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Abstract 
We describe our efforts at developing a one-step quantitative reverse-transcription 
(qRT)-PCR protocol to detect severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) RNA directly from saliva samples, without RNA purification. We find that both 
heat and the presence of saliva impairs the ability to detect synthetic SARS-CoV-2 RNA. 
Buffer composition (for saliva dilution) was also crucial to effective PCR detection. Using the 
SG2 primer pair, designed by Sigma-Aldrich, we were able to detect the equivalent of 
1.7×10 6 viral copies per mL of saliva after heat inactivation; approximately equivalent to the 
median viral load in symptomatic patients. This would make our assay potentially useful for 
rapid detection of high-shedding infected individuals. We also provide a comparison of the 
PCR efficiency and specificity, which varied considerably, across 9 reported primer pairs for 
SARS-CoV-2 detection. Primer pairs SG2 and CCDC-N showed highest specificity and PCR 
efficiency. Finally, we provide an alternate primer pair to use as a positive control for human 
RNA detection in SARS-CoV-2 assays, as we found that the widely used US CDC primers 
(targeting human RPP30) do not span an exon-exon junction and therefore does not provide 
an adequate control for the reverse transcription reaction. 
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Introduction 
The ongoing SARS-CoV-2 pandemic continues to rapidly spread globally, reaching in 
excess of 5.2 million cases and 330,000 deaths, causing substantial socio-economic impacts 
(UNSDG 2020; Nicola et al. 2020; WHO 2020a). In order to facilitate: (I) minimising and 
tracing the spread of SARS-CoV-2, and (II) an easing of lockdown measures; we require 
information on the extent of community transmission, particularly of asymptomatic cases 
(Prather et al. 2020). This necessitates accessible, high-throughput, and cost-effective 
methods of SARS-CoV-2 detection.  
 
Quantitative reverse-transcription (qRT)-PCR has become a critical tool for detecting 
SARS-CoV-2, by amplifying virus-derived RNA, due to its increased sensitivity and fast 
processing time (Esbin et al. 2020). However, this has been limited by the requirement for 
labor-intensive RNA extractions in order to enrich viral RNA. We propose an alternative 
method that bypasses RNA extractions by performing one-step qRT-PCR directly on saliva. 
Importantly, saliva samples have been highlighted as a useful diagnostic tool for 
SARS-CoV-2 detection (Azzi et al. 2020) and qRT-PCR on crude saliva samples has been 
used to detect Zika virus (Li et al. 2019). We also propose the use of SYBR green-based 
detection to complement the multiplexed hydrolysis probe-based detection of widely used 
kits. The relative simplicity and cost of SYBR green detection is particularly relevant for 
facilitating mass testing of SARS-CoV-2 in poorer countries. Indeed, SYBR green, Taq 
polymerase, and reverse transcriptase can all be made relatively cheaply and there is a 
growing community effort for open source protocol development (e.g. BEARmix: 
https://gitlab.com/tjian-darzacq-lab/bearmix).  
 
The use of SYBR green also allows for the diagnosis of non-specific amplification via melt 
curve analysis (Tm calling). Indeed, non-specific amplification has been a problem for 
hydrolysis probe-based kits, likely the result of sequence similarity to RNA from other 
commonly found pathogens including viruses (Vogels et al. 2020; Rahman et al. 2020). For 
example, early versions of the US CDC kits were prone to false positives when testing for 
SARS-CoV-2 because the primers bound to other milder strains of coronavirus 
(Satyanarayana 2020; Cohen 2020). Therefore, the ability to distinguish non-specific 
amplification is important for reliable diagnosis. Finally, the internal control primers from the 
US CDC kit [targeting human RPP30 (Vogels et al. 2020)] do not span an exon-exon 
junction thus allowing amplification of genomic DNA instead of specifically detecting 
RNA-derived cDNA. This means it does not provide a reliable positive control for successful 
reverse transcription. We also tested the combined use of a sample buffer containing 
Tween20 and heat treatment for impediments on PCR chemistry so they could be 
considered for virus inactivation (Roberts et al. 2009; Darnell et al. 2004). 

Method 
Human RNA was purified from blood using TRIzol (Invitrogen) as per the manufacturer's 
instructions. Synthetic SARS-CoV-2 RNA Control 1 (Twist Bioscience, SKU:102019) was 
used to represent viral RNA. One-step qRT-PCR was performed using the Power SYBR 
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one-step kit (Applied Biosystems) to amplify RNA-derived cDNA in 10 µL reactions on a 
LightCycler480 Instrument II (Roche, LC480). 
 
The following describes our protocol use to obtain the results herein: 

1. Saliva samples were collected in a 50 mL Falcon tube. 
2. Samples were diluted 1:1, using a reverse pipetting technique with wide-end or cut 

pipette tips to overcome saliva viscosity, with sample buffer (TE-T: 10 mM Tris pH 
6.5, 1 mM EDTA, 1% Tween20) in a clean PCR tube then heated at 95 °C for 5 mins. 

3. Heat-treated samples were further diluted to a final dilution ranging from 1/4 to 1/128. 
4. A one-step RT-PCR master mix was prepared containing Power SYBR Green 

RT-PCR Mix (2×, 5 µL per reaction), 125× RT enzyme mix (0.08 µL per reaction), 
and appropriate primer pairs (0.15 µL of 10 µM stock for each primer per reaction to 
obtain final concentration of 150 nM), according to the manufacturer's instructions for 
a 10 uL reaction volume. Primers used are listed in Table 1. 

5. 5.4 µL of the master mix was combined with 4.6 µL of sample on a 384-well skirted 
PCR plate (Roche style, BioTools). Samples include: (I) saliva diluted in sample 
buffer, (II) purified human RNA diluted in nuclease-free water, (III) synthetic 
SARS-CoV-2 RNA diluted in nuclease-free water, or (IV) no-template control (NTC: 
nuclease-free water or sample buffer as appropriate). 

6. All samples were run in either technical duplicate or triplicate reactions. 
7. The plate was sealed with an adhesive optically transparent PCR seal (Integrated 

Sciences). 
8. The LC480 was run according to the program outlined in Table 2 based on the 

manufacturer's instructions. 
9. The LC480 Instrument Software (v1.5.0) was used to calculate threshold cycle (Ct) 

values from raw fluorescence. First, Tm calling was performed on all reactions to 
exclude: 

a. Reactions with products matching non-specific amplification as reflected from 
the negative control (no template), or 

b. Reactions not demonstrating a single clear product matching the product 
amplified from the positive control (SARS-CoV-2 RNA Control 1). 

10. Amplified products from each primer pair were inspected by gel electrophoresis 
(1.5% agarose) to match the Tm calling results to expected fragment size (Figure 4 
A-B). 

11. The 2nd derivative method was used for determining Ct values (based on polynomial 
regression performed by the LightCycler480 Instrument Software using the high 
confidence algorithm). Each reaction, and its corresponding Ct value, was 
considered individually. 

12. PCR efficiency was estimated using two separate methods: 
a. PCR efficiency for each primer pair was estimated using LinReg on positive 

control reactions demonstrating a single expected product as determined in 
step 8 (Ruijter et al. 2009). Additionally, PCR efficiencies were only 
considered if reactions passed LinReg sample and quality checks, for 
example reactions displaying minimal noise, no baseline error, and 
appropriate amplification and plateau phases. In some cases PCR 
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efficiencies could not be determined by LinReg (“n.d.”), for example due to 
variable background fluorescence and/or minimal amplification. 

b. For selected primer pairs, PCR efficiency was also estimated using a dilution 
series of Twist Synthetic SARS-CoV-2 RNA Control 1 (or purified human RNA 
for GAPDH ). A standard curve was constructed in GraphPad Prism (Ct values 
plotted against Log 10 Concentration) and its slope was used to determine 
PCR efficiency with the formula: E = [-1+10 -1/slope] x 100. 

