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Abstract
Motivation: Quantitative mass spectrometry-based proteomics data

are characterized by high rates of missing values, which may be of two
kinds: missing completely-at-random (MCAR) and missing not-at-random
(MNAR). Despite numerous imputation methods available in the litera-
ture, none account for this duality, for it would require to diagnose the
missingness mechanism behind each missing value.

Results: A multiple imputation strategy is proposed by combining
MCAR-devoted and MNAR-devoted imputation algorithms. First, we
propose an estimator for the proportion of MCAR values and show it
is asymptotically unbiased under assumptions adapted to label-free pro-
teomics data. This allows us to estimate the number of MCAR values in
each sample and to take into account the nature of missing values through
an original multiple imputation method. We evaluate this approach on
simulated data and shows it outperforms traditionally used imputation
algorithms.

Availability: The proposed methods are implemented in the R pack-
age imp4p (available on the CRAN Giai Gianetto (2020)), which is itself
accessible through Prostar software.
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1 Introduction
A widely used method for identifying and quantifying broad amounts of pro-
teins in biological samples is based on the label free mass spectrometry (MS)
analysis of their constituting peptides (protein fragments obtained by enzy-
matic digestion). This experimental pipeline is particularly suitable for dis-
covery proteomics for its high proteome coverage and throughput when com-
pared to pipelines either relying on isotopic labeling or analyzing intact pro-
teins (Nesvizhskii and Aebersold, 2005). Unfortunately, it comes at the price of
lower data quality. Notably, the resulting peptide-level datasets are impacted
by high rates of missing values (usually between 20% and 50%, see Webb-
Robertson et al. (2015)), which are known to be of two kinds (Karpievitch
et al. (2009)): Missing Not-At-Random (MNAR), mostly coming from the var-
ious phenomena that impact the lower detection limit of the mass spectrome-
ter, and Missing Completely-At-Random (MCAR), resulting from the pipeline
intrinsic non-exhaustiveness. This missing value concern is ubiquitous to all
biomolecule analyses using label free MS, as in metabolomics for instance (Wei
et al., 2018). Therefore, although this article focuses on peptide datasets, the
proposed methodology can be directly applied to other types of MS-based omics
data.

Despite the many existing imputation methods (see Webb-Robertson et al.
(2015) survey), there is still no consensus on how to proceed with missing values
in label free MS. No method accounts for both MNARs and MCARs, so that
the practitioner has to make an arbitrary choice on the missing value mecha-
nism when imputing data. Yet, applying imputation strategies that treat all
missing values in the same way regardless of their nature can lead to distorting
reality and thus compromising the veracity of any biological conclusions that
may result (Lazar et al. (2016)). Although some works proposed to account
for different types of missing values (Luo et al., 2009; Taylor et al., 2013; Ryu
et al., 2014; Chen et al., 2014; O’Brien et al., 2018), they rely on single mod-
els describing the joint impact of the various missingness mechanisms without
relying on imputation. In these studies, the model is directly used to find dif-
ferentially abundant proteins and to infer new biological knowledge. However,
despite its numerous pitfalls, proteomics know-how and methods largely rely
on imputation, as realistic complete data are necessary to many quality control
methods relying on visualization techniques, clustering, or descriptive data anal-
ysis (Webb-Robertson et al., 2015). This is why, we propose here a method to
diagnose the missing data mechanism behind each missing value. Moreover, we
describe original imputation strategies which specifically account for the nature
of each missing value.

In Sec. 2, we introduce notations and data assumptions. In Sec. 3, an original
estimator of the MCAR proportion is presented; on its basis, we estimate the
posterior probability that each missing value is either MNAR or MCAR. In
Sec. 4, we build multiple imputation strategies combining MCAR- and MNAR-
devoted algorithms, which are evaluated in Sec. 5.
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2 Notations and assumptions
2.1 Notations
Within each peptide-level dataset, different biological conditions are compared
together, by means of several replicated samples (classically, between 3 and 10
samples per condition) so as to account for biological and measurement variabil-
ities. This leads to a matrix with few observations (the replicated samples in
each conditions) and several thousands of variables (the union of all the peptides
identified in all the samples).

Hereafter, the data structure is a matrix with n identified peptides as rows,
and J =

∑K
k=1 mk intensity measures for each identified peptide as columns,

where K is the total number of biological conditions and mk is the number
of samples in each biological condition. In practice, n is expected very large
compared to J , and K ≥ 2. However, as this article focuses on imputation, and
as it does not make sense to borrow information between different biological
conditions to improve the imputation, it simplifies the statistical exposure to
consider here that the data matrix contains a single condition (K = 1).

For a given sample j ∈ [1, J ], let Fj be the cumulative distribution function
(cdf) of the complete intensity values and πnaj the proportion of missing values
among the n peptide intensities. Then:

Fj(x) = πnajF
na
j (x) + (1− πnaj )F obsj (x) (1)

where Fnaj corresponds to the cdf of unknown intensities of missing values xnaij ,
and F obsj is the one of observed values xobsij .

Moreover, within each sample j, MCARs and MNARs coexist in unknown
proportions πmcarj and 1 − πmcarj . As MCARs occur uniformly among the
range of intensity levels, their distribution is the same as of complete values.
Thus, Fnaj reads:

Fnaj (x) = πmcarjFj(x) + (1− πmcarj )Fmnarj (x) (2)

where Fmnarj is the MNAR cdf in sample j. Eq. (2) can also be written as:

Fnaj (x) =
πmcarj (1− πnaj )
1− πnajπmcarj

F obsj (x) +
1− πmcarj

1− πnajπmcarj
Fmnarj (x) (3)

Within Eq. (3), F obsj and πnaj are straightforwardly derived from the data.
However, πmcarj , Fmnarj and Fnaj are not, which makes estimating this model
impossible without additional assumptions.

2.2 Assumptions
Herein, we present some general assumptions regarding the data set which allow
the estimation of πmcarj . All of them are thoroughly justified in the Supple-
mentary Information.
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Assumption 1 (Absence of non-quantified peptide). Each peptide has at least
one observed value among each biological condition.

Assumption 2 (Peptide-wise independence). The complete intensity values of
peptides are independently distributed in each sample.

Assumption 3 (Intensity distributions). (a) The peptide concentrations are
log-normally distributed within each sample; (b) the MNARs result of left-censorship
which does not impact the most intensely detected peptides.

Based on these first three assumptions, it is possible to intuitively sketch our
strategy to classify each missing value as either MCAR or MNAR:

1. Thanks to Ass. 3b, a subset of peptides with sufficiently high intensity
values will only be impacted by MCAR values. This greatly simplifies
the estimation task, as it implies that the right hand side of the cdf of
missing values (namely Fnaj (x) for some large x) can be approximated
by the cdf of the values imputed by a MCAR-devoted algorithm. Thus,
we first impute each missing value xnaij regardless of its nature with an
MCAR-devoted imputation algorithm, leading to values which we note
thereafter x̃naij , x̃mnarij and x̃mcarij in function of their true nature. We note
F̃naj the empirical cdf of the x̃naij .

2. Second, although F̃naj is a rather crude estimate for Fnaj (as there is no rea-
son to expect that the MCAR-devoted imputation will provide unbiased
values, especially on lower intensity peptides), it is sufficient to reliably
estimate the following quantity:

π(x) =
1− Fnaj (x)
1− Fj(x) (4)

which appears to provide a good estimate of πmcarj for some large enough
x.

3. Third, once an estimate for πmcarj is available, it becomes possible to
adjust the parameters of Fj , which is a Gaussian (see Ass. 3a). Then, the
estimation of Fmnarj and Fnaj allows to end up with a fully specified model
in Eq. (3).

