with LOAD in each dataset 

revealed largely conserved network-level effects: comparing CH and Mayo, LOAD effects were 

most strongly correlated (r=0.72, p=2.7x10-7), followed by Mayo vs. ROS/MAP (r=0.67, 

p=3.7x10-6), and CH vs. ROS/MAP (r=0.60, p=6.3x10-5). Several modules with concordant and 

discordant LOAD associations were identified (see Figure 4B-E; full association statistics in 

Supplementary Table 6), among which the lightgreen module, highly enriched for “signal-

recognition particle (SRP)-dependent cotranslational protein targeting to membrane” (p=3.2x10-

106), was positively associated with endothelial, microglial, and astrocytic cells in CH, but not in 

ROS/MAP or Mayo, suggesting an ancestry-specific molecular signature of these cell types.  

To our knowledge, this is the first investigation of gene expression from postmortem 

LOAD brain in CH individuals. Our results show a substantial overlap in LOAD-related genes 
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between CH and NHW, particularly in pathways related to immune cell proliferation, cell killing, 

and neurotransmitter secretion, whereas differences highlight roles of ribosomal genes and those 

involved in viral transcription. We speculate that (SRP)-dependent protein targeting may be 

disproportionately perturbed in CH LOAD patients given the strong ethnic-specific enrichment 

at both the gene and module. Intriguingly, SRP-dependent genes are strongly dysregulated in P. 

gingivalis infection of periodontal tissue,15 and the presence of neurotoxic gingipains excreted by 

these bacteria has recently been linked to LOAD pathogenesis in mice16 and humans.17 

Understanding ancestry-specific molecular profiles of LOAD brain tissue are a first step toward 

developing research questions and eventually interventions effective in non-Caucasian high risk 

populations. 

Key limitations in this study include different methods of tissue ascertainment and study 

design that ultimately impact the results; ROS and MAP are community-based, prospective 

cohort studies, whereas the CH and Mayo samples are case-control designs selected for 

diagnosis. Additionally, samples were not scanned for rare LOAD mutations using whole 

genome sequencing and CH specifically was a relatively small sample collected over several 

decades. The difficulties of ascertaining brains in specific populations challenge the availability 

of large samples sizes and tissue collected over a short period of time (i.e. higher quality). This 

resulted in samples with relatively low RNA quality (median RIN=4.5). Hispanics tend to not 

participate in either organ donation in general, or brain donation more specifically, to the same 

extent as non-Hispanic Whites (NHW).18 Nevertheless, by performing ribosomal RNA depletion 

prior to sequencing, we ensured that the impact of low RNA quality was mitigated. In fact, 

ribosomal RNA depletion has been shown to perform very well19,20 at amounts far below 

recommendation and over a wide range of intact and degraded material. Despite these 
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challenges, our analyses proved reliable by showing a moderate concordance between results 

from all three samples at the genome-wide scale. We were also able to identify several well-

known LOAD-associated loci from previous GWAS and sequencing studies. Importantly, 

FBXL7 was previously identified by a GWAS from our group.11 We also found an increased 

expression of CD33 in CH LOAD brains, consistent with the effect of the CD33 risk allele which 

increases the level of expression of full length CD33 in myeloid cells.21  

In sum, we performed RNA-sequencing on postmortem brain from a small sample of 

Caribbean-Hispanic elderly and two large independent non-Hispanic Whites cohorts, ultimately 

identifying candidate genes and processes that are consistently dysregulated across ethnicity or 

show ethnic-specific effects. Further work in large admixed cohorts will permit a deeper 

understanding of ancestry-specific mechanisms that may be used to predict risk, onset of 

pathology, and potentially provide precision treatment options.  
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Figures 
 

 
Figure 1. Results of single-gene transcriptome-wide associations with LOAD in Caribbean-

Hispanics and non-Hispanic Whites. Gene-level volcano plots for association of genes with 

LOAD status in A) the full self-reported Caribbean-Hispanic (CH) sample (stage 1, n=45), B) a 

subset of only genetically-confirmed CH subjects (stage 2, n=38), C) a subset of only 

genetically-confirmed CH subjects with PSEN1 mutation carriers excluded (stage 3, n=31), and 

two independent samples of non-Hispanic whites: D) ROS/MAP and E) the Mayo RNAseq 

cohort. The top ten significantly differentially expressed genes in each analysis are labeled. The 

Y-axes indicate two-sided –log10(p-values) for robust regression testing differential expression 

The X-axes indicate log2 fold-change in expression. F) the number of genome-wide significant 

differentially expressed genes in common across all three datasets (CH Stage 2 analysis). DLPFC 

