1	Title: SiCTeC: an inexpensive, easily assembled Peltier device for rapid temperature
2	shifting during single-cell imaging
3	
4	Short title: SiCTeC enables rapid temperature modulation during single-cell imaging
5	
6	Authors: Benjamin D. Knapp ^{1,*} , Lillian Zhu ^{2,*} , Kerwyn Casey Huang ^{1,2,3,4,+}
7	
8	Affiliations:
9	¹ Biophysics Program, Stanford University, Stanford, CA 94305
10	² