Title

- Development and on-site evaluation of an easy-to-perform and low-cost food
- pathogen diagnostic workflow for low-resource communities

Short title

- Simple and low-cost diagnostic platform for low-resource communities

- Michael Glenn Mason^{1*}, and José Ramón Botella^{1*}
- ¹ Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences,
- The University of Queensland, Australia.

- * To whom correspondence should be addressed. E-mail: j.botella@ug.edu.au.
- Correspondence may also be addressed to: Dr Michael Mason, E-mail:
- Michael.Mason@uq.edu.au

19 Abstract

20	Food-borne diseases are a leading cause of illness and death in many developing
21	countries and thus, there is a real need to develop affordable and practical
22	technologies that can help improve food safety in these countries. The ability to
23	efficiently identify food pathogens is essential to allow national regulatory authorities
24	to monitor food quality and implement safety protocols. In this study, we have
25	developed a simple, low-cost (\$0.76 (USD)) complete food pathogen diagnostic
26	workflow ideally suited for deployment in low-resource environments that uses a
27	simple four step process (sample enrichment, cell lysis, DNA amplification, and
28	naked-eye readout). The minimal number of steps and equipment involved in our
29	diagnostic workflow, as well as the simplicity of the yes/no flocculation readout,
30	allows non-technical personnel to perform and interpret the assay. To evaluate the
31	system's performance, we tested the entire system on fresh produce samples
32	collected from local farms and markets in Cambodia for the presence of the E. coli
33	O157 O-antigen polymerase, wzy. Although this was a proof-of-concept study, our
34	system successfully revealed a clear correlation between the origin and condition of
35	the produce collected and their likelihood of contamination. In conclusion, we believe
36	that our easy-to-perform diagnostic system can have a significant impact on
37	improving food quality and human health if adopted by regulatory authorities in
38	developing countries due to the assay's simplicity, affordability, and adaptability.

40 Introduction

41	Over the last 20 years, there has been a significant increase in the incidence of food-
42	borne diseases worldwide [1]. The risk of infection by a food-borne disease is
43	significantly higher in developing countries due to a combination of factors including
44	access to clean water and bathroom facilities, poor hygiene education, inadequate
45	food production and storage practices, and either insufficient food safety legislation
46	or poor implementation of existing legislation [2]. Most food-borne disease infections
47	in these countries result from the consumption of perishable foods sold in informal
48	markets [3] and, as such, food-borne diseases have become a leading cause of
49	illness and death in developing countries [4, 5]. Hence, there is a need for low-cost
50	and simple technologies that can help health authorities to monitor and enforce
51	adequate levels of food safety. In addition to the health benefits, increased food
52	safety standards would likely have economic benefits as a result of increased
53	demand for fresh produce exports [3].

54

Shiga toxin-producing *Escherichia coli* (STEC) are a class of *E. coli* responsible for many food-borne outbreaks and sporadic cases of gastrointestinal illness, with a range of symptoms including haemorrhagic colitis (stomach cramping and bloody diarrhoea) and the potentially fatal hemolytic-uremic syndrome (break down of red blood cells, kidney failure, reduction in platelet cells) [6]. In the United States alone,

60	STEC strains are estimated to cause approximately 176,000 illnesses, 2,400
61	hospitalizations, and 20 deaths each year [7]. Of all the STEC strains, the O157:H7
62	serotype is the most common cause of foodborne illness outbreaks worldwide [8]
63	and is the responsible for all of the deaths by STEC strains in the US [7]. Infection by
64	E. coli O157:H7 is commonly thought to be associated with the consumption of
65	undercooked meat however, infection can also occur through the consumption of
66	fresh fruit and vegetables [7, 9, 10]. For example, outbreaks of E. coli O157:H7 in the
67	United States have occurred due consumption of a variety of fresh produce including
68	onions, bagged spinach, lettuce and unpasteurized apple juice [10-12]. Produce and
69	water supplies used for irrigation or consumption can become contaminated by
70	coming in contact with trace amounts of fecal waste from farm animals, which can be
71	carriers of <i>E. coli</i> O157:H7 but are themselves unaffected by it [6, 13].
72	
73	E. coli O157:H7's low infective dose makes it a highly effective and dangerous
74	human pathogen as it can still cause illness even when the initial source of
75	contamination has been significantly diluted [14]. Thus, countries typically adopt a 0
76	CFU limit of <i>E. coli O157:H7</i> or other STEC strains in food [15]. The standard
77	method of identifying E. coli O157:H7 is an involved process that requires a trained
78	microbiologist and takes days to complete [16, 17]. While this method is well
79	established and highly reliable, it is not always practical, especially for developing

80	countries who have a limited number of trained personnel and testing facilities. DNA
81	amplification-based systems can provide an alternative to detect food borne
82	pathogens as they are low-cost, fast and relatively simple to perform [17].
83	Polymerase chain reaction (PCR) is the conventional DNA amplification-based
84	technique for rapid identification of DNA/RNA biomarkers [18] however, PCR-based
85	methods require a relatively expensive thermocycler and hence are not ideally
86	suitable for low resource environments. Isothermal DNA amplification methods,
87	including Loop-mediated isothermal amplification (LAMP) [19], may potentially
88	overcome equipment costs as they enable DNA amplification to be performed in a
89	low-cost, single temperature heating device.
90	
91	We have developed a flocculation-based DNA amplification readout that enables the

⁹² identification of the presence of amplification even by inexperienced users [20].

93 Thus, in this study, we sought to build upon the advantages of the isothermal DNA

⁹⁴ amplification and our flocculation readout technique to create a complete food

95 pathogen diagnostic system tailored for developing countries. We have optimized the

96 entire process, from food sampling to pathogen detection, aiming to simplify each

97 step, reduce costs and ensure safety. In a proof-of-concept study, we used our

98 diagnostic workflow to detect *E. coli* O157 in Cambodian fresh produce and

demonstrated that our system is capable of rapidly screening fresh produce for the
 presence of food pathogens in low-resource environments.

101

102 **Results**

Sample processing and bacterial enrichment

In modern food microbiology laboratories, a stomacher machine is typically 104 employed to macerate tissue in growth media prior to microbial enrichment [21]. This 105 equipment is expensive and, in the hands of poorly trained personnel, can be a 106 source of cross-contamination resulting in false positives and misleading results. We 107 therefore developed an equipment free version of a stomacher machine in which 108 samples are collected and placed in individual tubes containing growth media and 3-109 4 metal ball bearings (S1A Fig). Vigorous shaking of the tubes macerates the tissue 110 111 and aids the release food pathogens into the media which can then be enriched in an overnight incubation without the need to open the tube, minimizing the risk of 112 cross-contamination. 113

Rapid bacterial DNA extraction from fresh produce

116 enrichment cultures

117	A critical part of any food pathogen molecular diagnostic is the ability to reliably,
118	cheaply and safely extract amplifiable DNA. As the infective dose of E. coli O157:H7
119	is as low as a few hundred cells [7, 14, 22], an initial enrichment step in buffered
120	peptone media for 16-24 hours is required before detection. We reasoned that the
121	cheapest and safest method to extract microbial DNA from enriched samples is to
122	heat the entire culture to 95°C for 30 minutes as this will kill the bacteria in the
123	sample and lyse the <i>E. coli</i> , which can be performed without opening the tube. To
124	test this hypothesis, we infected Brussel sprout leaves with E. coli O157:H7, and
125	subsequently processed the leaf samples as described above. Tubes containing
126	macerated leaf tissue in buffered peptone water were incubated at 41.5°C for 24
127	hours and then heated at 95°C for 30 minutes. Samples from the boiled culture
128	failed to produce bacterial growth on buffered peptone agar plates, indicating that the
129	heat treatment had killed the bacterial population and the tube was safe to open.
130	Direct addition of 1, 2 or 4 μI of the boiled culture into LAMP reactions did not result
131	in amplification (S1B Fig) indicating that amplification inhibitors are present in the
132	boiled extract. However, a 25-fold dilution of the boiled extract with water prior to
133	addition to the LAMP reaction resulted in strong amplification (S1B Fig).