= dorsolateral prefrontal cortex source tissue; LogFC = log2 fold-change in expression; TCX = 

temporal cortex source tissue. 
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Figure 2. Correlation of gene-wise differential expression effects between each study. A) 

Scatterplot showing the correlation between moderated t-statistics from robust regression of 

differential expression in the CH (Y-axis) and Mayo cohort (X-axis) studies. B) Scatterplot 

showing the same comparison for CH (Y-axis) and ROS/MAP (X-axis), and C) the same 

comparison for the Mayo cohort (Y-axis) and ROS/MAP (X-axis). Points are colored according 

to the rank of concordance or discordance of their effects (calculated at the product of t-statistics 

between the two studies being compared). The top 5 concordant and discordant genes in each 

direction are labeled in each plot. Above each plot are the Pearson correlation coefficient for 

moderated t-statistics and its 99% confidence interval. DLPFC = dorsolateral prefrontal cortex 

source tissue; ROS/MAP = Religious Orders Study and Memory and Aging Project; TCX = 

temporal cortex source tissue. 
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Figure 3. Enrichment analyses for genes with concordant and discordant LOAD effects 

between ancestry and brain region tissue source. A) Barplot summarizing AUC-based GO 

enrichment analysis using tprod ranks for all FDR-significant GO terms with a REVIGO 

dispensability score of 0. The X-Axes indicate the enrichment –log10(p-values), with values 

above 0 indicating enrichment toward higher ranks (greater discordance of between-sample 

effect) and values below 0 indicating enrichment toward lower tanks (greater concordance of 

between-sample effect). B) Scatterplots for each enrichment in panel A, showing the LOAD 

differential expression t-values for genes belonging to each enriched gene set within the context 

of all genes. Genes belonging to the labeled GO set are colored to match the barplot in A. CH = 

Caribbean-Hispanic; FDR = false discovery rate; GO = gene ontology; DLPFC = dorsolateral 

prefrontal cortex source tissue; ROS/MAP = Religious Orders Study and Memory and Aging 

Project; TCX = temporal cortex source tissue. 
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Figure 4. Consensus gene co-expression module analysis with LOAD and cell type 

proportions. A) Clustered dendrogram showing the common gene set hierarchical structure and 

consensus gene module definitions. Panels B-D show consensus module eigengene associations 

with LOAD (Pearson r) for all modules compared between pairwise sample combinations. 

Modules with concordant effects (pFDR<0.05 with same direction of effect) in all three samples, 

or significantly discordant (pFDR<0.05 in at least two samples but with opposite direction of 

effect), are labeled; four modules were significantly associated with LOAD in all three samples; 

greenyellow, purple, and white modules were consistently downregulated, while the darkgrey 

module was upregulated. In contrast, three modules showed significant but directionally 

discordant effects on LOAD, all when comparing CH to Mayo; darkred, royalblue, and 

lightgreen modules were all significantly upregulated in LOAD in CH and downregulated in 

Mayo. Colors correspond to module definitions. F) Association (Pearson r) of discordant and 

concordant module eigengenes with estimated cell type proportions from BRETIGEA in each 

sample. Only associations significant after FDR correction are shown. CH = Caribbean-

Hispanic; ROS/MAP = Religious Orders Study and Memory and Aging Project; ast = astrocytes; 

end = endothelial cells; mic = microglia; neu = neurons; oli = oligodendrocytes; opc = 

oligodentrocyte precursor cells. 
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Tables 
 

Table 1. Sample Demographics for Caribbean-Hispanic and Non-Hispanic White RNAseq 

Samples 

Sample Non-LOAD LOAD Diff (p) 

CH (n=16) (n=22)  

sex (M/F) 8M, 8F 6M, 16F 0.19 

age  66.9 (11.8) 78.1 (10.2) 0.0044 

RIN  5.8 (1.5) 4.2 (1.5) 0.0018 

PSEN1 G206A status (+/-) 16- 7+/15- 0.014 

Library size, millions  16.4 (4.3) 15.8 (4.1) 0.65 

    

ROS/MAP (NHW) (n=238) (n=358)  

sex (M/F) 88M, 140F 111M, 241F 0.09 

age  86.9 (7.2) 90.1 (5.9) 5.0x10-8 

RIN 7.2 (1.1) 7 (0.9) 0.021 

PMI  7.0 (4.1) 7.6 (5.2) 0.11 

Library size, millions  29.7 (9.7) 26.7 (7) 0.0024 

    

Mayo (NHW) (n=69) (n=80)  

sex (M/F) 34M, 35F 31M, 49F 0.044 

age  82.8 (8.5) 82.6 (7.7) 0.9 

RIN 7.7 (1) 8.6 (0.6) 1.7x10-9 

PMI  6.3 (6.5) 6.6 (4.3) 0.71 

Library size, millions  41.1 (11.1) 45.3 (10) 0.016 
Note: *p-values in “Diff” column correspond to those from two-sided, two-sample t-tests for continuous measures 

(age, RIN, library size, and PMI) and from two-sided Fisher’s exact tests for dichotomous measures (sex and PSEN1 

G206A mutation status). Summary measures for continuous outcomes are means (standard deviations in brackets). 