Results 
We first established a workflow for one-step qRT-PCR by amplifying GAPDH from a dilution 
series of purified human RNA (1x = 344.4 ng/µL; Figure 1 A-B). The reverse primer spans an 
exon-exon junction in GAPDH (exons 2 and 3), thus minimising the risk of amplifying 
genomic DNA (McIntyre et al. 2012). As expected, a single product was observed and Ct 
values demonstrated a log-linear relationship to RNA concentration. The abnormal 
fluorescence curve from in the 1x sample (not included in regression) suggested the 
possibility of a saturated reverse-transcription reaction resulting in a less pronounced 
amplification phase. 
 
We next amplified GAPDH from a series of diluted saliva samples without RNA purification 
(Figure 2). We checked for specific amplification by comparing product Tm  based on purified 
human RNA. Unfortunately, high concentrations of saliva inhibited the reaction as seen by 
open circles in 2 -1 - 2 -4 dilutions. As we diluted the saliva, we were able to more confidently 
amplify GAPDH suggesting that some saliva-derived material may be interfering with the 
reaction. We also tested the effect of a moderate heat treatment (70°C for 5 minutes). This 
was done to simulate heat inactivation, which would be performed on saliva from potentially 
infectious samples. Interestingly, whilst Ct values increased after heat-treatment, 
heat-treatment improved the ability to amplify the expected product from GAPDH in less 
diluted saliva. 
 
We next tested whether the use of various sample buffers and heat treatments impaired the 
one-step RT-PCR reaction. This included the use of Tween20 and a 5 minute 95°C heat 
treatment, which is advised for inactivating viral particles (Roberts et al. 2009; Darnell et al. 
2004). Three buffers were trialled: PBS (pH 7.4, 10 mM Na 2HPO4, 2 mM KH2PO4, 2.7 mM 
KCl, 140 mM NaCl), TBS (20 mM Tris pH 7.2, 150 mM NaCl), and TE-T (10 mM Tris pH 6.5, 
1 mM EDTA, 1% Tween20) alongside two heat treatments (70 or 95°C) to observe whether 
GAPDH amplification was impeded. The use of PBS led to no amplification regardless of 
sample or treatment. On the other hand, TBS and TE-T could amplify GAPDH from human 
RNA for all conditions (Figure 3 A-B; note that TE-T shifted the expected Tm by 
approximately 3 degrees compared to TBS). TE-T was clearly superior to TBS in amplifying 
GAPDH from saliva. Finally, the use of a 5 minute 95°C heat treatment led to improved 
GAPDH amplification from saliva (Figure 3 B). 
 
Using these conditions, we next sought to test a range of primers designed for SARS-CoV-2 
detection. As we were using a SYBR green-based method, we sought to minimize the 
possibility of non-specific amplification. The combination of NCBI Primer-BLAST (Ye et al. 
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2012) and Nucleotide BLAST was used to screen a range of primers, designed to detect 
SARS-CoV-2 RNA, based on the following criteria: 

1. Primer-BLAST: no products <1000 bp from human mRNA and genomic DNA 
2. Nucleotide BLAST: no, or minimal, matches to human mRNA and genomic DNA 
3. For GAPDH , one of the primers had to span an exon-exon junction to minimise the 

risk of amplifying genomic DNA. 
From this process we selected the following primers: CCDC-N and CCDC-ORF1ab (China 
CDC), HKU-ORF1b and HKU-N (University of Hong Kong), SG2 (Sigma-Aldrich), nCoV_IP2 
and nCoV_IP4 (Institut Pasteur), and E_Sarbeco and RdRP_SARSr (Charité) [Table 1 
(WHO 2020b)].  
 
We tested the ability, of the selected primers, to amplify synthetic SARS-CoV-2 RNA. Figure 
4 shows our results for nine SARS-CoV-2 primer pairs, including gel electrophoresis to 
confirm correct amplification (Figure 4 A), melt curve analysis (Figure 4 B), and SYBR-green 
fluorescence (Figure 4 C). Subsequently, we calculated Ct values from the raw fluorescence 
curves for all reactions (Figure 4 D). Using these calculated Ct values, we determined the 
specificity for each primer with which to compare performance (CtNTC–CtVirus; Figure 4 E). 
Based on this, we selected four primer pairs: CCDC-N, HKU-ORF1b, nCoV_IP2, and SG2; 
for further analysis. 
 