4. Finally, using this model, it is possible to compute the probability that any
missing value is MNAR or MCAR, given the intensities of other observed
values for the same peptides (which exist, see Ass. 1).

This outline suffers for a single drawback: it appears the estimate for π(x) has
a diverging asymptotic variance at step (1). To cope with this, we make an
additional and temporary assumption (see Ass. 4 below) which is a parametric
model on the distribution of MNARs for large x. This assumption is temporary
in the sense that it is only used to stabilize the estimation of πmcarj and forgotten
right after, so that Fmnarj is still a parameter-free distribution at step (3). Before
detailing this last assumption, let us formalize some consequences of Ass. 3b:
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Corollary 1 (Of Ass. 3b). Let be

uj = min
(

max
i∈[1,n]

(x̃naij ), max
i∈[1,n]

(xobsij )
)

(5)

where (x̃naij )i∈[1,n] are the imputed missing values after the use of a MCAR-
devoted algorithm. Then, ∃Mj < uj such that ∀x ≥Mj:

Fnaj (x) ≈ F̃naj (x) (6)

where F̃naj is the empirical cdf of all the imputed missing values after the use of
a MCAR-devoted algorithm.

Corollary 2 (Of Ass. 3b). If qmnarj denotes the theoretical quantile function of
MNARs in sample j, then [qmnarj (100%), uj [ 6= ∅.

The proofs of these two corollaries are given in supplemental materials. Fi-
nally, our last temporary assumption reads:

Assumption 4 (Approximated Weibull cdf of high MNAR values). ∃Mj <uj
s. t.

∀x ≥Mj , F
mnar
j (x) ≈ 1− exp

(
−
(

1
λ

x− lj
uj − lj

)d)
(7)

where d > 0 is a shape parameter, λ > 0 is a scale parameter, lj = min(mini(x̃naij ),mini(xobsij ))
is an approximation of the minimum of the complete intensity values in sample
j, and uj = min(maxi(x̃naij ),maxi(xobsij )) has been defined in Cor. 3.

3 Estimating πmcarj and the nature of each miss-
ing value

3.1 A first approach to estimate πmcarj

Let us consider the following quantity, briefly sketched in Eq. (4):

π(x) =
1− Fnaj (x)
1− Fj(x) (8)

From Cor. 3, qmnarj (100%) < uj , so that ∀x ∈ [qmnarj (100%), uj [

π(x) = πmcarj + (1− πmcarj )
1− Fmnarj (x)

1− Fj(x) = πmcarj (9)

Thus, an estimator of the MCAR proportion derives from an estimate of π(x)
when x ≥ qmnarj (100%). To estimate π(x), we rely on Prop. 1.
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Proposition 1. Let R and S two independent random variables following, re-
spectively, the binomial distributions B(n, p) and B( a

1−an, q) where (a, p, q) ∈
]0, 1[3. We note, respectively, r and s the realizations of R and S. Then, the
maximum likelihood estimator (MLE) of θ = q/(a× q + (1− a)× p) is given by
θ̂MLE = s/(a× (s+ r)) and its asymptotic distribution is

√
n(θ̂MLE − θ) d−→

n→+∞
N
(
0, σ2(θ, p)

)
where the asymptotic variance function is

σ2(u, v) = 1− a
a

h(u, v)
g(u, v)h(u, v)− κ2(u, v) (10)

with

g(u, v) = δ(u)v(1− δ(u)v)
(1− au)2

(
1
u

+ v

ι(u, v)

)2
(11)

h(u, v) = a−1 − 1
v(1− v) + δ(u)v(1− δ(u)v)

(
1
v

+ u

ι(u, v)

)2
(12)

κ(u, v) = (1− δ(u)v)
(1− a)ι(u, v)2 (13)

where δ(u) = (a−1)u
au−1 and ι(u, v) = a(v−1)u−vu+1

1−a .
Proof. See Supplementary Information.

Under Ass. 2, R(x) =
∑
i∈[1,nobs

j
] 1xobsij >x and S(x) =

∑
i∈[1,nna

j
] 1xnaij >x

are two independent binomial variables of respective distributions B(nobsj , 1 −
F obsj (x)) and B(nnaj , 1 − Fnaj (x)) where nobsj is the number of observed values
in the sample j and nnaj is the number of missing values in the sample j. Thus,
Prop. 1 provides the MLE of π(x) (see Supplementary Information for details):

π̂MLE(x) = s(x)
πnaj (s(x) + r(x))

(where s(x) and r(x) derive from the empirical cdf). Next proposition shows
that, under the Ass. 2 and Cor. 3, an approximation of π̂MLE(x) using values
imputed by an MCAR-devoted algorithm provides an unbiased estimator of
π(x).
Proposition 2. Let

π̃MLE(x) = s̃(x)
πnaj (s̃(x) + r(x))

where s̃(x) =
∑
i∈[1,nna

j
] 1x̃naij >x and r(x) =

∑
i∈[1,nobs

j
] 1xobsij >x. Under Ass. 2

and Cor. 3, the proportion of missing values πnaj is fixed. Then, for x ∈
[qmnarj (100%), uj [,

lim
n→+∞

π̃MLE(x) = πmcarj
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Proof. See Supplementary Information.

Although the asymptotic bias of π̃MLE(x) is null when x ∈ [qmnarj (100%), uj [
from Prop. 2, the next proposition shows that the variance of π̃MLE(x) will be
high when x is close to uj :

Proposition 3.

lim
x→qobs

j
(100%)

σ2(π(x), 1− F obsj (x)
)

= +∞

Proof. See Supplementary Information.

Hence, if u−j is a maximal value in [qmnarj (100%), uj [, π̃MLE(u−j ) does not
seem a wise choice to estimate πmcarj in practice. This is why we hereafter
rely on a heteroscedastic nonlinear regression to account for this variance in the
estimation of the MCAR proportion.

3.2 A corrected estimator for πmcarj
assuming Weibull law

For x ≥ Mj and according to Ass. 4, π̃MLE(x) should follow the non-linear
regression model defined by:

π̃MLE(x) = K + 1−K
1− F̃j(x)

e−α(x−lj)d + ε(x) (14)

where: α corresponds to 1/(λ(uj − lj))d in Ass. 4; F̃j(x) = πnaj F̃
na
j (x) + (1 −

πnaj )F̂ obsj (x) is the empirical cdf of the completed intensity values in the sample
j; ε(x) ∼ N (0, σ2

ε (x)) with σ2
ε (x) = σ2(π̃MLE(x), 1− F̂ obsj (x)); see Eq. (30).

Hence, estimators for K, α and d in Eq. (14) are given by:

(K̂, α̂, d̂) = arg min
K,α,d

L(K,α, d) (15)

where

L(K,α, d) =
G−1∑
g=1

[
π̃MLE(yg)− µ(yg)

]2
σ2
ε (yg)

with yg = Mj + g
uj−Mj

G and G is a fixed number of sub-intervals of [Mj , uj ]
with equal widths; µ(yg) = K+ 1−K

1−F̃j(yg)e
−α(yg−lj)d . In practice, an appropriate

choice is
Mj := min

(
x, s.t. π̃MLE(x) > ¯̃πMLE(x)

)
(16)

where ¯̃πMLE(x) is the average of the π̃MLE(x) estimated on the interval [lj , uj ]
(Fig.1A). The variance weighting in the cost function L(K,α, d) mitigates the
impact of the high intensity values in the estimation procedure. A quasi-Newton
algorithm with box constraints (Byrd et al., 1995) can be used to minimize
Eq. (15) under the following constraints: K ∈ [0, 1], α ≥ 0 and d ≥ 0. Then,
according to Eq. (14), πmcarj is estimated by K̂.
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Figure 1: Figure summarizing the different steps of the estimation of πmcar,
and of the probabilities that each missing value is MCAR in a sample of a
real dataset (Exp1_R25_pep from the R packages DAPARdata (Wieczorek,
2016; Wieczorek et al., 2017)). A: the estimated π̃MLE(x) are represented by
the black curve, the estimated π̂mcar is represented by the red dot-dashed line,
while the red dashed line represents the estimated trend (Eq. (14)). B: the
QQ-plot used to estimate the distribution of complete values. The red dashed
line represents the trend line estimated using (Eq. 17). C: the cdf of observed
values is displayed by the black curve, while the estimated cdf of complete values
is the red dashed line. D: The estimated probability that a missing value is
MCAR (Eq. 21) in function of bij in the sample.

