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Summary 
Numerous human conditions are associated with the microbiome, yet studies are           
inconsistent as to the magnitude of the associations and the bacteria involved, likely             
reflecting insufficiently employed sample sizes. Here, we collected diverse phenotypes          
and gut microbiota from 34,057 individuals from Israel and the U.S.. Analyzing these             
data using a much-expanded microbial genomes set, we derive an atlas of robust and              
numerous unreported associations between bacteria and numerous human traits, which          
we show to replicate in cohorts from both continents. Using machine learning models             
trained on microbiome data, we predict human traits with high accuracy across            
continents. Subsampling our cohort to smaller cohort sizes yielded highly variable           
models and thus sensitivity to the selected cohort, underscoring the utility of large             
cohorts and possibly explaining the source of discrepancies across studies. Finally,           
many of our prediction models saturate at these numbers of individuals, suggesting that             
similar analyses on larger cohorts may not further improve these predictions. 
 
Introduction 
The human gut microbiota is linked to metabolic disorders such as diabetes and obesity              
but these links are based on relatively small cohorts of several dozens or hundreds of               
individuals ​1–8​. Although these studies reported many statistically significant         
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associations, many of these effects are either moderate or do not replicate in other              
works ​9,10​. One such example is alpha diversity, for which there are contradicting reports              
regarding its association with different phenotypes. While microbiome diversity is mostly           
regarded as a positive indicator of health ​8,11–14​, other studies found that increased             
diversity is associated with microbiome instability ​15,16​. Diversity was also shown to            
increase with age ​17,18​, but this association was not conclusive in other cohorts ​19​. These               
discrepancies call for studying these questions across larger cohorts from diverse           
backgrounds. Indeed, in the field of genetics, large cohorts are required since many             
traits are known to be polygenic and to be affected by small effects from many variants                
20,21​. Similarly, in the microbiome we expect that individual bacterial species may have a              
low abundance or mild associations with human phenotypes, necessitating large          
sample sizes. In addition, many bacterial species are present in only a relatively small              
fraction of the population such that the association between their abundance and traits             
can only be studied in large cohorts that have enough individuals that harbor them. 
 
Apart from cohort size, there are other challenges in finding robust signals from the              
microbiome. One such challenge stems from the large number of genes that are shared              
between different bacteria through mechanisms such as horizontal gene transfer ​22,23​.           
Such sharing causes many short metagenomic sequencing reads to map non-uniquely           
to multiple bacteria, making it difficult to estimate bacterial relative abundance. Several            
methods were devised to address this issue, .e.g., by mapping to genes that appear in a                
single copy and are unique to a single species ​24​. However, these methods need to be                
applied anew every time that we wish to use a different reference genome set, as we                
wished to do here given the much expanded reference of bacterial species groups             
(SGBs) published in 2019 which added 3,796 new SGBs to the human microbiome             
catalog ​25​.  
 
To address the above issues and with the aim of deriving robust microbiome             
associations, we used metagenomic sequencing to profile the gut microbiome of 34,057            
individuals from both Israel and the U.S., for which we also obtained a rich set of                
phenotypes. We devised a novel algorithm for assessing bacterial relative abundances           
based on unique genetic elements, and applied it to the recent and much expanded              
SGB dataset of Pasolli et al. ​25​. Using the relative abundances on this expanded              
genome set and much larger cohort, we identified numerous associations between           
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microbiome diversity and several human traits. We were also able to develop models             
that predict these traits using only microbiome data with high accuracy, as in the case of                
age (R ​2​=0.31). Notably, these associations replicate across continents, and models          
derived from the Israeli cohort generalize well to the U.S. cohort, so they are not specific                
to a certain environment .  
 
By subsampling our cohort to typical cohort sizes used in other studies, we show that               
associations and predictions derived from smaller cohorts are highly variable and thus            
sensitive to the selected cohort, underscoring the need for larger cohorts in the             
microbiome field.  
 
Results 
Metagenome samples for 34,057 participants from two continents 
We obtained gut metagenomic profiles from 30,083 and 3,974 individuals from Israel            
and the U.S., respectively, who submitted their sample to a consumer microbiome            
company and signed an appropriate consent form. Participants also answered          
questionnaires and provided self-reported phenotypic data and blood tests (e.g., age,           
gender, BMI and the diabetes marker HbA1C%, ​Table 1​).  
 
We randomly selected 90% of the samples from the Israeli cohort (n=27,075 samples)             
to be our discovery cohort on which we trained predictive models using cross-validation             
and set aside as independent test sets the remaining 10% of the Israeli cohort (“test1”,               
n=3,008 samples) and the entire U.S. cohort (“test2”, n=3,974 samples) ( ​Figure 1a-e,            
Table 1 ​). These test sets were only used once to evaluate the performance of the               
models developed on the discovery cohort. 
 
To compute bacterial relative abundance, we used the representatives of the           
species-level genome bins (SGBs) classification of Pasolli et al. ​25 , as they represent a               
greatly expanded set of genomes with thousands of new bacterial genomes that            
increase the number of mapped reads and allow better exploitation of metagenomic            
samples. We restricted ourselves to 3,127 SGBs that provide a good representation of             
species diversity (Methods) and used only reads that mapped uniquely to a single SGB              
representative. We developed a method for estimating the relative abundance of each            
SGB in every sample (Methods). Our method is based on examining only reads that              
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map uniquely to a single SGB, since when using unique mappings we expect uniform              
coverage across SGB genome bins that have the same number of unique positions.             
This property allows robust estimation of relative abundances, as coverage across the            
genome bins depends linearly on the SGB’s relative abundance. The mean relative            
abundances of the different species are the same in the two Israeli cohorts but are               
somewhat different than in the US cohort (​Figure 1f-g​). 
 
Microbiome diversity increases with age and associates with metabolic         
parameters 
We first examined the association of microbiome diversity and human phenotypes since            
the literature is conflicted even on these basic associations. To this end, we computed              
alpha diversity using the species level Shannon index and ranked individuals by deciles             
of alpha diversity ( ​Figure 2a​). When comparing the top decile and the bottom decile of               
alpha diversity, we found that HbA1C%, BMI, fasting glucose and fasting triglycerides            
are significantly higher in the bottom decile while age and HDL cholesterol are             
significantly lower in the bottom decile (P-value < 1e-16 after FDR correction, Mann             
Whitney rank-sum test)​, ​including a trend across deciles ( ​Table S1-S6​). Similarly,           
examining alpha diversity as a function of these traits, we found significant correlations             
between alpha diversity and each of these traits ( ​Figure 2b​). Notably, these            
associations were consistent in both the Israeli and U.S. cohorts ( ​Figure 2b​), even             
though the Israeli cohort has significantly higher alpha diversity values (mean           
7.3±0.0.77 vs. 7.18±0.67, P-value<10​-40 ,Mann Whitney rank-sum test). The higher          
diversity of the Israeli cohort persisted even when subsampling the Isareli cohort to             
match the U.S. cohort on age and BMI (Methods, ​Table S7​). 
 
Microbiome-phenotype associations are consistent across continents  
We previously employed linear mixed models to estimate the fraction of phenotypic            
variance that can be inferred from microbiome composition, termed         
microbiome-association-index ​( ​b​2​) ​26​. Our previous estimates were based on a cohort of            
715 individuals and therefore had wide 95% confidence intervals, we revisited these            
estimates for our two new and larger cohorts. We estimated explained-variance based            
on alpha-diversity alone ( ​Figure 3a, ​Methods), and based on the full species relative             
abundances ( ​Figure 3b, ​Methods). Notably, our new estimates agreed well with our            
previous findings ( ​Table S8​), but our much larger cohort of 30,083 Israeli individuals             
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has substantially narrower 95% confidence intervals ( ​Table S9​). We found that           
microbiome composition strongly associates with self-reported diabetes ( ​b​2​=52%), age         
( ​b​2​=28%), HbA1C% ( ​b​2​=15%), fasting blood glucose ( ​b​2​=13%), BMI ( ​b​2​=11%), fasting          
triglyceride ( ​b​2​=9%), HDL cholesterol ( ​b​2​=6%) and smoking status ( ​b​2​=6%). In contrast,           
the blood levels of thyroid-stimulating hormone (TSH), albumin and clotting (measures           
by International Normalized Ratio INR) were not significantly associated with the           
microbiome in our cohort. Notably, ​b​2 ​estimates from our U.S. cohort of 3,974 individuals              
were consistent with those derived from the Israeli cohort (Pearson correlation R=0.75,            
P-value <0.001) but had wider confidence intervals ( ​Figure 3b, Table S9,S10​).           
Although as expected, the variance explained by the full relative abundance matrix (our             
b​2 ​estimates) was higher than that explained by alpha diversity alone, these two             
microbiome features highly agreed (Pearson correlation R=0.52, P-value <0.03).  
 
Different traits are accurately predicted by microbiome composition 
We next asked whether various traits can be accurately predicted based only on             
microbiome composition. We compared two models; a linear model (with ridge           
regression regularization) and gradient boosted decision trees (GBDT) (Methods). Both          
models used species relative abundances as input. Our models obtained significant           
predictions for many traits ( ​Figure 4a,b​) such as age (R ​2​=0.35 for linear regression,             
R ​2​=0.31 for GBDT, for 10 fold cross validation on train IL samples), gender (AUC=0.64,              
0.78), HbA1C% (R​2​=0.24, 0.26) and BMI (R ​2​=0.15, 0.15).  
 
We obtained significant predictions even when performing the analyses separately for           
each gender, with the exception of height which was significantly predicted (R ​2​=0.13) in             
the entire cohort but not in the gender-separated predictions, indicating that its            
predictions were driven by the prediction of gender. Since metformin, the most common             
drug used to treat patients with type2 diabetes, is known to affect microbiome             
composition, we also evaluated the performance of an HbA1C% predictor only on            
participants who did not report taking metformin and obtained equivalent performance           
(R ​2​=0.19 GBDT). 
 
The linear models are attractive since their accuracy was almost similar to boosting             
decision trees and they are easier to interpret. However, boosting trees performed            
better across 11 of 12 phenotypes (age being the exception) that had significant             
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predictions(overall mean R ​2 improvement of 0.02+/-0.011, ​Figure S1 ​) suggesting that          
non-additive interactions between different bacteria are predictive of several traits. As           
additional evidence for the importance of non-additive interactions among bacteria in           
predicting traits, for both HbA1C% and BMI the R ​2 of the GBDT predictions on held-out               
subjects was higher than the estimated ​b​2 for these traits ( ​Figure 3b ​). The ​b​2 estimation               
used linear mixed models to estimate the fraction of variation predicted by the             
microbiome, which does not include any non-linear interaction. 
 
We investigated if the predictive power of the microbiome is mediated through age and              
sex, since ​some of the above traits such as HbA1C% are known to increase with age ​27 ​.                   
We found that the microbiome composition predicted age with high accuracy (R ​2​=0.31),            
and age and gender alone predict HbA1C% with R ​2​=0.20 and BMI with R ​2​=0.02 (GBDT,              
Figure 4c-e ​). Therefore, we asked whether microbiome-based predictions of HbA1C%          
and BMI are mediated entirely by its ability to predict age and gender, or whether it                
carried additional predictive power specific to these traits. We found that adding            
microbiome to age and gender to the GBDT model significantly improved the            
predictions of both HbA1C% (from R ​2​=0.20 to 0.36, ​Figure 3c ​) and BMI (from R ​2​=0.03              
to 0.18, ​Figure 3c ​), demonstrating that some of the association between microbiome            
and these traits is not mediated through age and gender.  
 
We also evaluated the accuracy of our above models, derived only based on the Israeli               
training set, on our two independent and held out cohorts from Israel and the U.S. and                
found that they all had highly significant predictions ( ​Figure 4f​), thereby validating the             
robustness of our models. We note that prediction accuracy for age and HbA1C% was              
lower in the U.S cohort, which may be explained by differences in the microbiome              
composition between the IL and U.S. cohorts and by lower age and HbA1C% levels in               
the U.S. cohort. 
 
Finally, to examine the importance of cohort size on prediction accuracy, we applied our              
above prediction pipeline to different random subsamples of our training cohort, ranging            
from a few hundreds of subjects to 24,000 (Methods). We found that prediction             
accuracy increases with cohort size ( ​Figure 4g-i​) and does not saturate even with a              
cohort of 1,000 individuals. For age, we observed an almost two-fold increase in the R ​2               
(from 0.18 to 0.30) when increasing the cohort from 1,000 to 12,000 individuals. For              
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cohorts of hundreds of individuals the standard deviation of the predictions was high, as              
in the case of HbA1C% for which different subsamples of 200 individuals can reach              
both R ​2​=0.4 and R ​2​=0.0 as likely outcomes (within 2 standard deviations). Together,            
these results highlight the need for obtaining large cohorts of microbiome as is known to               
be the case in the field of human genetics. 
 