We next performed qRT-PCR on a dilution series of synthetic SARS-CoV-2 RNA to 
determine a limit of detection (LoD) per select primer pair and included saliva, human RNA, 
and NTC as negative controls (Figure 5). Based on the ability to amplify the correct product, 
based on Tm calling, and observing a log-linear relationship between Ct value and viral RNA 
concentration. We estimate the LoD for CCDC-N (64–256 copies per reaction), HKU-ORF1b 
(256-1024 copies per reaction), and SG2 (16–64 copies per reaction). We could not 
determine a LoD for nCoV_IP2, although this primer pair appeared less prone to amplifying 
non-specific products. 
 
Lastly, we tested whether saliva interfered with the detection of SARS-CoV-2 RNA. To do 
this, we spiked-in two quantities of SARS-CoV-2 RNA (100 or 1000 copies per reaction) into 
a saliva dilution series. We picked dilutions ranging from 1/8 to 1/64 to identify the minimal 
dilution allowing unimpeded detection using our most sensitive primer pairs: SG2 and 
CCDC-N (Figure 6). Unfortunately, mixing with saliva resulted in reduced sensitivity (higher 
Ct values). Furthermore, heat treatment abolished the sensitivity of CCDC-N at both RNA 
concentrations and for SG2 on 100 copies per reaction. This is, in part, likely driven by 
heat-induced RNA degradation (see Figure 6, right, “100 copies of Viral RNA”). Promisingly, 
primer pair SG2 could detect 1000 copies of SARS-CoV-2 RNA in all saliva dilutions after 
heat treatment (Figure 6, top left panel). 

Discussion 
From these results, we describe a SYBR green-based approach for the detection of 
SARS-CoV-2 directly from saliva samples. Performing a one-step qRT-PCR assay directly 
on saliva provides several advantages, including relative ease of self-collection requiring no 
trained personnel and less PPE, minimal patient discomfort, skipping laborious and 
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expensive RNA extractions, and reducing demand on swabs (which are in global shortage) 
(Azzi et al. 2020; Xu et al. 2020). The SYBR green-based methodology also offers the ability 
to diagnose non-specific amplification, which is not possible using hydrolysis-based 
primer-probes, and reduces demand on commercial kits, which are in short supply (thereby 
increasing testing capacity). We estimate the cost of these reactions to be in the range of 
AUD $4-8 per sample. Aspects of this method could be combined with community-driven 
open source protocols (for example, BEARmix: https://gitlab.com/tjian-darzacq-lab/bearmix) 
to achieve even lower costs while addressing technical limitations, such as appropriate 
methods for virus inactivation as discussed below. 
 
Despite promising progress, we must highlight the critical need for validation against patient 
samples alongside clinical certification in order for results to be considered diagnostic. While 
we attempted to mimic patient samples by spiking synthetic RNA into non-infectious saliva, 
this cannot replace validation using patient saliva. We propose the combined use of 
Tween20 and heat treatment (95 °C for 5 mins) for viral inactivation (Roberts et al. 2009; 
Darnell et al. 2004), and for increased release of viral RNA from patient saliva. However, this 
needs to be validated with samples from patients with known SARS-CoV-2 infection.  We 
therefore report a theoretical limit of detection based on reactions using synthetic virus RNA 
while controlling for non-specific amplification. 
 