3.3 Estimation of the distribution of complete values
Once πmcarj is estimated, it is possible to estimate the distribution of complete
values under Ass. 3. Under this assumption, a straight line must be observed
on the Q-Q plot between the quantiles of the observed values and those of a
normal distribution, when the quantiles of the observed values become superior
to qmnarj (100%) (Fig.1B). To estimate this line, the following regression model
is used in each sample j:

qobsj (l) = m+ s× qN (0,1)((1− γj)× l + γj) + ε(l) (17)
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where ε(l) is a Gaussian white noise, γj = πnaj (1− π̂mcarj )/(1−πnaj π̂mcarj ), m
and s are the mean and standard deviation of the normally distributed complete
values, and l∈ [F̂ obsj (η̂), 1[ where η̂ represents a value such that Fmnarj (η̂) = 1.
This regression model is motivated by the fact that Fj can be expressed in
function of F obsj and Fmnarj from (1) and (2):

Fj(x) =
1− πnaj

1− πnajπmcarj
F obsj (x) +

πnaj (1− πmcarj )
1− πnajπmcarj

Fmnarj (x) (18)

In practice, η̂ is estimated by searching a minimal value for which the trend of
the non-linear model estimated in section 3.2 is no more significantly different
from π̂mcarj :

η̂ = min{yg|FN(µ̂(yg),σ2
ε (yg))(π̂mcarj ) > β} (19)

where FN(µ̂(yg),σ2
ε (yg)) is the cdf of a Gaussian distribution with a trend and a

variance equal to the ones of the non-linear model estimated in section 3.2, and
β is a confidence level, for instance 5%.

3.4 Predicting the nature of missing values
Thanks to the estimation of the distribution of complete values, the probability
that a given missing value is MCAR conditionally to the fact it is inferior to bij
can be estimated through the Bayes theorem:

pr(xnaij is MCAR|xnaij ≤ bij)

=
πnaj π̂mcarj

1− (1− πnaj )(F̂ obsj (bij)/F̂j(bij))
(20)

In practice, the intensities of a peptide i within a given condition k come from
replications of a same experiment, so that it makes sense to use a same value
as upper bound for all the samples j of each condition k. In this way, Eq. (20)
becomes

pr(xnai`k is MCAR|xnai`k ≤ bik)

=
πnaj π̂mcarj

1− (1− πnaj )(F̂ obsj (bik)/F̂j(bik))
(21)

for the lth sample of the kth condition. That is why we propose to fix bik to
the maximum observed intensity value for the peptide i in the condition k, i.e.
bik = maxl xobsilk . Consequently, the hypothesis that a missing value is MCAR
can next be rejected when the probability estimated in Eq.(21) is inferior to a
chosen threshold, so that it becomes possible to categorized each missing value
as MCAR or MNAR.
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4 Imputation methods
In literature, many algorithms are available to impute missing values when they
are assumed either MCAR or MNAR. For MCAR values, REM (Schneider,
2001) or LS (Bø et al., 2004) algorithms work well on proteomics data according
to Webb-Robertson et al. (2015). For MNAR values, several methods have been
proposed to impute them with small values, since they are mainly assumed to
be inferior to the MS detection limit (Deeb et al., 2012). In this context, Lazar
et al. (2016) showed that the choice of the most suitable method for the MCAR
values, or that of the most adapted for the MNAR values, is less important
than the choice of applying a method adapted to the true nature of the missing
values. We propose here two imputation strategies that allow to adjust the
imputation to the nature of the missing values from the probabilities estimated
by equation (21).

4.1 Naive hybrid imputation strategy
A naive algorithm consists to fix a threshold on the probabilities estimated by
Eq. 21 and to impute the missing values according to their estimated nature:

Algorithm 1 Naive Hybrid Imputation Strategy
Step 1: Compute the probabilities pr(xnai`k is MCAR|xnai`k ≤ bik) as in Sec. 3.4
for each missing value xnai`k.
Step 2:

1. If pr(xnai`k is MCAR|xnai`k ≤ bik) is superior to a fixed threshold s, then
impute them by a MCAR-devoted algorithm.

2. If pr(xnai`k is MCAR|xnai`k ≤ bik) is inferior to a fixed threshold s, then
impute them by a MNAR-devoted algorithm.

This naive approach has two major drawbacks. First, the sample-wise cor-
relations resulting from a possible complex experimental design are not equally
accounted for in the MCAR-devoted and MNAR-devoted algorithms: while
they are generally considered in MCAR-devoted algorithms, they are not take
into account in MNAR-devoted algorithms. Second, the sensitivity to the cat-
egorization (which is bound to possible mistakes in addition to the boundary
effects) may hinder the quality of the imputation. That is why, we propose an
other strategy in the next section.

4.2 Multiple imputation strategy
Regarding the drawback concerning the sample-wise correlations of the naive
strategy, the only weakness of a good MCAR-devoted imputation strategy is
that the distribution used to perform the imputation does not reflect the dis-
tribution of MNARs for the simple reason that there are no such observable
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values to build the distribution on. As a result, it makes sense to use any
MNAR-devoted algorithm only to artificially create low intensity values in a
first step. Thanks to them, any MCAR-devoted imputation algorithm used af-
terwards will draw the imputed values by accounting for the multiple natures of
missing values. This has a great advantage: it does not matter if the MNAR-
devoted algorithm does not account for the experimental design or correlations
between samples, as the imputed MNARs are only a preliminary step used to
build the final imputation model. Regarding the second drawback concerning
the sensitivity of the categorization, it is possible to get rid of the stiff categories
by simply assigning each missing value to the MCAR category according to a
Bernouilli trial with probability of success pr(xnai`k is MCAR|xnai`k ≤ bik) and to
perform the imputation accordingly. Then, the process is repeated N times.
Put together, these ideas naturally lead to the following algorithm:

Algorithm 2 Multiple Imputation Strategy
Step 1: Compute the probabilities pr(xnai`k is MCAR|xnai`k ≤ bik) as in Sec. 3.4
for each missing value xnai`k.
Step 2: Iterate N times the following loop for each peptide i ∈ [1, n]:

1. Generate a boolean value by means of a Bernouilli trial with probability
of success pr(xnah`k is MCAR|xnah`k ≤ bhk) for each missing value xnah`k with
h 6= i.

2. Impute all the missing values (xnah`k)h6=i associated to TRUE according
to a MCAR-devoted algorithm.

3. Impute all the missing values (xnah`k)h6=i associated to FALSE according
to a MNAR-devoted algorithm.

4. Use this completed dataset to impute the missing values of peptide i of
any sample `, i.e. (xnai`k)`, with a MCAR-devoted algorithm.

Step 3: For each missing value of the dataset, N imputation values are avail-
able. Average them to obtain the final imputed value.

Possibly, confidence intervals can be obtained by using the Rubin’s rules
(Royston et al. (2004)). Simulations (see Supplementary Information) suggest
that N = 10 is sufficient to reach nearly optimal performances. Practically,
it is possible to reduce the computational load by calling the MCAR-devoted
algorithm only n×N times. To do so, one uses the same Bernouilli trials (step
2.1.) and the subsequent imputations (steps 2.2 and 2.3) within each loop.
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5 Simulation studies
Herein, extensive simulations were used to assess our methodology to diagnose
MCAR and MNAR values.

5.1 Experimental design
To generate artificial but realistic datasets, we consider a case where n peptides
were previously identified and quantified in nc different biological conditions.
Within each condition, there are nb different biological samples. For each of the
biological samples, ns technical replicates are considered. As a result, each data
matrix is made of n rows and ns× nb× nc columns.

5.1.1 Generating complete data

The logarithmized intensity values for the resulting ns × nb × nc samples are
simulated to mimic their respective LC-MS/MS analysis. For each peptide i
belonging to the sample j coming from the biological sample b in condition k,
logarithmized intensity values xijbk are generated from Gaussian distributions
N (µibk, δ2

ε ) where µibk = µik +µib with (µik)i∈[1,n] are independently generated
from Gaussian distributions N (mk, δ

2
k) and (µib)i∈[1,n] are independently and

identically distributed following a Gaussian distribution N (0, δ2
b ).

Concretely, we used the following tuning in our simulations: n = 10000,
nc = 2, nb = 3, ns = 5, mk = 25, δk = 2, δb = 0.5 and δε = 0.2 (for it leads to
classically observed data; see for example Ramus et al. (2016)).

5.1.2 Incorporation of MCAR and MNAR values

Missing values are generated as MCAR values by uniform random drawings
without replacement across the list of peptides in each sample. The rest of
missing values (i.e. MNAR values) are selected on the basis of random drawings
without replacement with the following probability:

P (xijbk is MNAR|xijbk)

=
{

1− b xijbk−mini∈[1,n] xijbk
maxi∈[1,n] xijbk−mini∈[1,n] xijbk

if 1− b xijbk−mini∈[1,n] xijbk
maxi∈[1,n] xijbk−mini∈[1,n] xijbk

≥ 0
0 otherwise.

(22)

where b ≥ 0 allows to adjust the distribution of MNAR values (see Figure 2
for a comparison of several sceniaros with different values for b), so that they
are distributed more or less similarly to MCAR data. For instance, if b = 0,
then MNAR values are uniformly distributed among the intensity levels, such
as it will be impossible to estimate their proportion and distinguish them from
MCAR values. Inversely, the higher b is, the easier it is to distinguish them.

According to our framework, peptides with which values are all missing in a
given condition are removed. This slightly changes the amount of missing values
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and thus, the proportions of MCAR and MNAR values in each sample: as a con-
sequence, the true values for πnaj and πmcarj need to be re-computed thereafter.
All the remaining entries of the data matrix correspond to observed values. This
data generation framework is implemented in the R function sim.data of the R
package imp4p Giai Gianetto (2020).

5.2 Empirical bias and variance of the estimator of the
proportion of MCAR values πmcar

First, we focus on the quality of the proposed method to estimate the proportion
of MCAR values. Concretely, we discuss its empirical bias and variance on data
simulated with the aforementioned protocol. Table 1 shows its empirical biases
and variances in function of different values of:

• the proportion of missing values πna,

• the proportion of MCAR πmcar,

• the b parameter, which allowing to adjust the distribution of MNAR values
more or less close to the one of MCAR values.

For each combination of these 3 parameters, 100 datasets have been simulated.
The results show that our estimator has a weak bias when b is greater than

2, that is, when the distribution of MNAR values is shifted far enough to the
left. This is in line with the assumptions on which our methodology is based.

However, when b is smaller (notably in the cases where b = 0.5 or b = 1),
the estimator appears rather imprecise. This is clearly due to the non-respect
of Ass 3b. At this point it is important to understand that such imprecise
estimation is not really a problem: First, Ass 3b being realistic, datasets are
not expected to deviate from it. Second, if a dataset does not respect this
assumption notwithstanding, it would not be a problem: in such a dataset, the
main difficulty of proteomic imputation, that is the co-existence of two types
of missing values with different behaviors has vanished: the missing values that
were expected to be MNAR almost behave as MCAR, so that using a single
imputation algorithm, such as already proposed in the literature, is sufficient.

Conversely, for simulated datasets with b tuned according to what is clas-
sically observed (i.e. somewhere between b = 2.5 and b = 3), the measured
bias is weaker. More precisely, it seems that our estimator tends to slightly
underestimate the proportion of MCAR values when it tends to be very low
(πmcar = 10%), or on the contrary, very high (> 50%). However, these are
extreme cases that are not often met on peptide-level data.
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πna = 10%: b

0.5 1 1.5 2 2.5 3

πmcar = 10% 8.9% [3.8%] 20.6% [7.9%] 10.6% [1.3%] -1.3% [0.2%] -3.1% [0.2%] -4.5% [0.3%]
πmcar = 20% -2.2% [1.6%] 10.8% [4.4%] 10.1% [1.3%] 0.7% [0.6%] -0.8% [0.5%] -3.1% [0.6%]
πmcar = 30% -12.8% [1.9%] 1.1% [1.8%] 7.1% [1.1%] 1.6% [0.8%] 0.6% [0.5%] -1.5% [0.5%]
πmcar = 40% -23.4% [4.2%] -6.8% [1.6%] 1.9% [1.1%] 0.7% [0.7%] -0.9% [0.5%] -2.5% [0.5%]
πmcar = 50% -33.8% [8.6%] -16.3% [2.7%] -2.7% [1.6%] -3.7% [1.1%] -4.3% [0.9%] -5.7% [1.0%]
πmcar = 60% -45% [13.8%] -24.3% [5.4%] -7.3% [2.6%] -7.7% [2.2%] -7.8% [2.1%] -9.3% [1.9%]

πna = 20%: b

0.5 1 1.5 2 2.5 3

πmcar = 10% -0.9% [0.7%] 10.1% [2.6%] 8.5% [1.2%] 3.4% [0.3%] -1.3% [0.2%] -4.4% [0.4%]
πmcar = 20% -9.3% [0.8%] 6.8% [1.2%] 9.1% [1.3%] 3.2% [0.6%] 2.6% [0.3%] -1.2% [0.3%]
πmcar = 30% -18.5% [2.9%] -10.4% [0.9%] 8.4% [1.3%] 3.9% [0.6%] 3.3% [0.3%] -1.4% [0.3%]
πmcar = 40% -28.5% [8.1%] -18.3% [2.8%] 4.1% [0.9%] 3.1% [0.7%] 1.3% [0.5%] -2.5% [0.6%]
πmcar = 50% -39.1% [15.7%] -29.2% [6.7%] 0.1% [1.5%] -0.6% [1.1%] -1.5% [0.9%] -3.7% [1.1%]
πmcar = 60% -50.1% [26.5%] -37.9% [11.8%] -4.7% [2.2%] -5.2% [1.9%] -5.8% [1.8%] -6.8% [1.9%]

πna = 30%: b

0.5 1 1.5 2 2.5 3

πmcar = 10% -4.2% [0.4%] 3.6% [0.9%] 11.1% [1.8%] 2.2% [0.4%] -2.2% [0.3%] -3.1% [0.3%]
πmcar = 20% -13.8% [1.8%] -1.1% [0.8%] 11.2% [1.8%] 6.8% [0.9%] 2.2% [0.3%] -0.2% [0.3%]
πmcar = 30% -21.9% [4.7%] -17.1% [2.9%] 10.1% [1.6%] 7.6% [1.1%] 2.8% [0.5%] -0.3% [0.4%]
πmcar = 40% -30.1% [9.8%] -28.1% [5.4%] 6.6% [1.5%] 5.2% [1.2%] 2.1% [0.9%] -2.3% [1.1%]
πmcar = 50% -40.3% [17.3%] -36.6% [11.3%] 1.6% [1.3%] 2.1% [1.3%] -1.8% [1.3%] -4.8% [1.5%]
πmcar = 60% -51.2% [28.3%] -44.5% [17.4%] -2.9% [2.1%] -2.6% [1.8%] -3.6% [2.1%] -7.6% [2.4%]