An atlas of bacterial species that robustly correlate with age, HbA1C% and BMI 
We next sought to identify which individual bacterial species are responsible for driving             
the predictions of our models for age, HbA1C% and BMI, since these traits were              
predicted with the highest accuracy. We found many bacterial species that exhibited            
highly significant correlations to these traits ( ​Figure 5a-c​, e.g., 640, 454, 779 bacteria             
out of the top 1345 occuring bacteria had significant Spearman correlation,           
P-value<0.05 after Bonferroni correction for age, HbA1C% and BMI respectively).          
Moreover, the spearman correlation of the bacterial abundances with these traits was            
in good agreement between the Israeli and U.S. cohorts ( ​Figure 5a-c​, R=0.58, 0.57,             
0.75 for age, HbA1C% and BMI, P-value<10​-39​). Notably, the 3 bacteria most strongly             
associated with BMI in both cohorts included a bacterial species from the            
Eubacteriaceae family that was only recently assembled and that has no genome in             
public repositories (unknown SGB, ​Figure 5a-c ​). Again, we subsample the cohorts to            
smaller cohort sizes and observe that large cohorts are necessary in order for results to               
replicate (​Figure 5d-f​). 
 
As a useful resource for the community, we compiled our results into an atlas of               
summary statistics for all bacterial species and top predicted phenotypes ( ​Table           
S11-S16​). For each species we report bacterial associations to human phenotypes           
based on bacterial log relative abundances. Specifically, we report the Spearman           
correlation coefficient and P-value, the Pearson correlation coefficient and P-value, the           
coefficient in the linear model (trained with Ridge regularization), and bacterial feature            
importance in the GBDT model using the feature attribution framework of SHapley            
Additive exPlanations​28 (SHAP). In genetics, summary statistics of single nucleotide          
polymorphisms are widely used to generate polygenic risk scores which were shown to             
be predictive of disease ​29,30​. Similarly, researchers can now use our resource to             
generate microbiome-based predictions of phenotypes in their datasets by extracting          
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our reported bacterial regression coefficients and multiplying them by the log of the             
relative abundances of the corresponding species in their dataset.  
 
 
Discussion 
In this study, we collected the largest cohort to date of metagenomic samples and              
phenotypic data from two continents, and analyzed it using a much expanded set of              
reference microbial species. Together, this allowed us to identify highly robust           
associations between gut microbiome composition and phenotypes, which replicate in          
both cohorts. We compiled these robust associations into an atlas that can be used by               
the community to derive trait predictions on smaller datasets, akin to the use of              
summary statistics in the field of genetics. We show that a large fraction of the variance                
of several traits such as age, HbA1C% and BMI can be accurately predicted by both               
linear models and boosting decision trees models. These predictions replicate across           
continents and there is also high agreement in the set of individual bacterial species that               
associate with these traits in the Israeli and U.S. cohorts.  
 
When sub-sampling our large cohort into smaller sized cohorts, we found that even             
cohorts of 1,000 individuals have significantly lower average accuracy of associations           
between bacteria and phenotypes. Models derived from different sub-samples of          
smaller cohort sizes display high variability both in the set of bacteria that associate with               
each trait and in prediction accuracy. These results may explain the relatively low             
agreement that exists across studies in the set of bacteria associated with different traits              
and conditions, and they call for employing larger cohort sizes in microbiome studies.  
 
Using an expanded reference set allowed us to study many bacterial species for the first               
time and to identify novel associations for them. Notably, even among the top             
associated bacteria we found unnamed bacteria that are prevalent and appear in            
hundreds and sometimes thousands of individuals from our cohort. These findings           
emphasize the importance of expanding the reference set of the human microbiome            
even further, and suggest that such newly identified species may have strong            
associations with important host phenotypes. 
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Overall, by combining larger microbiome cohorts and expanded bacterial genome          
references we robustly characterize bacterial links to many important health          
parameters, serving an important first step towards unraveling the causal links and            
mechanisms by which bacteria affect host phenotype. 
Methods 
Microbiome sample collection, processing and analysis  
Participants provided a stool sample using an OMNIgene-Gut stool collection kit (DNA            
Genotek), and processed according to the methods described in Mendes-Soares et al.            
31​: Genomic DNA was purified using PowerMag Soil DNA isolation kit (MoBio) optimized             
for Tecan automated platform. Illumina compatible libraries were prepared as described           
in ​32​, and sequenced on an Illumina Nextera 500 (75bp, single end), or on a NovaSeq                
6000 (100bps, single end). Reads were processed with Trimmomatic ​33​, to remove            
reads containing Illumina adapters, filter low quality reads and trim low quality regions;             
version 0.32 (parameters used: -phred33 ILLUMINACLIP:<adapter file>:2:30:10       
SLIDINGWINDOW:6:20 CROP:100 MINLEN:90 for 100bps reads, CROP:75       
MINLEN:65 for 75bps reads). Reads mapping to host DNA were detected by mapping             
with bowtie2 ​34,34,35 (with default parameters and an index created from hg19) and             
removed from downstream analysis.  
 
All samples were subsequently downsampled to a depth of 5M reads. Samples with             
fewer reads were removed from further analysis, leaving us with a reduced sample of              
participants that was used for downstream microbiome analyses.  
 
Relative abundance estimation of SGBs 
The bacterial reference dataset for relative abundance estimation is based on the            
representative assembly of the species-level genome bins (SGBs) and genus-level          
genome bins (GGBs) defined by Pasolli et al. ​25​. By construction, all assemblies in each               
SGB are at high average nucleotide identity with one another, and the representative             
was chosen to be the best quality assembly amongst them.  
 
Out of the 4,930 human SGBs (associated with various body sites), we chose to work               
with 3,127 SGBs, which were characterized by either belonging to a unique genus or              
with at least 5 assemblies to justify having a new SGB. We employed this restriction,               
since we noticed that the cutoff threshold used by Pasolli et. al. to cluster assemblies               
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into SGBs resulted in small groups with little nucleotide difference from a large nearby              
SGB is artificially split to a new SGB. 
 
Abundance was calculated by counting reads that best matched to a single SGB of the               
set. In order to avoid sample reads which may be assigned to more than one SGBs                
(which might mislead us to believe an SGB appears in sample when it actually does               
not), we created a mapping of all 100/75-bps reads which are unique to a single of                
these representatives. We divided each representative genome assembly to         
consecutive windows such that each window includes 100 unique 100/75-bp reads           
(unique-100-bins). Since different proportions of reads are unique in different areas of            
the assembly, these windows are not of constant length, but the number of sample              
reads expected to uniquely map to them should be constant.  
 
We used bowtie2 ​35 to map samples from our cohort versus an index built from the set                 
of representatives of the SGBs (demanding all mappings of length 100/75 to score -40              
or above). When analysing the mapping, we looked only at reads whose best map is               
unique (thus mapped to a location which is unique in the set of representatives). We               
count the number of reads uniquely mapped to each window of each SGB. 
 
To assess the cover of each SGB, we first choose a window size, which is a multiple of                  
the original unique-100-bins, for which the average cover is at least 20 reads. Next, we               
sum the number of reads in this enlarged-window, and test the distribution of covers              
over the windows.  
 
Finally, we take the dense mean of that distribution ​36​, in order to avoid our cover                
estimation being biased by a relatively small part of the reference which is highly              
covered (may come about from plasmids or horizontal transfer which was not identified             
in the uniqueness process since it did not appear in any other representative) or lowly               
covered (since this is a representative of an SGB, a strain present in our sample may                
not include all parts of the representative). When the dense 50% of the cover              
distribution starts above 0 we conclude the SGBs exists in the sample, and we estimate               
its relative abundance. The cover estimation for each SGB is the dense mean cover of               
its representative, normalized by the enlarged-window size.  
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The relative abundance estimation is the cover divided by the sum of the covers of all                
representatives we concluded exist in this sample. 
Code of the algorithm is provided in github:  
https://github.com/erans99/UniqueRelativeAbundance 
  
Cohort matching 
We subsampled the IL cohort to match the US cohort on age and BMI using MatchIt                
package from CRAN repository for r. 
 
Alpha diversity explained variance 
We calculated the alpha diversity explained variance by regressing out gender and age             
from each phenotype, and then using ordinary least squares modeled the phenotype by             
alpha diversity. To get confidence intervals, we bootstrapped the data 10,000 times. 
 
Microbiome- association- index 
We calculated ​b​2 estimates using linear mixed models as was previously described ​26             
We used age and gender as fixed effects covariates, and built a microbiome             
genetic-relationship-matrix, using our developed SGB based relative abundances. The         
b​2 calculation assumes that the phenotype distributed normally, we removed sample           
outliers from the IL and US cohorts using the same thresholds (removing less than 5%               
of individuals Table S17). To account for differences between the population and study             
prevalence of binary traits, we applied the correction of Lee et al. ​37 which has been                
shown to provide a lower bound on the fraction of explained variance ​38​. We also               
provide uncorrected estimates in Table S18. Phenotype distributions of blood SGPT           
levels were far from normally distributed and were not estimated.  
 
Phenotypes prediction 
We used the gradient boosting trees regressor from Xgboost ​39 as the algorithm for the               
regression predictive model for different phenotypes. We used the gradient boosting           
trees classifier from Xgboost as the algorithm for the classification predictive model for             
phenotypes with binary values. All hyperparameters of the xgboost were fitted based            
only on cross validation of the train set. 
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The parameters of the predictors when using microbiome features were:          
colsample_bylevel=0.075, max_depth=6, learning_rate=0.0025, n_estimators=4000,    
subsample=0.6, min_child_weight=20. These parameters were used for regression as         
well as classification. 
 
The rest of the parameters had the default values of Xgboost. 
 
For the Ridge linear regression we used the RidgeCV from the scikit-learn package.             
The parameters used for the regressor were: 
alphas=[0.1,1,10,100,1000], normalize=True. The rest of the parameters were the         
default. The input to the Ridge linear regression was log transformed SGB abundance. 
 
For binary phenotypes ​SGD classifier from the scikit-learn package was used, with            
default parameters (L2 normalization). 
 
When using microbiome features for the prediction, only the top 1345 occuring SGBs             
were used, i.e., the SGBs that were found in the highest number of samples, to avoid                
overfitting on rare SGBs. 
 
Calculating prediction accuracy as a function of cohort size 
For cohort size n (for n=200, 500, 1000, 2000, 3000, 4000, 6000, 8000, 12000, 16000,               
20000, 24000; for prediction of HbA1c the maximum size was 16000) we repeated the              
following process 10 times: we randomly selected a subset of n samples, ran 10 fold               
cross validation of the prediction and listed the mean and standard deviation of each              
fold. By repeating the procedure 10 times we received the mean and standard deviation              
of the prediction accuracy estimate. 
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Table 1 

 
 Israel Train Israel Test U.S. test 
 Age 55±14 55±14 52±13 
 Gender M:F 11,019: 

16,056 1,129:1,779 1,678:2,296 
 BMI 28±5 28±5 27±6 
  (n=27,018) (n=3,003) (n=3,951) 
 Blood HbA1C% 5.8±0.8 5.8±0.8 5.5±0.66 
  (n=19,457) (n=2,181) (n=2,292) 
 Fasting blood  103±25 104±25 98±23 
 glucose (mg/dl) (n=21,613) (n=2,405) (n=2,291) 
 Fasting blood 132±78 134±82 107±71 
 triglycerides (mg/dl) (n=22,149) (n=2,484) (n=2,431) 
 Fasting blood HDL 53±18 53±17 61±21 
 cholesterol (mg/dl) (n=22,391) (n=2,507) (n=2,546) 
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Figures 

 
Figure 1: Cohort description and model prediction scheme. 

(a) Illustration of cohorts and machine learning process. A training set of 27,075 individuals             
was randomly selected out of 3,083 Israeli individuals and was used for model             
parameter selection using 10 fold cross validation and microbiome, age and gender            
features. For each phenotype the selected model was trained on the 27,075 training             
samples and then tested on both the held out 3,008 samples of the Israeli population               
and a separate U.S. test cohort of 3,974 individuals. 
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(b) Distribution of age in the 3 cohorts, training test1 and test2. 
(c) - (e) Same for HbA1C%, BMI and alpha diversity. 
(f) A scatter plot comparing the mean log relative abundance of each species, in the Israeli               

training cohort vs. the Israeli test1 cohort.  
(g) Same as (f) in the Israeli training cohort vs. the US test2 cohort.  
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Figure 2: Species level Shannon alpha diversity significantly associates with          
many phenotypes. 