134

LAMP primer development

136	LAMP primers were developed against a number of <i>E. coli</i> O157:H7 genes (S1
137	Table), including the shiga toxin genes <i>stx1</i> and <i>stx2</i> [23], the O-antigen polymerase
138	wzy [24, 25], the O157-specific biosynthesis gene, <i>rfbE</i> [26], and the H7 flagella
139	antigen fliC [27]. The primers were used in LAMP reactions to detect the presence of
140	E. coli O157:H7 in cultures generated from artificially inoculated alfalfa sprouts in
141	three independent experiments. The stx2-2 primer set was unreliable as it failed to
142	amplify a product in two of the three experiments (Fig 1A) while the <i>fliC</i> , <i>stx2</i> -2 and
143	rfbE primer sets produced amplification products in one of the two non-inoculated
144	control samples indicating that they are prone to false positives (Fig 1B). Based on
145	these results, only the $wzy-1$ and $stx2-1$ primer sets were found to give reliable
146	amplification of <i>E. coli</i> O157:H7.
147	
148	Figure 1. Identification of specific and reliable LAMP primers. (A) LAMP primer

sets designed for *fliC-1*, *wzy-1*, *stx2-1*, *stx2-2*, *rfbE-1* were tested for their ability to
detect *E. coli O157:H7* in three artificially inoculated Alfalfa sprout samples. (B) The
same sets of LAMP primers were used in two uninoculated Alfalfa sprout control
samples.

154	To further test the specificity of the <i>wzy-1</i> and <i>stx2-1</i> primer sets, we examined their
155	ability to differentiate between E. coli O157:H7 and Salmonella enterica, a
156	genetically similar pathogenic species to E. coli [28]. Alfalfa sprouts were inoculated
157	with either 8 or 80 colony forming units (CFU) of Salmonella enterica or 1 CFU of E.
158	coli O157:H7 and cultured enriched overnight. LAMP primers designed against the
159	Salmonella invasion protein, invA (Table S1), were able to specifically identify the
160	Salmonella infected alfalfa sprouts while no amplification products were detected in
161	the E. coli O157:H7 inoculated samples and non-inoculated controls (Fig 2A). The
162	wzy-1 or the stx2-1 primer sets produced strong amplifications in the E. coli O157:H7
163	infected samples but not in the Salmonella infected samples or the non-inoculated
164	controls (Fig 2B).
165	
166	Figure 2. Primers wzy-1 and stx2-1 are specific for <i>E. coli</i> O157:H7. (A) LAMP
167	reactions using primers targeting the Salmonella invA gene were performed on
168	
	alfalfa sprout samples inoculated with either 8 or 80 CFU of S. entrerica serovar
169	alfalfa sprout samples inoculated with either 8 or 80 CFU of <i>S. entrerica serovar</i> enteritidis or 1 CFU of <i>E. coli O157:H7</i> , non-inoculated sprouts were used as
169 170	

174 Stabilization of LAMP reactions to allow room temperature

175 transport

176	Procurement of amplification reagents in many developing countries is problematic
177	largely due to erratic power supplies and inadequate cold storage [29, 30]. Freeze
178	drying of reactions could facilitate room temperature transport to, and storage at
179	remote locations. Trehalose is commonly used as a stabilizer of biomolecules during
180	the freeze-drying process [31, 32], however our initial attempts to freeze dry a
181	complete LAMP reaction failed to produce an amplification product upon
182	reconstitution with water either in the presence or absence of trehalose (Fig 3A).
183	Further tests revealed that the presence of betaine, an essential component of the
184	LAMP reaction, negatively affected the activity of the rehydrated reaction (Fig 3A).
185	Therefore, the LAMP reactions were freeze-dried in the absence of betaine and
186	subsequently resuspended in a solution containing betaine at the concentration
187	required for the reaction. To study whether the freeze drying process can stabilize
188	the LAMP reactions for extended periods of time, the dried reactions were left at
189	room temperature (22 - 24°C) for 4, 8 or 21 days before being rehydrated and used
190	to amplify purified E. coli O157:H7 genomic DNA. Strong amplifications were
191	observed at all three time points with no observable loss of activity over time (Fig
192	3B).

193

194 Figure 3. Optimization of freeze-drying conditions. (A) LAMP reactions

195	containing all necessary components, including primers were freeze-dried overnight
196	in the presence (+) or absence (-) of 5% (w/v) trehalose or 0.8 M betaine. Samples
197	processed without betaine were subsequently rehydrated in betaine solution (0.8 M
198	final concentration) prior to amplification using 2 ng of purified E. coli O157:H7
199	genomic DNA as template. (B) Samples freeze-dried with trehalose but without
200	betaine were left at room temperature for 4, 8 and 21 days prior to rehydration with
201	betaine solution and amplification using 2 ng of purified <i>E. coli O157:H7</i> DNA as
202	template.
203	

204

205 Complete diagnostic workflow and proof of concept

206 testing in Cambodia

The individual components developed in this study were combined to create a complete diagnostic workflow suitable for testing fresh produce for *E. coli* O157 contamination (Fig 4). To test the full food pathogen diagnostic system in our laboratory, 1 g of Brussel sprout leaves inoculated with *E. coli* O157:H7, were placed in a 50 ml Falcon tube containing three metal ball bearings and 10 ml of buffered peptone. Non-inoculated leaves were used as negative controls. After shaking to disrupt the tissue, tubes were incubated at 41.5°C overnight to allow enrichment and

214	boiled at 95°C for 30 mins to kill and lyse the bacteria. Freeze dried LAMP reactions,
215	containing wzy-1 primers, were reconstituted with betaine solution (0.8 M betaine
216	final concentration) and 1 μI of the enriched cultures diluted 15-fold in water added
217	before incubating at 63°C for 50 minutes. The amplification reactions were examined
218	by electrophoresis (Fig 5A) and by the addition of a flocculation solution [20] (Fig
219	5B). No amplification was detected in the water controls or the non-inoculated
220	samples however, a strong amplification was observed in the E. coli O157:H7
221	inoculated sample (Fig 5A). The addition of flocculation solution mirrored the results
222	observed on the agarose gel that is, <i>E. coli</i> inoculated samples gave a positive
223	flocculation result in which the particles in solution clumped together and rapidly
224	settled to the bottom of the tube and leaving a transparent liquid phase (Fig 5B). In
225	contrast, the water controls and the non-inoculated samples showed a negative
226	flocculation reaction in which the black particles remained suspended.
227	
228	
229	Figure 4. Overview of the complete food pathogen detection system. Sample
230	maceration and enrichment involves shaking fresh produce samples in a tube
231	containing growth media and ball bearings to macerate the tissue and release
232	contaminating pathogens followed by an overnight incubation at 41.5°C. Pathogen
-	call lysis and DNA release is achieved by incubating the enriched completed of 05°C for

cell lysis and DNA release is achieved by incubating the enriched sample at 95°C for