Table 1: Empirical biases and variances (in brackets) of π̂mcar from datasets
simulated with different values of πmcar and b.
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5.3 Classification of missing values as MCAR or MNAR
values

In this section, we only evaluate the capability of discriminating MCAR and
MNAR values on the basis of the estimated probabilities of being MCAR (see
Eq.21). For each missing value, the prediction is simply made by comparing this
probability to a threshold. If the probability is below it, then the corresponding
missing value is predicted as MNAR. True and false positive rates are calculated
as follows:

TPR = Number of predicted MNAR which are simulated as MNAR
Number of simulated MNAR (23)

FPR = Number of predicted MNAR which are simulated as MCAR
Number of simulated MCAR (24)

By varying the threshold between 0 and 1, we computed ROC curves (see Fig. 3).
Then, the Area Under the Curve (AUC) can be computed (see Table 2). Note
that AUC > 0.5 indicates our method is more accurate than random classifica-
tion.

From these results, it appears that the AUC criterion is close to 0.5 when
the parameter b is less than 2, which makes sense, as with such parameter, the
missing value generating model is almost the same for MCARs and MNARs,
which deviates from our original assumptions. However, the AUC is much better
for greater values of b. More precisely, it appears the higher b is (i.e. the more
the distribution of MNAR is shifted to the left) the more reliable the predictions
are.
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πna = 10%: b

0.5 1 1.5 2 2.5 3

πmcar = 10% 50% [0%] 53.5% [2.3%] 52.5% [5.3%] 61.4% [3.8%] 68.1% [5.1%] 82.5% [11.6%]
πmcar = 20% 50% [0%] 53.1% [2.1%] 52.8% [5.0%] 63.0% [4.3%] 67.6% [4.5%] 80.8% [11%]
πmcar = 30% 50% [0%] 53.1% [1.5%] 52.1% [5.0%] 63.3% [4.7%] 69.4% [5.2%] 78.5% [9.4%]
πmcar = 40% 50% [0%] 53.1% [1.6%] 53.5% [5.6%] 62.6% [4.2%] 67.2% [6.6%] 71.9% [10.9%]
πmcar = 50% 50% [0%] 52.4% [1.7%] 54.7% [7.2%] 63.2% [5.7%] 64.0% [10.6%] 67.5% [11.1%]
πmcar = 60% 50% [0%] 53.0% [2.1%] 53.7% [8.4%] 61.4% [9.4%] 64.1% [11.4%] 59.2% [19.3%]

[.]: Estimated standard deviations of AUC criteria

πna = 20%: b

0.5 1 1.5 2 2.5 3

πmcar = 10% 50% [0%] 55.3% [2.6%] 52.0% [3.4%] 64.2% [3.9%] 84.2% [8.8%] 95.6% [4.3%]
πmcar = 20% 50% [0%] 54.8% [1.9%] 50.3% [3.1%] 63.9% [2.9%] 81.9% [7.5%] 93.3% [7.3%]
πmcar = 30% 50% [0%] 54.5% [1.7%] 51.9% [3.2%] 62.4% [3.2%] 75.8% [8.1%] 90.6% [8.2%]
πmcar = 40% 50% [0%] 54.3% [1.7%] 52.0% [4.2%] 62.8% [3.6%] 74.6% [7.7%] 85.8% [13.3%]
πmcar = 50% 50% [0%] 53.8% [1.8%] 52.2% [4.5%] 61.8% [3.8%] 65.8% [8.2%] 79.0% [15.0%]
πmcar = 60% 50% [0%] 53.2% [1.5%] 52.3% [6.0%] 59.8% [6.4%] 61.6% [10.1%] 71.6% [16.5%]

[.]: Estimated standard deviations of AUC criteria

πna = 30%: b

0.5 1 1.5 2 2.5 3

πmcar = 10% 50% [0%] 58.5% [2.2%] 49.8% [3.3%] 73.4% [6.4%] 91.9% [4.8%] 96.0% [3.5%]
πmcar = 20% 50% [0%] 57.1% [2.0%] 49.7% [2.8%] 68.4% [6.4%] 90.0% [6.9%] 96.5% [2.0%]
πmcar = 30% 50% [0%] 57.1% [2.2%] 50.0% [3.2%] 65.3% [4.2%] 87.5% [8.0%] 95.2% [4.9%]
πmcar = 40% 50% [0%] 55.8% [2.1%] 49.1% [3.1%] 64.1% [4.6%] 82.6% [9.8%] 93.4% [7.3%]
πmcar = 50% 50% [0%] 55.3% [1.8%] 51.4% [3.7%] 62.3% [4.6%] 76.8% [11.5%] 90.4% [12.4%]
πmcar = 60% 50% [0%] 55.1% [2.0%] 51.0% [4.7%] 60.1% [6.2%] 68.9% [9.3%] 82.3% [19.1%]

[.]: Estimated standard deviations of AUC criteria

Table 2: Estimated AUC criteria from datasets simulated with different values
of πmcar and b.
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Figure 2: Probability that the missing value is MNAR in function of the nor-
malized intensity level ([xij−min(xij)]/[max(xij)−min(xij)]) following eq.(22)
to incorporate missing values in simulated data.
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Figure 3: Example of ROC curves obtained with πna = 30% and πmcar = 20%
for different values of b.
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6 Comparison of imputation algorithms
In this section, our goal is to compare the proposed imputation methods with
other imputation methods. For this, we used the same simulated datasets as in
our previous section (see Section 5.1).

6.1 Evaluation protocol
6.1.1 Methods and algorithms

In the next, we compare the following algorithms:
• The imputation strategy presented in the article, which calls either SLSA
or MLE if the estimated probability of being MCAR is greater than
0.5, and which calls IGCDA otherwise. This algorithm is implemented
through the impute.mix function of the R package imp4p Giai Gianetto
(2020). These algorithms are referred to as MIX(SLSA,IGCDA) and
MIX(MLE,IGCDA) respectively.

• The multiple imputation strategy presented in the article, which combines
either the SLSA or MLE algorithm (as MCAR-devoted algorithm) and
the IGCDA (as MNAR-devoted algorithm). The number of iterations
for the multiple imputation is discussed next. This algorithm is imple-
mented through the impute.mi function of our R package imp4p Giai Gi-
anetto (2020).These algorithms are referred to as MI(SLSA,IGCDA) and
MI(MLE,IGCDA) respectively.

These methods are evaluated against several MCAR-devoted algorithms:
• The k-NN algorithm from Hastie et al. (1999), thanks to the impute.knn
function of the R package impute of Hastie et al. (2016).

• The BPCA algorithm from Oba et al. (2003), thanks to the pca function
of the R package pcaMethods of Stacklies et al. (2007).

• The MLE algorithm (described in Section 5.4.1 of Schafer (1997)), thanks
to the imp.norm function of the R package norm of Novo (2013).

• The SLSA algorithm, thanks to the impute.slsa function of our R package
imp4p of Giai Gianetto (2020).

As well as against the following MNAR-devoted algorithms:
• The IGCDA algorithm, thanks to the impute.igcda function of our R pack-
age imp4p of Giai Gianetto (2020).

• The algorithm available in the PERSEUS software Tyanova et al. (2016),
with default parameters, consisting in imputing the missing values of a
sample j with small values generated from a Gaussian distribution having
a mean equal to mobs

j − 1.8σobsj and a standard deviation of 0.3 × σobsj ,
where mobs

j is the average of the observed values in the sample j and σobsj
is the standard deviation of these values Deeb et al. (2012).