RIN = RNA integrity number; LOAD = late-onset Alzheimer’s disease; M = male; F = female; PMI = postmortem 

interval; CH = Caribbean-Hispanic; NHW = non-Hispanic white; ROS/MAP = Religious Orders Study / Memory 

and Aging Project; PMI = postmortem interval. 
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Table 2. Consensus gene co-expression module GO enrichment consolidated results for biological processes. 

Module GO Term Title Term ID Set size Overlap PFDR 

blue myelination GO:0042552 100 22 0.003788704 

brown 

calcium ion regulated 

exocytosis GO:0017156 109 34 7.70E-10 

cyan 

regulation of synaptic 

plasticity GO:0048167 137 13 0.010025119 

darkolivegreen 

mitochondrial ATP 

synthesis coupled electron 

transport GO:0042775 78 16 3.63E-15 

darkolivegreen 

mitochondrial respiratory 

chain complex assembly GO:0033108 90 14 1.35E-11 

darkolivegreen 

antigen processing and 

presentation of exogenous 

peptide antigen via MHC 

class I, TAP-dependent GO:0002479 65 5 0.020031436 

darkorange 

type I interferon signaling 

pathway GO:0060337 67 9 0.000326829 

darkorange peptide cross-linking GO:0018149 9 3 0.031216842 

darkred protein folding GO:0006457 181 12 0.044072483 

darkturquoise leukocyte proliferation GO:0070661 153 30 1.34E-20 

darkturquoise cytokine metabolic process GO:0042107 55 14 3.07E-11 

darkturquoise 

adaptive immune response 

based on somatic 

recombination of immune 

receptors built from 

immunoglobulin 

superfamily domains GO:0002460 142 19 2.24E-10 

darkturquoise cell killing GO:0001906 59 12 1.46E-08 

darkturquoise 

leukocyte mediated 

cytotoxicity GO:0001909 48 11 2.13E-08 

greenyellow mitochondrial fusion GO:0008053 22 7 0.031004875 

grey60 protein import into nucleus GO:0006606 115 12 0.001177074 

lightcyan sister chromatid cohesion GO:0007062 48 8 0.003661249 

lightgreen 

SRP-dependent 

cotranslational protein 

targeting to membrane GO:0006614 95 70 3.15E-106 

lightgreen 

nuclear-transcribed mRNA 

catabolic process, 

nonsense-mediated decay GO:0000184 117 70 2.92E-96 

magenta defense response to virus GO:0051607 161 26 1.03E-06 

magenta zymogen activation GO:0031638 34 9 0.001448339 

magenta leukocyte proliferation GO:0070661 153 19 0.001448339 

magenta 

negative regulation of viral 

life cycle GO:1903901 52 11 0.001448339 

midnightblue endothelial cell migration GO:0043542 150 16 0.0006371 

midnightblue 

regulation of response to 

wounding GO:1903034 101 13 0.0006371 

orange oxidative phosphorylation GO:0006119 118 24 5.68E-18 
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orange 

antigen processing and 

presentation of exogenous 

peptide antigen via MHC 

class I, TAP-dependent GO:0002479 65 8 0.000361587 

pink mitochondrial translation GO:0032543 133 20 0.000189662 

purple 

cellular ketone metabolic 

process GO:0042180 181 17 0.029231347 

sienna3 

negative regulation of 

gliogenesis GO:0014014 28 4 0.049517732 

skyblue3 cellular respiration GO:0045333 166 13 3.76E-11 

skyblue3 

mitochondrial respiratory 

chain complex assembly GO:0033108 90 11 3.76E-11 

tan 

monocarboxylic acid 

catabolic process GO:0072329 104 16 0.000432852 

turquoise action potential GO:0001508 88 30 0.000204357 

turquoise 

multicellular organismal 

signaling GO:0035637 132 38 0.000405821 

yellow 

dorsal/ventral pattern 

formation GO:0009953 53 20 4.41E-06 

yellow 

proteoglycan biosynthetic 

process GO:0030166 56 12 0.039043361 

Note: Enrichment analysis was performed using hypergeometric testing for biological processes GO terms. 

Benjamini-Hochberg FDR correction was applied to all two-sided p-values in pFDR column prior to GO term 

consolidation by REVIGO, accounting for all unbiased search terms. 
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