234	30 minutes. LAMP DNA amplification is performed on a diluted sample of the
235	overnight culture by incubating the reaction in a water bath using a Styrofoam box
236	containing 63°C water. The results of the DNA amplification are visualized by adding
237	flocculation solution. In the absence of amplification the solution will remain black
238	and non-transparent (upper tube), alternatively if the pathogen is detected, the
239	particles in the solution will flocculate and rapidly settle on the bottom of the tube
240	(lower tube).
241	
242	
243	
244	
244 245	Figure 5. Evaluation of the complete <i>E. coli O157:H7</i> diagnostic system. (A)
	Figure 5. Evaluation of the complete <i>E. coli O</i> 157:H7 diagnostic system. (A) Freeze dried LAMP reactions containing the <i>wzy-1</i> primer set were rehydrated in
245	
245 246	Freeze dried LAMP reactions containing the <i>wzy-1</i> primer set were rehydrated in
245 246 247	Freeze dried LAMP reactions containing the <i>wzy-1</i> primer set were rehydrated in betaine solution and 1 μ l of diluted enriched culture from Brussel sprout leaf samples
245 246 247 248	Freeze dried LAMP reactions containing the <i>wzy-1</i> primer set were rehydrated in betaine solution and 1 μ l of diluted enriched culture from Brussel sprout leaf samples inoculated with <i>E. coli O157:H7</i> . Non-inoculated leaf cultures were used as negative
245 246 247 248 249	Freeze dried LAMP reactions containing the <i>wzy-1</i> primer set were rehydrated in betaine solution and 1 μ l of diluted enriched culture from Brussel sprout leaf samples inoculated with <i>E. coli O157:H7</i> . Non-inoculated leaf cultures were used as negative controls as well as water (NTC). (B) 20 μ l of flocculation solution was added to the
245 246 247 248 249 250	Freeze dried LAMP reactions containing the <i>wzy-1</i> primer set were rehydrated in betaine solution and 1 μ l of diluted enriched culture from Brussel sprout leaf samples inoculated with <i>E. coli O157:H7</i> . Non-inoculated leaf cultures were used as negative controls as well as water (NTC). (B) 20 μ l of flocculation solution was added to the above LAMP reactions and the solutions mixed for 10-15 seconds. Settling of the

samples (bar graphs) as well as the number of positive and total number of samples

from each sampling site (numbers above each bar).

256

258	To assess the workflow in field conditions we transported enough reactions to test
259	100 vegetable samples to Cambodia with the wzy-1 primer set. Cauliflower, radish
260	and bean leaves, as well as bean pods were collected from three different
261	Cambodian farms (S2 Fig) located within an approximate 10km radius of each other.
262	Tissues were processed following the above described workflow (Fig. 4) and positive
263	tests were obtained at all sites. In total, 25%, 39% and 26% of samples tested
264	positive for wzy on farms #1, #2 and #3, respectively.
265	
266	We also collected samples from three different outlets: a roadside vegetable stall
266 267	We also collected samples from three different outlets: a roadside vegetable stall and two large food markets located in a rural area (Figs S3A and S3B) and within the
267	and two large food markets located in a rural area (Figs S3A and S3B) and within the
267 268	and two large food markets located in a rural area (Figs S3A and S3B) and within the city Phnom Penh (Figs S3C and S3D). The roadside vegetable stall (market #1) was
267 268 269	and two large food markets located in a rural area (Figs S3A and S3B) and within the city Phnom Penh (Figs S3C and S3D). The roadside vegetable stall (market #1) was located along a dirt road that was used by local farmers and villagers as well as their
267 268 269 270	and two large food markets located in a rural area (Figs S3A and S3B) and within the city Phnom Penh (Figs S3C and S3D). The roadside vegetable stall (market #1) was located along a dirt road that was used by local farmers and villagers as well as their farm animals. We found that 56% of the samples obtained from this stall tested

274	little air flow (market #2, Figs S3A and S3B). Raw meat products were not
275	refrigerated and were allowed to come in direct contact with fresh produce (Fig S3B)
276	in closely packed stalls where a large number of flies freely moved between the meat
277	and fresh produce. A high proportion (45%) of the samples collected from this
278	market tested positive for wzy (Fig 5C). In contrast, the market located within the city
279	(Phnom Penh) (market #3, Figs S3C and S3D) had significantly better ventilation
280	than the rural market and a large proportion of the floor was concreted and appeared
281	clean. The vegetables in this market looked fresh and not wilted like in the rural
282	market. Only one out of 16 samples (6%) from this market tested positive using the
283	<i>wzy</i> primer set (Fig 5C, Market #3).

284

285 **Discussion**

The goal of this study was to develop a complete diagnostic workflow for food pathogens tailored to countries with limited resources to enhance food biosecurity capability. Our focus was to create a robust, simple and low-cost system that is safe to perform by people with limited training and equipment. The successful testing of our system in Cambodia on samples collected from the local farms and markets, suggests that we have developed a practical system that meets these requirements and is capable of providing meaningful data that can support food safety initiatives.

294	Culture-based techniques are the most reliable method for food pathogen
295	identification however, these techniques are slow and require highly skilled
296	technicians to perform [33]. The diagnostic workflow presented here is simpler and
297	faster allowing large numbers of samples to be screened in situations where access
298	to suitability trained microbiologists is limited. Our diagnostic workflow takes
299	advantage of the many desirable characteristics of LAMP amplification, including
300	high specificity and the ability to be performed in a simple water bath [34, 35].
301	However, like all DNA amplification reactions, LAMP is not immune to issues of
302	contamination or false-positive amplifications [36]. Thus, it is critically important to
303	optimize sample processing to prevent cross-contamination and develop robust
304	specific primer sets for each target organisms prior to deployment.
305	
306	The diagnostic workflow developed here can be easily adapted to detect the
307	presence of target genes from different food pathogens using highly specific LAMP
308	primer sets readily available in the literature [37-39]. Unlike specificity, the sensitivity
309	of the primers is less critical to the success of the assay as the overnight enrichment
310	step significantly increases the pathogen levels in the tested sample. Consistent
311	with this, our assay has successfully detected the presence of 1 CFU of E. coli O157
312	on a 1 g sample of Alfalfa sprouts (Fig 2B) emphasizing that the simplicity of the

detection workflow presented here does not limit its capacity to detect trace amountsof pathogens on produce.

315

The focus of our investigation in Cambodia was to examine the performance of our 316 workflow rather than perform a comprehensive survey of Cambodian produce. Thus, 317 we purposely biased the sampling by seeking out produce with increased likelihood 318 of E. coli contamination such as containing mud splashes or selecting farms with free 319 roaming animals [10, 23, 40, 41]. The data obtained in this study revealed a clear 320 correlation between the origin and condition of the produce and the likelihood of 321 contamination. For example, the location of the food stall (market #1) on a dirt road 322 323 used by local villagers and their farm animals allowed dirt from the road, potentially carrying zoonotic diseases from animal waste, to blow over the stall increasing the 324 risk of contamination (Fig 5C) [42, 43]. Similarly, the poor drainage, problems with 325 flies and lack of separation between raw meat and fresh produce by some vendors in 326 327 market #2 also increased the risk of zoonotic disease contamination in fresh produce. Therefore, it is not surprising that these rural locations (market #1 and #2) 328 accounted for 95% of the wzy-positive market samples. Consistent with this, other 329 studies that have shown a strong correlation between food-borne disease infections 330 and the selling of produce in markets where the vendors do not follow safe food 331 handling practices or lack access to essential facilities (e.g. clean water, garbage 332