18

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.122770doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.122770


6.1.2 Comparison criteria

To evaluate the discrepancy between the imputed values ximpijbk and the ground
true values xijbk, a Mean Square Error criterion is used:

MSE =
∑
i,j(x

imp
ijbk − xijbk)2∑
j n

na
j

(25)

Moreover, to determine if the imputed values has some influence on the variance
of a row (i.e. the variance of intensities of a peptide inside a condition), we
evaluated the ratio between the variance of the imputed values and the variance
of the complete values:

RV = V [ximpijbk]/V [xijbk] (26)
More particularly, as the variance parameter is generally used to perform statis-
tical tests, this criterion allows to evaluate how the imputation methods could
impact such tests.

To better visualize these criteria, they are displayed in log scale: As a result,
the smaller the log(MSE), the better the method. However, the variance ration
RV is expected to have a value as close as 1 as possible, so that log(RV) is not
expected to be as small as possible, but on the contrary, to be as close as 0 as
possible. Thus, plots depicting log(MSE) and log(RV) should not be interpreted
in the same way.

6.1.3 Optimal number of iterations in multiple imputation

When relying on multiple imputation strategies, it is required to tune N the
number of iterations before the algorithm stops. To estimate it, we simulated
100 datasets with 30% of MCAR values among missing values, and we reported
the influence of the number of iterations N on the quality of the imputation of
theMI(SLSA, IGCDA) algorithm by measuring theMSE criterion (Eq. (25)).
It appears the MSE criterion tends to decrease with N (see Figure 4). More
precisely, it decreases rapidly between 1 and 3 iterations and seems to reach a
plateau after 5 to 7 iterations. In our comparisons with existing algorithms, we
set N = 10 to garantee optimal performances. Note that these observations are
in accordance with the recommendations in Rubin (1987): using between 2 and
10 iterations in multiple imputation procedures are enough to obtain satisfying
efficiency.

6.1.4 Comparison scope

To conduct a sensitivity analysis of the different algorithms, we varied three
parameters:

• The proportion of missing values πnaj ,

• the proportion of MCAR values πmcarj ,

• the parameter b used to simulate the distribution of MNAR values.
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Figure 4: Distribution of the MSE criterion of the algorithm
MI(SLSA, IGCDA) in function of the number of iterations estimated
from 100 generated datasets for each iteration.
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We fixed either b = 1.5 or b = 3, since b = 1.5 represents a case where our
methodology is not able to have an AUC criterion different of 50% while b = 3
represents a case where our methodology gives an AUC criterion superior to
90% and allows thus a good discrimination of MCAR and MNAR values.

6.2 Results
6.2.1 The proposed multiple imputation strategy gives good perfor-

mances when compared to the other imputation algorithms

From our simulations, the PERSEUS algorithm gives the highest MSE whatever
the values of b, πna and πmcar (see Fig. 5 and Fig. 7). This algorithm imputes
missing values with values which are inferior and further from the ground true
values than other algorithms. The IGCDA algorithm, which is also a MNAR-
devoted algorithm, seems to give a better MSE than PERSEUS. However, it
remains quite high when compared to the other algorithms (either MCAR-
devoted or those accounting for all types of missing values). These high MSE
were expectable, and are due to the principle of imputing all the missing values
with small values: as detailed in Lazar et al. (2016), this strategy is bound to fail
when there are too many MCAR, regardless of the MNAR-devoted algorithm
quality. Moreover, these low imputed values will lead to an important increase
in the variance of the data and will thus have a strong negative impact on
subsequent statistical tests (Fig. 6 and Fig. 8).

Another very popular method, namely k-NN, gives rather poor results in our
simulations. It is the MCAR-devoted algorithm with the highest MSE and it
tends to increase the variance of the data (Fig. 5-8). In the case b = 3 (the most
realistic one), it even gives results equivalent to the IGCDA algorithm (Fig. 5).
Moreover, its performances are particularly unstable (it has the widest error bar
in the plots of Fig. 5-8).

Two of our proposed strategies, namely MIX(SLSA, IGCDA) and MIX(MLE,
IGCDA), also display disappointing results: Although they perform when com-
pared to the aforementioned algorithms (PERSEUS, IGCDA and k-NN) they
underperform with respect to the MCAR-devoted algorithm they are based
on. MIX(SLSA, IGCDA) is less efficient than SLSA, and the same goes for
MIX(MLE, IGCDA) and MLE. Globally, it appears that mixing an MCAR-
devoted algorithm with an MNAR one to account for MNAR values is not a
wise strategy (see Fig. 5-8). This could be extrapolated from the now well-
established fact (see Lazar et al. (2016)) that in presence of both MNAR and
MCAR values, MNAR-devoted algorithm does not perform well with respect to
MCAR-devoted ones.

Finally, the remaining algorithms, i.e. BPCA, MEAN, SLSA, MI(SLSA,IGCDA),
MLE, MI(MLE, IGCDA) give low MSE criteria when compared to the other
algorithms. Among them, the MEAN algorithm has a specific behavior. Un-
surprisingly, it is the one providing the lowest RV. In other words, it is the
algorithm which most reduces the variance of the data. Although practition-
ers generally appreciate such type of behavior, as it can somehow compensate
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for some sources of variability, such type of imputation can artificially increase
the number of proteins that appears significantly differentially abundant in the
subsequent statistical test, and thus increase the proportion of false positives.

We can also notice a regular pattern in the performances of SLSA and MLE:
SLSA always has a better MSE than MLE, while MLE has a better RV than
SLSA. This can be observed in any imputation setting: as stand-alone MCAR
imputation, within MIX imputation or within MI imputation. BPCA does not
perform as well as SLSA or MLE, while being particularly computationally
demanding, so that integrating it into MI or MIX strategies does not seems
interesting.

Although not very visible, it another trend can be grasped: While MIX im-
putation strategies did not improve the results, the MI ones are clearly efficient.
They always improve the behavior of the associated MCAR method: MI(SLSA,
IGCDA) and MI(MLE, IGCDA) perform better than SLSA and MLE respec-
tively, while the difference is more visible with MLE than with SLSA. This will
be studied in more details hereafter.

Overall, the algorithm giving the lowest MSE in average whatever the values
of b, πna and πmcar is the multiple strategy MI(SLSA, IGCDA), while the
algorithm which seems to change the less the variance of the data is the multiple
imputation strategy MI(MLE, IGCDA).
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Figure 5: Distributions of the log2(MSE) in function of the proportion of
MCAR values (top) and in function of the proportion of missing values (bottom)
when b = 3.
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Figure 6: Distributions of the log2(RV ) in function of the proportion of MCAR
values (top) and in function of the proportion of missing values (bottom) when
b = 3.
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when b = 1.5.
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Figure 8: Distributions of the log2(RV ) in function of the proportion of MCAR
values (top) and in function of the proportion of missing values (bottom) when
b = 1.5.

26

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.122770doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.122770


6.2.2 The proposed multiple imputation strategy allow to improve
the performance of the MCAR-devoted imputation algorithm
on which it is based

As previously sketched, it appears our multiple imputation strategy allows to
reach a lower MSE criterion than the MCAR-devoted imputation algorithm on
which it is based. This can be easily pictured on Fig. 9. This figure displays,
for a given MCAR algorithm X, the following ratio:

MSE(MI(X,IGCDA))
MSE(X)

which appears to be in average, constantly below 1. The MSE criterion is even
lower as there are MNAR values in the data sets (bottom of Fig. 9).