Primer pairs CCDC-N and SG2 demonstrated the best specificity (Figure 4 E) and sensitivity 
(Figure 5 A, C) towards the synthetic SARS-CoV-2 RNA. Based on the amplification of 
synthetic SARS-CoV-2 RNA in serial dilutions (no saliva), we estimate the LoD for CCDC-N 
and SG2 primer pairs to be 64-256 and 16-64 molecules per reaction, respectively. 
Therefore, we propose these primers to be best suited for SARS-CoV-2 screening reactions. 
However, whilst an LoD could not be determined for nCoV_IP2, this primer pair showed 
negligible non-specific amplification (leading to higher specificity) and, therefore, would be 
useful to confirm ambiguous samples. The amplification efficiency observed here performs 
comparably with other primer-probe based detection methods on synthetic SARS-CoV-2 
RNA (Vogels et al. 2020). Promisingly, despite different methodology and source RNA, we 
arrive at similar conclusions regarding the superiority of nCoV_IP2 (or RdRp IP2) and 
CCDC-N primers, whereas RdRP_SARSr and E_Sarbeco performed poorly (Etievant et al. 
2020; Vogels et al. 2020).  
 
We uncover a promising new candidate in primer pair SG2 designed by Sigma-Aldrich for 
research use (https://www.sigmaaldrich.com/covid-19.html). With these primers, we estimate 
a LoD of 16 - 64 molecules per reaction, which translates to between 1.6×10 4 – 6.4×10 4 

copies per mL in the original sample (Table 3). The viral load in self-collected saliva samples 
has been estimated to range from 9.9×10 2 – 1.2×10 8 (median = 3.3×10 6) copies per mL (To 
et al. 2020b). The median viral load in posterior oropharyngeal saliva samples has been 
estimated as 1.6×10 5 copies per mL (To et al. 2020a). However, these measures of viral 
load were from patients showing disease symptoms. It remains unclear what the viral load in 
asymptomatic cases are, though there is some limited evidence for a correlation between 
symptom severity and the amount of viral particles detected (Liu et al. 2020). Thus, if 
purifying RNA from saliva, the SG2 primer pair will be able to detect the majority of infected 
individuals (Table 3, SG2 LoD = 1.6×10 4 - 6.4×10 4 copies per mL). 
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SARS-CoV2-RNA could be detected directly from saliva (mimicking patient samples) without 
purification. Whilst this was successful for samples kept at room temperature, our heat 
treatment led to reduced sensitivity, especially for the CCDC-N primer pair. Nonetheless, 
primer pair SG2 was still able to detect 1,000 RNA copies per reaction in saliva diluted 1/8 
(of which 4.6 µL is added to the reaction), translating to approximately 1.7×10 6 copies per 
mL after heat-treatment, which is still within the viral load range. The heat-induced reduction 
in sensitivity against SARS-CoV-2 has also been reported independently (Pan et al. 2020). 
The reduced sensitivity is likely the result of: (I) increased spontaneous RNA cleavage at 
higher temperatures, and (II) enzymatic degradation by salivary ribonucleases post-heat 
treatment, which may also denature protective proteins or RNA secondary structures (Brisco 
and Morley 2012; Emilsson et al. 2003). This degradation may be circumvented by the 
addition of RNA stabilisers, such as 6-8% formamide (Yasukawa et al. 2010), prior to heat 
treatment or with an alternate buffer with greater pH stability at higher temperatures (Sullivan 
et al. 2020; Reineke et al. 2011). However, caution is required as buffer composition 
drastically affects RT-PCR performance as highlighted by no amplification with PBS, 
although it has been shown to be a suitable medium for transporting samples (Rodino et al. 
2020). Alternative methods for viral inactivation could be considered, such as the addition of 
biocidal agents, proteases, stronger detergents, or reducing agents (Brittany S. Mertens 
2015; Pfaender et al. 2015; Carver and Seto 1968; Leung et al. 2017; Kampf et al. 2020). 
This would require subsequent inactivation and/or dilution to prevent the impediment of PCR 
enzymes. It may also be possible to apply ultraviolet radiation to saliva samples or 
temporarily alter the pH, however, it may be challenging to find a treatment leading to viral 
inactivation without complete RNA damage (Darnell et al. 2004; Lemire et al. 2016; Beck et 
al. 2015). Alternatively, RNA extractions could be performed on saliva for which 
clinically-relevant methods now exist, however, this would still add considerable costs and 
labour (Pandit et al. 2013; Sullivan et al. 2020). Methods for one-step RNA extractions may 
provide a compromise between direct qRT-PCR and complete RNA extraction (Sentmanat 
et al. 2020). 
 