333	removal) [3, 42]. Furthermore, a study by the World Health Organization of 'Morning
334	glory' produce harvested from areas surrounding Phnom Penh, found that 100% of
335	samples collected in Cambodian markets were contaminated with E. coli species
336	[44]. Collectively, these findings suggest that there is a real need for simple, low-cost
337	diagnostic systems to help the local authorities to improve food safety.
338	
339	All the surveyed farms had a similar proportion (25-38%) of produce that tested
340	positive for wzy (Fig 5C). As the farms were located within a 10 km radius of each
341	other, these findings suggest that they are exposed to similar levels of pathogenic
342	bacteria through common water supplies [40] or airborne particulates that can move
343	between farms [45]. In this proof-of-concept study, we demonstrate that our simple
344	workflow is capable of obtaining meaningful data on the prevalence of harmful food
345	pathogens in specific locations; such information is critical to improve regional food
346	safety.
347	
348	There are many diagnostic systems for food pathogens described in the scientific
349	literature or commercially available. However, our diagnostic workflow has a number
350	of advantages over many of the available systems. Compared to some commercially

available diagnostic systems (e.g. lateral flow strips (\$6.80 USD each, Romer labs))

352 or systems that involve disposable electronics or custom-made microfluidic parts [46,

353	47]; our diagnostic system is considerably more affordable; costing \$0.76 USD,
354	including all tubes and reagents (S2 Table), which can be further reduced to \$0.53
355	USD if the ball bearings and 50ml tubes are carefully decontaminated and reused.
356	Cost is a critical factor for developing countries with very limited budgets devoted to
357	food safety. Lowering the cost of assays will allow increased testing and thereby
358	boosting its efficiency as a biosecurity tool [48].
359	
360	The use of LAMP, an isothermal amplification method, allowed us to avoid the
361	expensive thermocyclers needed in conventional DNA amplification techniques such
362	as real-time PCR, substituting it with a simple Styrofoam box. Water was easily
363	adjusted to the desired temperature (63°C) by mixing hot and cold water and using a
364	standard thermometer. A lid was placed on top of the Styrofoam box to keep the
365	water close to the initial temperature for the time needed to perform the reaction.
366	Using this system, the water temperature dropped only 3°C over the 50-minute
367	incubation period. This easily accessible and low-tech approach eliminates the need
368	for expensive scientific equipment for DNA amplification, and with well-designed
369	LAMP primers, can provide accurate detection of pathogens from food samples [21,
370	49].

The flocculation-based readout used in our workflow is cheap and does not require 372 373 any specialized equipment, unlike conventional techniques like agarose gel electrophoresis or modern microfluidic or electronic-based systems. The flocculation 374 solution causes the large DNA amplicons produced in the LAMP reaction to bind to 375 suspended black charcoal particles, forming large clumps that rapidly drop to the 376 377 bottom of the tube leaving a clear upper phase that is easy to distinguish from the black, non-transparent negative reactions [20]. The simplicity of the flocculation 378 assay enables people with limited scientific training to perform and interpret the 379 380 assay. 381 382 The ability to perform sample maceration, enrichment and DNA extraction in a single tube without needing to open it between steps makes processing the samples simple 383 and safe and allows the user to handle a large number of samples at once. This 384 process could be made even simpler by using the newly developed 30 second 385 386 dipstick-based DNA purification technology [50] circumventing the need for any pipetting. Unfortunately, the rapid dipstick purification method was developed after 387 the completion of this study. 388

389

In summary, we have developed a complete food pathogen diagnostic system
 composed of four key steps: pathogen enrichment, cell lysis/DNA release, LAMP

392	amplification, and naked eye readout (Fig 4). The minimal number of steps and
393	equipment involved, as well as the simplicity of the presence/absence flocculation
394	readout, allows almost anyone, including those with limited scientific training, to
395	perform the assay. Furthermore, the low cost of the system (\$0.76 USD) and broad
396	availability of its reagents, makes the system accessible to countries or institutions
397	with limited resources who might not otherwise be able to afford regular food testing.
398	Every step in the diagnostic workflow has been designed with the World Health
399	Organization's ASSURED philosophy in mind, that is, Affordable, Sensitive, Specific,
400	User-friendly, Rapid, Equipment-free, and Deliverable to those who need it [51]. As
401	the system is based on DNA amplification using specific primers, our diagnostic
402	system can be easily modified to identify a large variety of pathogens including those
403	that infect humans, crops or animals. Therefore, we anticipate that the incorporation
404	of our diagnostic system into food safety programs of developing countries will
405	facilitate improvements to both their food quality and human health.
406	

407 Methods

Bacterial strains

Escherichia coli O157:H7 str. EDL933 and *Salmonella enterica* serovar *enteritidis*410 were used to develop and test the diagnostic assay.

411

412 **Primer selection.**

- A number of potential *E. coli* O157:H7 target genes were selected for primer
- development including the shiga toxin genes stx1 and stx2, the O-antigen
- 415 polymerase wzy, the O-antigen transporter, and *rfbE*, the H7 flagellar antigen *FliC*
- 416 (S1 Table). A CLUSTALW alignment was performed for each of each of these genes
- using *E. coli* O157:H7 sequences found on the Genbank database. These
- alignments were used to design LAMP primer against conserved regions of these
- 419 target genes using Primer Explorer software V4 (<u>http://primerexplorer.jp/e/</u>).

420

421 **LAMP DNA amplification**

Unless otherwise stated, LAMP reactions were performed by in a solution containing 20 mM Tris (pH 8.8), 10 mM (NH₄)₂SO₄, 50 mM KCl, 0.1% (v/v) Tween-20, 0.8 M betaine, 8 mM MgSO₄, 1.2 mM dNTPs, 0.32 U/µl Bst2.0 warm-start (NEB Biolabs, USA), 0.8 µM of FIP and BIP primers and 0.2 µM of F3 and B3 primers. Reactions were incubated at 63°C for 50 minutes followed by a five-minute incubation at 80°C to denature the enzyme.

429 Flocculation solution preparation

430	The final, optimized flocculation solution is made from 100-400 mesh activated
431	charcoal (Sigma, St. Louis, USA) and powdered diatomaceous earth that had been
432	ground separately in a coffee grinder for 45 seconds to break up any large particles.
433	400mg of activated charcoal and 600mg of diatomaceous earth were combined in a
434	50 ml solution containing 50 mM Tris (pH 8), 10 mM spermine and 1% (w/v)
435	PEG8000. The flocculation solution can either be stored at 4°C or -20°C for at least a
436	year without loss of activity.

437

438 Freeze drying method

439	The buffer of Bst 2.0 warm-start DNA polymerase (NEB) was replaced with
440	Isothermal amplification buffer (NEB) by centrifugation of the enzyme in an Amicon
441	Ultracel-30 centrifugal filter device (Merck-Milipore) and subsequently washing in
442	Isothermal amplification buffer twice. Aliquot 3.49 μI of LAMP solution (1.1 U/ μI of
443	dialyzed Bst 2.0 warm-start polymerase, 50 mM Tris (pH 8.8), 25 mM (NH ₄) ₂ SO ₄ , 25
444	mM KCI, 20 mM MgSO ₄ , 0.25% (v/v) Triton x100, 3.4 mM dNTPs, 4.6 μM FIP and
445	BIP primers, 0.6 μM B3 and F3 primers, 5% (w/v) Trehalose) into individual 0.2 ml
446	tubes. The solutions were frozen in liquid nitrogen and then immediately transferred
447	to a freeze drier for at least 4 hours under a vacuum of below 150 mTorr.