This feature is more clearly observed when comparing either SLSA toMI(SLSA, IGCDA),
or MLE to MI(MLE, IGCDA) when b = 3. This makes sense for the follow-
ing reason: When b = 1.5, this feature is not observed since our strategy has
difficulties to discriminate between MNAR and MCAR values (AUC close to
0.5%) (top of Fig. 9). However, when b = 3, the lower the proportion of MCAR
values, the more the MSE criterion is improved using the multiple imputation
strategy. Note that this feature is checked only when there is enough missing
values, i.e. when πna > 10% (bottom of Fig. 9). When πna is too small (case
πna = 10%) , the IGCDA algorithm does not allow to shift sufficiently the cor-
relation structure of the dataset; thus, the MCAR-devoted algorithm which is
subsequently applied on the imputed values gived results similar to the original
MCAR-devoted algorithm.

6.2.3 Conclusion on the comparison of the imputation algorithms

From our simulations, it appears the multiple imputation strategy MI(SLSA,
IGCDA) gives the best results in term of accuracy (measured by the MSE
criterion) whatever the parameters b, πna and πmcar used to generate the data,
while the MI(MLE,IGCDA) is the best to preserve the variance of the data.
The improvement of the accuracy of the imputations when compared to the
SLSA or the MLE algorithm is even stronger that there are MNAR values in
the dataset, provided that enough values are missing.

Although our simulations show the relevance of our approach, it has to
be noted that the evaluation of a MSE criterion can be subject to cautions.
Indeed, the true MNAR values could be far from the ones we simulated, and
it is difficult to have an idea of how these values are really distributed in real
datasets. However, our simulations are based on a reasonable assumption of a
Gaussian distribution of intensities among replicates for a specific peptide. This
is reasonable because the use of replications should lead to measured values with
a Gaussian-type spread.

As a whole, these simulations clearly stress the gain resulting from our pro-
posed multiple imputation strategy, as well as the underlying diagnosis on the
missingness mechanism.
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Figure 9: Distributions of the ratios MSE(MI(MLE,IGCDA))/MSE(MLE) (left)
and MSE(MI(SLSA,IGCDA))/MSE(SLSA) (right) when b = 1.5 (top) and b = 3
(bottom).
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7 Conclusion
This article addresses the issue of missing values in peptide-level quantitative
proteomics datasets resulting from mass spectrometry experiments. We pro-
posed an approach to estimate the missingness mechanism, as well as a multiple
imputation strategy based on this estimation. Our approach assumes a mix of
MCAR values and MNAR values, the latter ones being the result of a random
left-censorship of the peptide intensities. It allows estimating the proportion of
MCAR values and provides an estimate of their distribution among the inten-
sity values of the identified peptides in a sample. We showed it is possible to
estimate a probability that each missing value is either MCAR or MNAR. These
probabilities can then be used to build multiple imputation strategies combin-
ing imputation algorithms dedicated to MNAR values and others dedicated to
MCAR values. Our approach is original with respect to the state of the art
in the proteomics community where only algorithms based either on a MNAR
data assumption or on a MCAR data assumption have been used to date (Lazar
et al., 2016). Our evaluations on simulated datasets proved the outperformance
of our method with respect to the state of the art, especially when datasets
have a large number of missing values. Our methodology could be used in other
contexts based on mass spectrometry experiments, such as in metabolomics for
example, or, more broadly, on datasets with similar missing value mechanisms.
Moreover, the methods and algorithms developed in this article are grouped in
a R package named imp4p, freely available on the CRAN Giai Gianetto (2020),
and wrapped to Prostar software (Wieczorek et al., 2017).

29

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.122770doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.122770


Supplementary Materials

1 Justifications of article assumptions and corol-
laries

Assumption 1 (Absence of non-quantified peptide). Each peptide has at least
one observed intensity value among the samples of each biological condition.

Justification: Ass. 1 only stipulates that lines from the data matrix that are
empty are not considered (obviously, it will not be possible to impute anywhere
close to the truth for a peptide in a given biological condition if no observation
is available to rely on). This may look like a truism, however, in practice, a
peptide may be seen in one biological condition and not in the other, so that
from the proteomic practitioner viewpoint, such empty lines exist. We therefore
assume they have been previously filtered out and processed separately.

Assumption 2 (Peptide-wise independence). The complete intensity values of
peptides are independently distributed in each sample.

Justification: At first look, Ass. 2 may seem inadequate: it could be nat-
urally expected to observe a strong correlation among intensities of peptides
coming from a same protein. However, in practice, there are generally very
few proteins with numerous peptides and numerous proteins with few peptides
within a sample. Moreover, in practice, several peptides with a similar con-
centration may lead to measured intensities that differ from several orders of
magnitude Silva et al. (2005). This oddity comes from the fact that the MS sig-
nal of a given peptide is not only influenced by its quantity. It is also strongly
dependent on a variety of physicochemical peptide-specific properties, such as
its ionization capability. In fact, this is the very reasson why, in absence of iso-
tope labelling (see Introduction), quantitative proteomics is mainly relative: one
does not compare the abundance of several peptides within a biological sample,
but on the contrary, the abundance of one peptide in samples corresponding to
different conditions (leading to assume K ≥ 2 in the practical setting described
in article, Section 2.1). For all these reasons, the independence assumption of
the peptide intensity distribution within each sample is harmless.

Assumption 3 (Intensity distributions). (a) The peptide concentrations are
log-normally distributed within each sample, and (b) the MNAR values result of
a left-censorship mechanism which does not impact the most intensely detected
peptides.

Justification: These are well-established facts from the literature. For short,
Ass. 3a is the reason why quantitative analysis is classically conducted on log-
transformed data Eidhammer et al. (2012). As for Ass. 3b, some elements were
sketched in the Introduction, but a thorougher description of the underlying
physico-chemical phenomena can be found in Lazar et al. (2016).
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Corollary 3 (Of Ass. 3b). Let be

uj = min
(

max
i∈[1,n]

(x̃naij ), max
i∈[1,n]

(xobsij )
)

(27)

where (x̃naij )i∈[1,n] are the imputed missing values after the use of a MCAR-
devoted algorithm. Then, ∃Mj < uj such that ∀x ≥Mj:

Fnaj (x) ≈ F̃naj (x) (28)

where F̃naj is the empirical cdf of all the imputed missing values after the use of
a MCAR-devoted algorithm.

Proof: maxi(x̃mnarij ) is clearly an acceptable candidate for Mj . Indeed, be-
yond this value, all the missing values are well imputed by a MCAR-devoted im-
putation algorithm. Moreover, maxi(x̃mnarij ) < maxi(x̃naij ) and maxi(x̃mnarij ) <
maxi(xobsij ) ≈ maxi(x̃mcarij ) as there exists MCAR values that are beyond the
range of left-censored MNAR values. This justifiesMj < min(maxi(x̃naij ),maxi(xobsij )).
�

Corollary 4 (Of Ass. 3b). If qmnarj denotes the theoretical quantile function of
MNAR values in sample j, then the interval [qmnarj (100%), uj [ is non-empty.

Proof: It directly derives from the fact that qmnarj (100%) < maxi(x̃mnarij )
since the overall MCAR-based imputation has overestimated the left-censored
values. �

Assumption 4 (Approximated Weibull cdf of MNAR values). It is assumed
that ∃Mj < uj such that ∀x ≥Mj:

Fmnarj (x) ≈ 1− exp
(
−
(

1
λ

x− lj
uj − lj

)d)
(29)

where d > 0 is a shape parameter, λ > 0 is a scale parameter, lj = min(mini(x̃naij ),mini(xobsij ))
is an approximation of the minimum of the complete intensity values in sample
j, and uj = min(maxi(x̃naij ),maxi(xobsij )) has been defined in Cor. 3.