We hope our results will be helpful to other laboratories investigating the possibility of 
one-step qRT-PCR for SARS-CoV-2 testing from saliva samples. Our comparison of various 
reported primer pairs is also likely to be of use to laboratories around the world. In particular, 
we hope this information provides a platform for increased accessibility to promote 
SARS-CoV-2 testing, especially in poorer countries. Finally, we propose the use of the 
GAPDH primer pair, used here, as the human RNA positive control. The reverse primer 
spans an exon-exon junction unlike the widely used US CDC primers. 
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Tables 

Table 1 Primer information for SARS-CoV-2 qRT-PCR assays 

Primer RNA 
Target 

Sequence (5′ - 3′) Size 
(bp) 

PCR efficiency (%) 

LinReg Standard 
curve 

CCDC-ORF1ab Fw PP1ab CCCTGTGGGTTTTACACTTAA 119 18.7* - 

CCDC-ORF1ab Rv ACGATTGTGCATCAGCTGA 

CCDC-N Fw N GGGGAACTTCTCCTGCTAGAAT 99 95.7 77.1 

CCDC-N Rv CAGACATTTTGCTCTCAAGCTG 

HKU-ORF1b Fw ORF1b TGGGGY(C/T)TTTACR(G/A)GGTAACCT 132 73.9 60.5 

HKU-ORF1b Rv AACR(G/A)CGCTTAACAAAGCACTC 

HKU-N Fw N TAATCAGACAAGGAACTGATTA 110 35.4* - 

HKU-N Rv CGAAGGTGTGACTTCCATG 

SG2 Fw N AGCCTCTTCTCGTTCCTCATCAC 102 90.3 82.4 

SG2 Rv CGCCATTGCCAGCCATTC 

nCoV_IP2 Fw RdRp ATGAGCTTAGTCCTGTTG 108 52.2 153.3* 

nCoV_IP2 Rv CTCCCTTTGTTGTGTTGT 

nCoV_IP4 Fw RdRp GGTAACTGGTATGATTTCG 107 64.5 - 

nCoV_IP4 Rv CTGGTCAAGGTTAATATAGG 

E_Sarbeco Fw E ACAGGTACGTTAATAGTTAATAGCGT 113 94.4 - 

E_Sarbeco Rv ATATTGCAGCAGTACGCACACA 

RdRP_SARSr Fw  RdRp GTGAR(G/A)ATGGTCATGTGTGGCGG 100 n.d. - 

RdRP_SARSr Rv CAR(G/A)ATGTTAAAS(G/C)ACACTATTAGCAT
A 

GAPDH Fwd Human 
GAPDH 

AGCCACATCGCTCAGACAC 66 92.9 94.7 

GAPDH Rv GCCCAATACGACCAAATCC 

“-”=not tested; n.d.=not determinable; *unreliable (e.g. R 2 < 0.9). 
 
 
 
 
 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 19, 2020. ; https://doi.org/10.1101/2020.05.29.109702doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.109702
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Table 2 LightCycler480 Run Protocol 

Stage Step Temperatur
e (°C) 

Hold time 
(mm:ss) 

Acquisition 
(483-533 nm) 

Ramp Rate 
(°C/s) 

Holding Reverse 
Transcription 

48 30:00 None 4.8 

Holding Activation of 
polymerase 

95 10:00 None 4.8 

Cycling 
(40 - 50x) 

Denature 95 00:15 None 4.8 

Anneal and 
Extend 

60 1:00 Single 2.5 

Melt curve 

Denature 95 00:30 None 4.8 

Anneal 60 00:30 None 2.5 

Denature 95  Continuous 0.11 

Table 3 Estimated LoD for highest performing primer pairs amplifying synthetic 
SARS-CoV-2 RNA 

Primers SG2 CCDC-N HKU-ORF1b 

LoD  
(copies per reaction) 