449 Vegetable sample collection

450	In May, 2015, vegetable samples were collected from three Cambodian farms and
451	four markets either in or surrounding Phnom Penh. The markets included a small
452	rural village roadside vegetable stall, two large markets in the outskirts of Phnom
453	Penh and one market within the city. Vegetables collected included cauliflower
454	leaves, beans, sprouts, lettuce and other leafy herbs. Vegetable samples were
455	immediately placed in individual plastic bags that were labelled and stored on ice
456	until they were processed using the complete food pathogen diagnostic system
457	detailed below. Access to farms was arranged by the Cambodian General
458	Directorate of Agriculture (GDA) who obtained verbal approval from the landowners
459	for us to collect plant samples. No protected species were samples in this study.
460	

461 Complete food pathogen diagnostic system

462 Approximately 1g of vegetable leaf material was placed in a 50 ml tube containing 463 three ball bearings and 10 ml of buffered peptone growth media. The buffered 464 peptone media was pre-aliquoted powder and made up with boiled water 465 immediately prior to use. The tube containing the vegetable sample was sealed with 466 Parafilm M (Bemis, WI, USA) and then shaken vigorously for one minute to aid the 467 release of any food pathogens from the tissue. The samples were incubated 468 overnight at 41.5°C overnight to enrich the bacteria present and then boiled for 30

469	minutes to both kill any bacteria present and to release their DNA into the media.
470	One microliter of culture that had been diluted 15-fold with water was added to a
471	freeze-dried LAMP reaction that had been rehydrate with 9 μI 0.89M betaine. The
472	reaction was incubated in a lidded Styrofoam box containing 63°C water for 50
473	minutes. 20 μI of flocculation solution (50 mM Tris (pH 8), 10 mM spermine, 1%
474	(w/v) PEG 8000, 0.8% (w/v) powdered activated charcoal, 1.2% (w/v) powdered
475	diatomaceous earth) was then added to each LAMP reaction and the tube gently
476	flicked to encourage mixing of the solutions. Samples in which the particles
477	flocculated and settled on the bottom of the tube within 20 seconds were called
478	positive, whereas those in which the particles remained suspended were negative.
479	

480 Acknowledgements

We would like to thank the many people from the General Directorate of Agriculture
(GDA) in Cambodia who provided us with invaluable assistance by guiding us to
different farms and markets in and around Phnom Penh. We would also like to thank
Australian Centre for International Agricultural Research (ACIAR) for funding this
research.

486

488 Funding

489 This work was supported by the Australian Centre for International Agricultural

490 Research (ACIAR) HORT/2014/027.

491

492

493 **References**

1. Oliver SP, Jayarao BM, Almeida RA. Foodborne pathogens in milk and the

dairy farm environment: Food safety and public health implications. Foodborne

496 Pathog Dis. 2005; 2:115-129. doi: 10.1089/fpd.2005.2.115.

497 2. WHO estimates of the global burden of foodborne diseases: Foodborne

diseases burden epidemiology reference group 2007-2015. World Health

- 499 Organization. 2015. Available from:
- 500 <u>https://www.who.int/foodsafety/publications/foodborne_disease/fergreport/en/.</u>
- 3. Grace D. Food Safety in Low and Middle Income Countries. Int J Env Res
- 502 Public Health. 2015; 12:10490-10507.
- 4. Annual Health Statistics Report, 2012. Ministry of Health. 2012. Available
- 504 from: https://www.who.int/gho/publications/world_health_statistics/2012/en/.
- 505 5. Meng CY, Smith BL, Bodhidatta L, Richard SA, Vansith K, Ban T, et al.
- 506 Etiology of Diarrhea in Young Children and Patterns of Antibiotic Resistance in
- 507 Cambodia. Pediatr Infect Dis J. 2011; 30:331-335. doi:
- 508 10.1097/INF.0b013e3181fb6f82.

509 6. Saeedi P, Yazdanparast M, Behzadi E, Salmanian AH, Mousavi SL, Nazarian

510 S, et al. A review on strategies for decreasing *E-coli* O157:H7 risk in animals. Microb

511 Pathog. 2017; 103:186-195. doi: 10.1016/j.micpath.2017.01.001.

512 7. Wang F, Jiang L, Yang QR, Prinyawiwatkul W, Ge BL. Rapid and Specific

513 Detection of Escherichia coli Serogroups O26, O45, O103, O111, O121, O145, and

514 O157 in Ground Beef, Beef Trim, and Produce by Loop-Mediated Isothermal

515 Amplification. Appl Environ Microbiol. 2012; 78:2727-2736.

516 8. Yang SC, Lin CH, Aljuffali IA, Fang JY. Current pathogenic *Escherichia coli*

foodborne outbreak cases and therapy development. Arch Microbiol. 2017; 199:811-

518 825. doi: 10.1007/s00203-017-1393-y.

519 9. Croxen MA, Finlay BB. Molecular mechanisms of *Escherichia coli*

pathogenicity. Nat Rev Microbiol. 2010; 8:26-38. doi: 10.1038/nrmicro2265.

10. Bavaro MF. *E. coli* O157:H7 and other toxigenic strains: the curse of global

food distribution. Curr Gastroenterol Rep. 2012; 14:317-323. doi: 10.1007/s11894-

523 **012-0264-6**.

11. Hilborn ED, Mermin JH, Mshar PA, Hadler JL, Voetsch A, Wojtkunski C, et al.

525 A multistate outbreak of *Escherichia coli O157 : H7* infections associated with

consumption of mesclun lettuce. Arch Intern Med. 1999; 159:1758-1764. doi: DOI

527 10.1001/archinte.159.15.1758.

12. Vojdani JD, Beuchat LR, Tauxe RV. Juice-associated outbreaks of human

illness in the United States, 1995 through 2005. J Food Prot. 2008; 71:356-364.

13. Jajarmi M, Fooladi AAI, Badouei MA, Ahmadi A. Virulence genes, Shiga toxin

subtypes, major O-serogroups, and phylogenetic background of Shiga toxin-

producing *Escherichia coli* strains isolated from cattle in Iran. Microb Pathog. 2017;

533 109:274-279. doi: 10.1016/j.micpath.2017.05.041.

- 14. Keene WE, Mcanulty JM, Hoesly FC, Williams LP, Hedberg K, Oxman GL, et
- al. A Swimming-Associated Outbreak of Hemorrhagic Colitis Caused by Escherichia-
- 536 Coli O157-H7 and Shigella-Sonnei. New England Journal of Medicine. 1994;
- 537 **331:579-584**.
- 538 15. FSANZ Compendium of Microbiological Criteria for Food. 2018. Available
- 539 from:
- 540 https://www.foodstandards.gov.au/publications/Documents/Compedium%20of%20Mi
- 541 crobiological%20Criteria/Compendium_revised-jan-2018.pdf.
- 16. Feng P, Weagant SD, Grant MA, Burkhardt W. Chapter 4A Enumeration of
- 543 Escherichia coli and the Coliform Bacteria Bacteriological Analytical Manual: US
- 544 Food and Drug Administration; 2002 [cited 2017 27-10-2017]. Available from:
- 545 <u>https://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm064948.ht</u>
- 546 <u>m</u>.
- 17. Law JWF, Ab Mutalib NS, Chan KG, Lee LH. Rapid methods for the detection
- of foodborne bacterial pathogens: principles, applications, advantages and
- 549 limitations. Front Microbiol. 2015; 5.
- 18. Barany F. The ligase chain reaction in a PCR world. PCR Methods Appl.

551 **1991**; **1:5-16**.