Justification: It has to be noted that overall, the distribution of MNAR
values may be far from the Weibull distribution. However, this assumption
is harmless for at least three reasons: First, one only assume that these two
distributions are close when x becomes sufficiently great. Second, Weibull dis-
tribution is a rather flexible model for left-skewed distributions. Third, one only
temporary relies on this parametric model to stabilize πmcarj .

2 Proofs of the article propositions
2.1 Proof of Proposition 1
Proposition 1. Let R and S two independent random variables following, re-
spectively, the binomial distributions B(n, p) and B( a

1−an, q) where (a, p, q) ∈
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]0, 1[3. We note, respectively, r and s the realizations of R and S. Then, the
maximum likelihood estimator (MLE) of θ = q/(a× q + (1− a)× p) is given by
θ̂MLE = s/(a× (s+ r)) and its asymptotic distribution is

√
n(θ̂MLE − θ) d−→

n→+∞
N
(
0, σ2(θ, p)

)
where the asymptotic variance function is

σ2(u, v) = 1− a
a

h(u, v)
g(u, v)h(u, v)− κ2(u, v) (30)

with

g(u, v) = δ(u)v(1− δ(u)v)
(1− au)2

(
1
u

+ v

ι(u, v)

)2
(31)

h(u, v) = a−1 − 1
v(1− v) + δ(u)v(1− δ(u)v)

(
1
v

+ u

ι(u, v)

)2
(32)

κ(u, v) = (1− δ(u)v)
(1− a)ι(u, v)2 (33)

where δ(u) = (a−1)u
au−1 and ι(u, v) = a(v−1)u−vu+1

1−a .

Proof:
MLE estimates: With observations r and s of random variables R and S, the
log-likelihood function reads:

l(θ, p, r, s) = log [fR(r)fS(s)] (34)

= log
[(
n

r

)(
n× a/(1− a)

s

)]
+ (r + s) log[p] + s log

[
(a− 1)θ
aθ − 1

]
+ (n− r) log [1− p] +

(
n

a

1− a − s
)

log
[
1− p (a− 1)θ

aθ − 1

]
(35)

From this log-likelihood function, we have the following MLE of p and θ:

p̂MLE = r

n
(36)

θ̂MLE =
s

n×a/(1−a)

a s
n×a/(1−a) + (1− a) rn

= s

a(s+ r) (37)

Fisher Information matrix: Using the δ(.), g(., .), h(., .) and κ(., .) notations
introduced in the the statement of Prop. 1, the Fisher information matrix of θ
and p reads:

I
(
θ
p

)
=
(
I(θ) I(θ, p)
I(θ, p) I(p)

)
(38)
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where:

I(θ) = na

1− a
δ(θ)p(1− δ(θ)p)

(1− aθ)2

(
1
θ

+ p(1− a)
a(p− 1)θ − pθ + 1

)2
(39)

= na

1− ag(θ, p), (40)

knowing that n = na
1−a

( 1
a − 1

)
:

I(p) = na

1− a
a−1 − 1
p(1− p) + na

1− aδ(π)p(1− δ(π)p)
(

1
p

+ π(1− a)
a(p− 1)π − pπ + 1

)2

(41)

= na

1− ah(π, p), (42)

and:
I(θ, p) = na

1− a
(1− δ(θ)p)(1− a)

(a(p− 1)θ − pθ + 1)2 = na

1− aκ(θ, p) (43)

Asymptotic variance of θ̂MLE: Therefore, the determinant of the Fisher
information matrix reads:

det I
(
θ
p

)
= I(θ)I(p)− I(θ, p)2 (44)

= ( na

1− a )2[g(θ, p)h(θ, p)− κ2(θ, p)] (45)

Finally, the variance of θ̂MLE reads:

V [θ̂MLE ] = [det I
(
θ
p

)
]−1I(p) (46)

= 1− a
na

h(θ, p)
g(θ, p)h(θ, p)− k2(θ, p) (47)

and its asymptotic variance:

lim
n→+∞

nV [θ̂MLE ] = 1− a
a

h(θ, p)
g(θ, p)h(θ, p)− k2(θ, p) (48)

�

2.2 Detailed application of Proposition 1
Let us consider the following independent random variables

R(x) =
∑

i∈[1,nobs
j

]

1xobs
ij
>x
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and
S(x) =

∑
i∈[1,nna

j
]

1xna
ij
>x,

where nobsj is the number of observed values in the sample j; and nnaj the number
of missing values in this same sample.

Under Ass. 2 (the abundance values of peptides are independently dis-
tributed in the sample j), R(x) and S(x) are two independent binomial random
variables:

R(x) ∼ B(nobsj , 1− F obsj (x)) (49)
S(x) ∼ B(nnaj , 1− Fnaj (x)) (50)

To match the notations of Prop. 1, we write:
• p(x) := 1− F obsj (x)

• q(x) := 1− Fnaj (x)

• n := nobsj

• a := πnaj (i.e. πnaj is the proportion of missing values in the sample j )
Therefore, the function π(x) defined in Eq. (8) of the article, which we recall
reads as follow:

π(x) =
1− Fnaj (x)
1− Fj(x)

can be rewritten as
π(x) = q(x)

(aq(x) + (1− a)p(x)) (51)

Moreover, nnaj = n a
1−a so that:

R(x) ∼ B(n, p(x)) (52)

S(x) ∼ B
(
n

a

1− a, q(x)
)

(53)

Thus, it is possible to apply Prop. 1 to define the maximum likelihood estimate
of π(x).

2.3 Proof of Proposition 2
Proposition 2. Let

π̃MLE(x) = s̃(x)
πnaj (s̃(x) + r(x))

where s̃(x) =
∑
i∈[1,nna

j
] 1x̃naij >x and r(x) =

∑
i∈[1,nobs

j
] 1xobsij >x. Under Ass. 2

and Cor. 3, the proportion of missing values πnaj is fixed. Then, for x ∈
[qmnarj (100%), uj [,

lim
n→+∞

π̃MLE(x) = πmcarj
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Proof: When
x ≥ max(max

i
(xobsij ), max

i
(x̃naij )),

π̃MLE(x) becomes undefined. Furthermore, when

max
i

(xobsij ) > max
i

(x̃naij ),

then π̃MLE(x) = 0 for x ∈ [maxi(x̃naij ), maxi(xobsij )[. Conversely, when

max
i

(xobsij ) < max
i

(x̃naij ),

then π̃MLE(x) is undefined for x ∈ [maxi(xobsij ),maxi(x̃naij )[. Thus, to ensure
the consistency of the estimator, x must belong to [qmnarj (100%), uj [, where

uj = min(max
i

(x̃naij ),max
i

(xobsij )).

Therefore, for any x ∈ [qmnarj (100%), uj [, and when:

• 0 < Fnaj (x) < 1,

• 0 < F obsj (x) < 1,

• the proportion of missing values πnaj is fixed,

we can derive from Cor. 3 and Prop. 1, that π̃MLE(x) is an asymptotically
unbiased estimate for πmcarj when n→ +∞. �

2.4 Proof of Proposition 3
Proposition 3.

lim
x→qobs

j
(100%)

σ2(π(x), 1− F obsj (x)
)

= +∞

Proof: When u 6= 0 and v → 0, the functions g, h and κ (defined in Prop. 1)
have the following asymptotic behavior:

• g(u, v)→ 0,

• h(u, v)→ +∞,

• κ(u, v)→ (1− πnaj )/(1− πnaju)2.

Knowing that

σ2(u, v) =
1− πnaj
πnaj

h(u, v)
g(u, v)h(u, v)− κ2(u, v)

we derive that, σ2(π(x), 1− F obsj (x)
)
→ +∞ when x→ qobsj (100%) �
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