(a) A box-plot of the distribution of phenotype values, for each of 10 deciles of Shannon               
alpha diversity. Phenotype values in the first and last deciles of alpha diversity are              
compared using Mann-Whitney rank-sum test where *** signifies P value< 10 ​-16 after            
FDR correction. Boxes correspond to 25-75 percentile of the distribution and whiskers            
bound percentiles 5-95. 

(b) Running average of alpha-diversity (y-axis) for the combined training and test1 cohort            
(green curve), and for the separate test2 cohort (purple curve), ordered by the             
phenotype values. For the larger Israeli cohort the average is on 1000 individuals with              
shift of 100 individuals; for the smaller U.S. cohort the group size and shift were chosen                
to obtain 10 points and the shift was 10% of the group size. The Pearson correlation and                 
P-value shown are of the Israeli cohort, and are calculated on individual level data. 
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Figure 3: Explained variance of phenotypes based on microbiome features. 
(a) The proportion of variance of various phenotypes that can be explained using Shannon             

alpha diversity in the Israeli (green) and U.S. cohorts (purple) based on a linear model               
with covariates for age and gender. Also shown is the 95% confidence interval. 

(b) The proportion of variance of various phenotypes that can be explained using            
species-level relative abundances in the Israeli (green) and U.S. (purple) microbiome           
composition based on a linear mixed model estimation with covariates for age and             
gender (microbiome association index ​26​). Also shown is the 95% confidence interval.  

      Estimates from the larger cohort have smaller confidence intervals.  
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Figure 4: GDBT prediction of phenotypes by the microbiome. 
(a) Coefficient of determination (R​2​) of prediction of different phenotypes obtained in a            

10-fold cross validation scheme on the training set. Predictions are shown for a model              
trained on the full training set cohort, and two others trained and tested separately on               
each gender. Each model was trained using only microbiome derived features. 

(b) Same as (a), but shown is the area under the curve (AUC) for predicting binary               
phenotypes. 

(c) - (e) Scatter plot of the phenotype and 10-fold cross-validation predicted values of the              
phenotype, for age, HbA1C% and BMI when training on the Israeli train cohort. R​2 of               
prediction is reported.  

(f) Coefficient of determination (R​2​) of predictions of age, HbA1C% and BMI, for models             
trained with different sets of input features, and tested on the training set in cross               
validation and on both the held-out Israel and U.S. test sets. Error bars of the test set are                  
from bootstrapping.  

(g) - (i) Coefficient of determination (R​2​) and standard deviation error bars of predictions of              
age, HbA1C% and BMI obtained using the same 10-fold cross validation prediction            
scheme above, across different sub-samples of the cohort of different sizes. For each             
cohort size ​k​, 10 random sub-samples of ​k ​individuals were obtained and the mean and               
standard deviation of their predictions are shown.  
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Figure 5: Predictive power of single species. 

(a) Spearman correlation of each bacterial species with age in the Israeli training cohort             
(x-axis, N=27,075) and the U.S. test cohort (y-axis, N=3,974). The correlation and            
P-value between the correlations of each cohort are shown. Bacteria are colored            
according to the P-values of the Spearman correlation in the Israeli cohort. The top three               
bacteria by Israeli P-values that replicate in the U.S. cohort are highlighted. 

(b) -(c) Same as (a) for HbA1C% and BMI.  
(d) Spearman correlation between the correlations of the Israeli cohort and U.S. cohorts as             

in (a) but for different sub-samples of cohort sizes. For each cohort size ​k​, a sub-sample                
of ​k ​individuals was obtained from both the Israeli and U.S. cohorts and this procedure               
was repeated 10 times to obtain standard deviation error bars.  

(e) - (f) Same as (d) for HbA1C% and BMI.  

 
 
  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.28.122325doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.28.122325
http://creativecommons.org/licenses/by/4.0/


 

Supplementary Figures 

 
Figure S1: GBDT vs Ridge - prediction of phenotypes by the microbiome. 

(a) Coefficient of determination (R​2​) of prediction of different phenotypes obtained in a            
10-fold cross validation scheme on the training set. Predictions are shown for a model              
trained on the full training set cohort using GBDT or Ridge regression. Each model was               
trained using only microbiome derived features. 

(b) Same as (a), but shown is the area under the curve (AUC) for predicting binary               
phenotypes. 
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