- 19. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et
- al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000; 28:e63-
- 554 e63.
- 555 20. Mason MG, Botella JR. A simple, robust and equipment-free DNA
- amplification readout in less than 30 seconds. RSC Adv. 2019; 9:24440-24450. doi:
- 557 10.1039/C9RA04725E.

558 21. Hara-Kudo Y, Konishi N, Ohtsuka K, Hirramatsu R, Tanaka H, Konuma H, et

al. Detection of Verotoxigenic *Escherichia coli* O157 and O26 in food by plating

560 methods and LAMP method: A collaborative study. Int J Food Microbiol. 2008;

561 **122:156-161**.

562 22. Tuttle J, Gomez T, Doyle MP, Wells JG, Zhao T, Tauxe RV, et al. Lessons

from a large outbreak of *Escherichia coli O157 : H7* infections: insights into the

⁵⁶⁴ infectious dose and method of widespread contamination of hamburger patties.

565 Epidemiology and Infection. 1999; 122:185-192.

Smith JL, Fratamico PM, Gunther NW. Shiga Toxin-Producing *Escherichia coli*. Adv Appl Microbiol. 2014; 86:145-197.

568 24. DebRoy C, Roberts E, Kundrat J, Davis MA, Briggs CE, Fratamico PM.

569 Detection of *Escherichia coli* serogroups O26 and O113 by PCR amplification of the

wzx and wzy genes. Appl Environ Microbiol. 2004; 70:1830-1832. doi:

571 10.1128/aem.70.3.1830-1832.2004.

572 25. Iguchi A, Iyoda S, Seto K, Nishii H, Ohnishi M, Mekata H, et al. Six Novel O 573 Genotypes from Shiga Toxin-Producing Escherichia coil. Front Microbiol. 2016; 7.

574 doi: 10.3389/fmicb.2016.00765.

575 26. Goji N, Mathews A, Huszczynski G, Laing CR, Gannon VPJ, Graham MR, et

al. A new pyrosequencing assay for rapid detection and genotyping of Shiga toxin,

intimin and 0157-specific rfbE genes of *Escherichia coli*. J Microbiol Methods. 2015;

578 109:167-179. doi: 10.1016/j.mimet.2014.12.003.

579 27. Wang L, Rothemund D, Curd H, Reeves PR. Sequence diversity of the

580 Escherichia coli H7 fliC genes: Implication for a DNA-based typing scheme for *E.coli*

581 *O157 : H7*. J Clin Microbiol. 2000; 38:1786-1790.

- 582 28. Karberg KA, Olsen GJ, Davis JJ. Similarity of genes horizontally acquired by
- 583 *Escherichia coli* and *Salmonella enterica* is evidence of a supraspecies pangenome.
- ⁵⁸⁴ Proc Natl Acad Sci U S A. 2011; 108:20154-20159.
- 585 29. Abou Tayoun AN, Burchard PR, Malik I, Scherer A, Tsongalis GJ.
- 586 Democratizing Molecular Diagnostics for the Developing World. Am J Clin Pathol.
- 587 2014; 141:17-24. doi: 10.1309/Ajcpa1l4kpxbjnpg.
- 588 30. Ahmed SS, Alp E, Ulu-Kilic A, Doganay M. Establishing molecular
- microbiology facilities in developing countries. J Infect Public Heal. 2015; 8:513-525.
- 590 doi: 10.1016/j.jiph.2015.04.029.
- 31. Lippert K, Galinski EA. Enzyme Stabilization by Ectoine-Type Compatible
- Solutes Protection against Heating, Freezing and Drying. Applied Microbiology and
 Biotechnology. 1992; 37:61-65.
- 32. Klatser PR, Kuijper S, van Ingen CW, Kolk AHJ. Stabilized, freeze-dried PCR
- 595 mix for detection of mycobacteria. J Clin Microbiol. 1998; 36:1798-1800.
- 596 33. Priyanka B, Patil RK, Dwarakanath S. A review on detection methods used for
- ⁵⁹⁷ foodborne pathogens. Indian J Med Res. 2016; 144:327-338. doi: 10.4103/0971-

598 **5916.198677**.

- 599 34. Wang X, Seo DJ, Lee MH, Choi C. Comparison of Conventional PCR,
- 600 Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid
- 601 Detection of Arcobacter Species. J Clin Microbiol. 2014; 52:557-563. doi:

602 10.1128/Jcm.02883-13.

- 35. Khan M, Wang R, Li B, Liu P, Weng Q, Chen Q. Comparative Evaluation of
- 604 the LAMP Assay and PCR-Based Assays for the Rapid Detection of Alternaria
- solani. Front Microbiol. 2018; 9:2089. doi: 10.3389/fmicb.2018.02089.

36. Borst A, Box ATA, Fluit AC. False-positive results and contamination in

nucleic acid amplification assays: Suggestions for a prevent and destroy strategy.

608 Eur J Clin Microbiol Infect Dis. 2004; 23:289-299. doi: 10.1007/s10096-004-1100-1.

37. Mahony J, Chong S, Stone C, Chui L. Evaluation of Four Loop-Mediated

610 Isothermal Amplification (LAMP) Assays for Identification of Shiga Toxin Producing

611 *E.Coli O157* (STEC) and Non-O157 Strains. Adv Mol Diag. 2016; 1:104. doi:

612 10.4172/amd.1000104.

38. Wang F, Yang QR, Qu YZ, Meng JH, Ge BL. Evaluation of a Loop-Mediated

Isothermal Amplification Suite for the Rapid, Reliable, and Robust Detection of Shiga

Toxin-Producing Escherichia coli in Produce. Appl Environ Microbiol. 2014; 80:2516-

616 2525. doi: 10.1128/Aem.04203-13.

39. Domesle KJ, Yang Q, Hammack TS, Ge B. Validation of a Salmonella loop-

618 mediated isothermal amplification assay in animal food. Int J Food Microbiol. 2018;

619 264:63-76. doi: 10.1016/j.ijfoodmicro.2017.10.020.

40. Chekabab SM, Paquin-Veillette J, Dozois CM, Harel J. The ecological habitat

and transmission of *Escherichia coli* O157:H7. FEMS Microbiol Lett. 2013; 341:1-12.

41. Janisiewicz WJ, Conway WS, Brown MW, Sapers GM, Fratamico P,

623 Buchanan RL. Fate of Escherichia coli O157:H7 on fresh-cut apple tissue and its

potential for transmission by fruit flies. Appl Environ Microbiol. 1999; 65:1-5.

42. Rane S. Street Vended Food in Developing World: Hazard Analyses. Indian J
Microbiol. 2011; 51:100-106.

43. Muyanja C, Nayiga L, Brenda N, Nasinyama G. Practices, knowledge and risk
factors of street food vendors in Uganda. Food Control. 2011; 22:1551-1558.