16 – 64 64 – 256 256 – 1024 

Stock concentration 
(copies per mL)  

1.6×10 4 – 6.4×10 4 6.4×10 4 – 2.56×10 5 2.56×10 5 – 1.024×10 6 
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Figure 1 Amplification of GAPDH from purified human RNA
(A) Raw fluorescence curves obtained using GAPDH primers on
human RNA dilutions ranging from 1x (344.4 ng/µL) to 1/10,000 (0.034
ng/µL). Data represent means from technical replicates (n=3). (B)
Linear regression of Ct against RNA concentration (ng/µL) to calculate
PCR efficiency of GAPDH primers (E=94.7%, n=3). The 1x sample
was excluded from the regression.
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Figure 2 GAPDH amplification across saliva dilution series.
Ct values for GAPDH amplification from saliva diluted in TE-T (1/2,
1/4, 1/8, 1/16, 1/32, 1/64, 1/128). Diluted saliva was then either treated
at 70°C for 5 min (red circles) or left at room temperature for 5 min
(black circles). Points denote individual biological replicates (n=2).
Non-specific amplicons (based on Tm calling) are depicted as open
circles.
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Figure 3 Testing buffer composition and heat treatments on GAPDH amplification
(A) Plots showing the absolute value of the first derivative of raw fluorescence
values obtained during the melt curve analysis for GAPDH primers. (B) Plots
showing raw fluorescence curves captured during GAPDH amplification. Saliva,
human RNA and NTC were resuspended in either TBS (20 mM Tris pH 7.2, 150
mM NaCl) or TE-T (10 mM Tris pH 6.5, 1 mM EDTA, 1% Tween20), and
heat-treated (70 or 95°C for 5 min) or kept at room temperature (RT). Plots
represent means from biological replicates (n=2). Note, saliva at RT in TE-T buffer
amplified non-specific products so was excluded.
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Figure 4 Primer screening for SARS-CoV-2 detection
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Figure 4 Primer screening for SARS-CoV-2 detection
(A) Gel electrophoresis of individual qRT-PCR products. (B) Plots
showing the absolute value of the first derivative of raw fluorescence
values obtained during the melt curve analysis for each primer pair. (C)
Plots showing raw fluorescence curves captured during amplification of
each primer pair. (B) and (C) Plots represent means from biological
replicates (n=2). (D) Ct values obtained for the amplification of each
primer pair tested for SARS-CoV-2 detection. (E) Calculated specificity
for each primer (CtNTC–CtViral). Data represent the means of biological
replicates (n=2). Error bars denote SEM. Abbreviations: N or NTC, no
template control; H, purified human RNA; V, viral RNA (Synthetic RNA
Control 1).
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Figure 5 Estimating the limit of detection for selected primer pairs
Scatterplots representing Ct values for select primer pairs across a dilution
series of synthetic SARS-CoV-2 RNA. Points reflect individual data points
for reactions with saliva (dilution=1/50, n=6), purified human RNA
(quantity=1.62 ng, n=4), NTC (n=4), and viral RNA dilutions (n=2). Open
circles denote reactions producing non-specific amplicons based on Tm
calling. Closed circles denote reactions producing an amplicon matching the
expected product. Grey shaded area represents the background
amplification and is defined by the lowest Ct value from the negative
controls. Approximate LoD is represented by the red shaded area.
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Figure 6 Influence of saliva and heat treatment on SARS-CoV-2 RNA detection
Ct values determined using primer pairs SG2 (top) and CCDC-N (bottom) on a
saliva dilution series with and without heat treatment (5 minutes 95°C)
containing 1000 (left) or 100 (right) copies per reaction of SARS-CoV-2 RNA.
Closed circles, correct Tm; open circles, non-specific Tm; black circles, room
temperature (RT) for 5 min; red circles, 95°C for 5 min; NTC, no template
control; S, saliva only. Saliva dilutions range from 1/8 to 1/64. Points represent
individual data points obtained from biological (n=2) and technical (n=2)
replication. Overlapping points were offset for clarity.
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