- 44. Microbiological Hazards in Fresh Leafy Vegetables and Herbs: Meeting
- 630 Report 2008. 2008. Available from:
- 631 https://www.who.int/foodsafety/publications/mra 14/en/.
- 45. Berry ED, Wells JE, Bono JL, Woodbury BL, Kalchayanand N, Norman KN, et
- al. Effect of proximity to a cattle feedlot on *Escherichia coli* O157:H7 contamination
- of leafy greens and evaluation of the potential for airborne transmission. Appl
- 635 Environ Microbiol. 2015; 81:1101-1110. doi: 10.1128/AEM.02998-14.
- 46. Jiang YQ, Zou S, Cao XD. A simple dendrimer-aptamer based microfluidic
- 637 platform for *E. coli* O157:H7 detection and signal intensification by rolling circle
- amplification. Sensor Actuat B-Chem. 2017; 251:976-984. doi:
- 639 10.1016/j.snb.2017.05.146.
- 47. Wang T, Kim S, An JH. A novel CMOS image sensor system for quantitative
- 641 loop-mediated isothermal amplification assays to detect food-borne pathogens. J
- 642 Microbiol Methods. 2017; 133:1-7.
- 48. McNerney R. Diagnostics for Developing Countries. Diagnostics. 2015; 5:200-209.
- 49. Wang F, Jiang L, Ge BL. Loop-Mediated Isothermal Amplification Assays for
- 646 Detecting Shiga Toxin-Producing *Escherichia coli* in Ground Beef and Human
- 647 Stools. J Clin Microbiol. 2012; 50:91-97.
- 50. Zou Y, Mason MG, Wang Y, Wee E, Turni C, Blackall PJ, et al. Nucleic acid
- 649 purification from plants, animals and microbes in under 30 seconds. PLoS Biol.
- 650 2017; 15:e2003916. doi: 10.1371/journal.pbio.2003916.
- 51 51. Kettler H, White K, Hawkes S. Mapping the landscape of diagnostics for
- 652 sexually transmitted infections. World Health Organization on behalf of the Special

- 653 Programme for Research and Training in Tropical Diseases 2004. Available from:
- 654 https://apps.who.int/iris/handle/10665/68990.

655

656

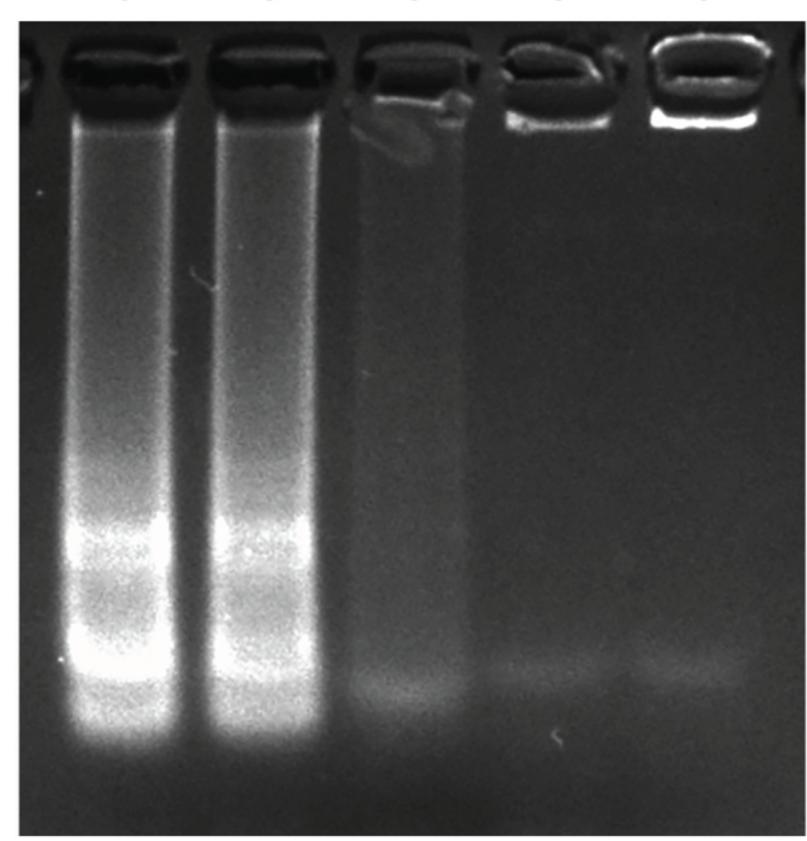
657 Supporting information captions

659	S1 Figure. Optimization of Pathogen DNA extraction. (A) Image shows tissue
660	that has been macerated after shaking in a 50 mL tube containing 10 ml of buffered
661	peptone water and four ball bearings. (B) LAMP amplification products obtained
662	using stx2-1 primer set and template consisting of either 1, 2 or 4 μ l of undiluted
663	enriched culture or 1 or 2 μl of culture diluted 25-fold in water.
664	
665	S2 Figure. Images of Cambodian farms collection sites. (A) Collection of
666	cauliflower leaves in individual plastic bags at farm #1. (B) Image of farm #2 which
667	was a small plot in with cauliflower grown in the foreground and beans growing in the
668	background. (C) Image of a cow that freely roamed amongst the cauliflower crop at
669	farm #1.
670	
671	S3 Figure. Images of Cambodian market collection sites. (A) Image of the
672	cramped conditions in the rural market #2. (B) Image of some of the meat and

678	S1 Table. LAMP primer sequences used in this study
677	
676	#3.
675	compared to the rural market. (D) Separation of meat and fresh produce at market
674	Phenom Penh (market #3) with material covered tents and less cramped conditions
673	produce being sold side by side at market #2. (C) Image of a large city market in

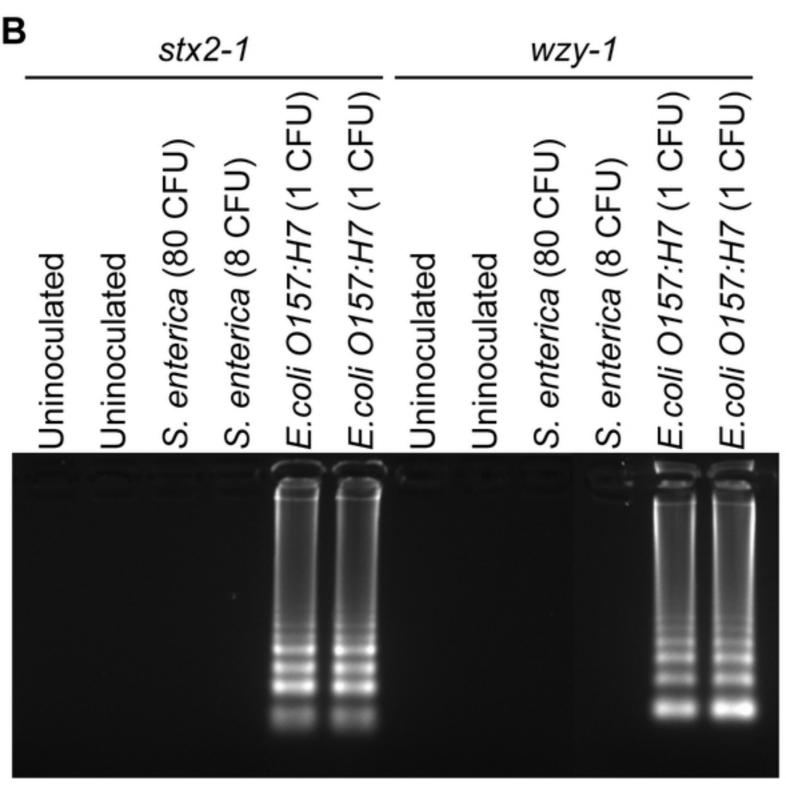
679

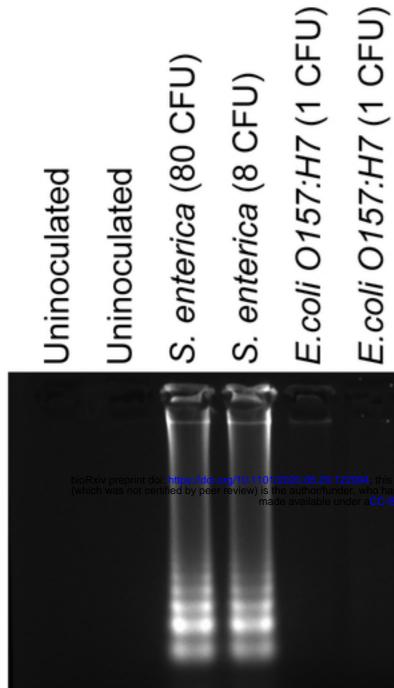
S2 Table. Costings of individual components of the food pathogen assay. 680



S2 Figure

S3 Figure


1μΙ 2μΙ 1μΙ 2μΙ 4μΙ

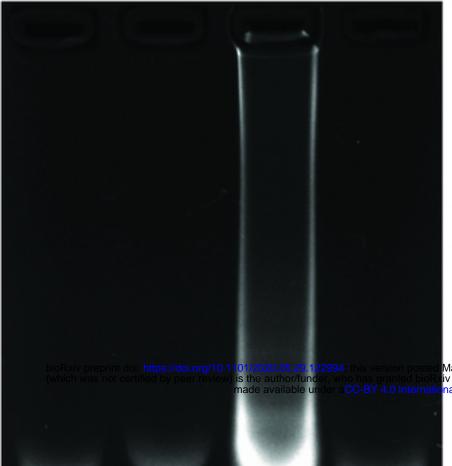

25x diluted undiluted

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.29.122994; this version posted May 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 1

rsion posted May 30, 2020. The copyright holder for this preprint ranted bioRxiv a license to display the preprint in perpetuity. It is 4.0 International license

Uninoculated Uninoculated


E.coli 0157:H7 (1 CFU) S. enterica (80 CFU) S. enterica (8 CFU)

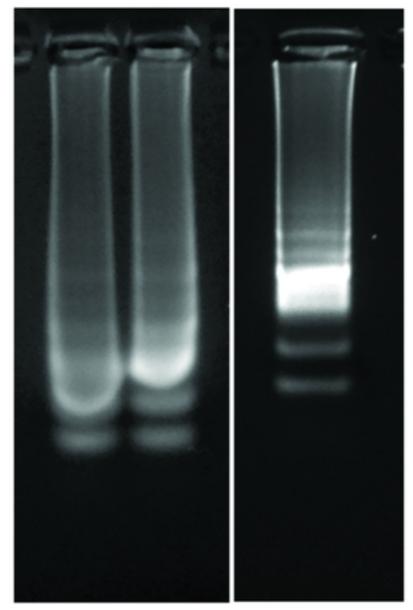
invA

Α

Figure 2

Betaine Trehalose

is version posted May 30, 2020. The copyright holder for this prep has granted blocking a license to display the preprint in perpetuity. I -BY 4.0 International license.


Δ

Days at room temperature

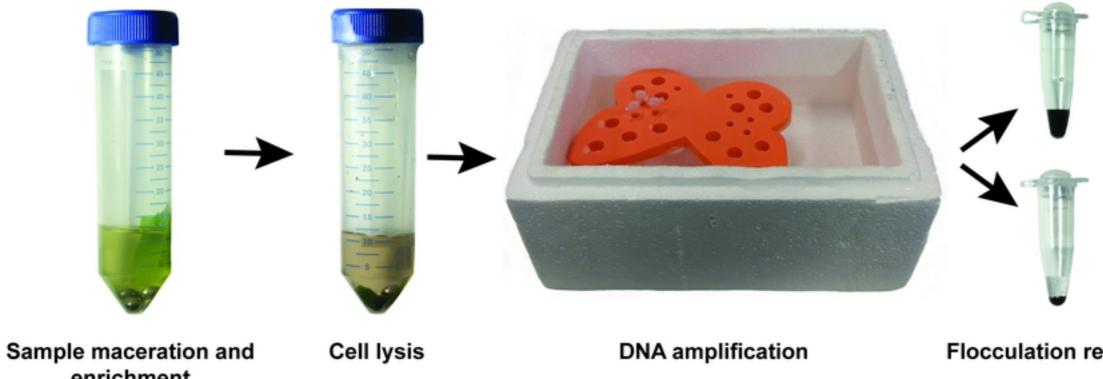
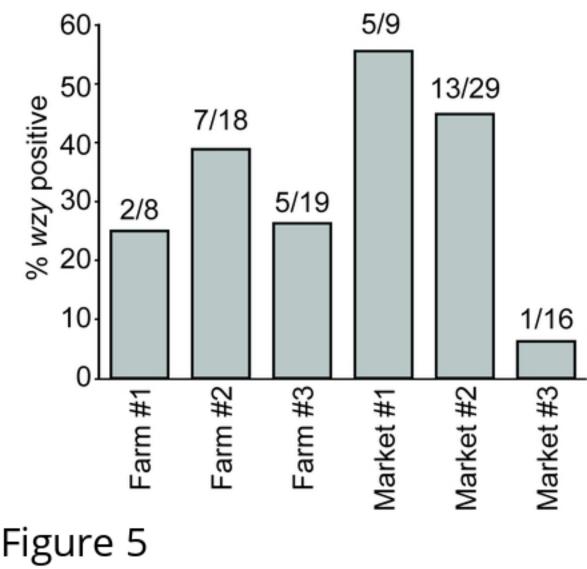
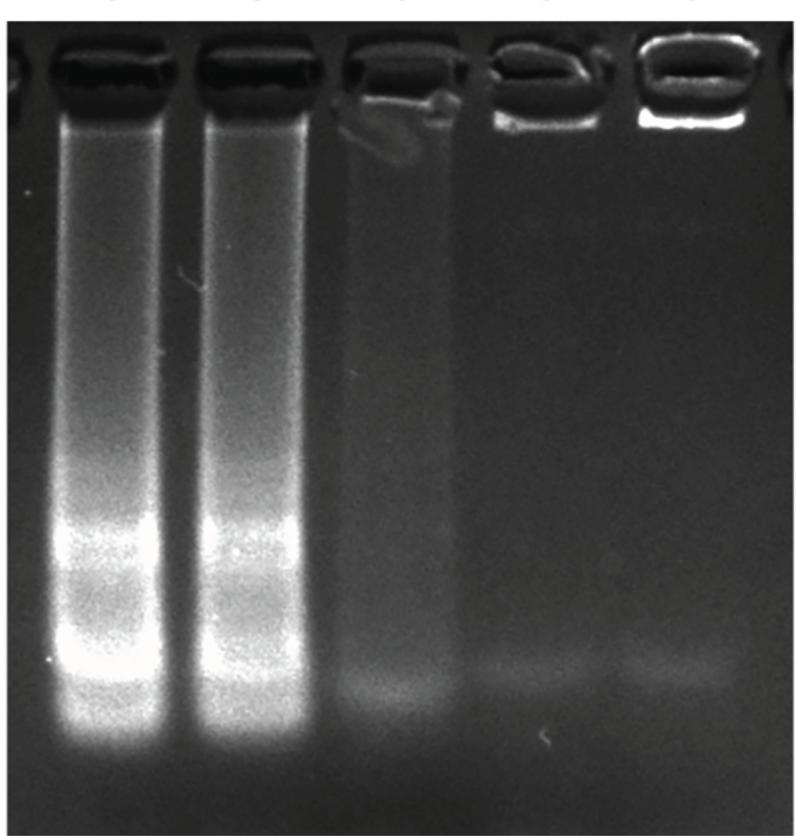


Figure 3

enrichment (overnight incubation)

Figure 4


(30 minutes)


(50 minutes)

Flocculation readout

(30 seconds)

1μΙ 2μΙ 1μΙ 2μΙ 4μΙ

25x diluted undiluted

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.29.122994; this version posted May 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

S1 Figure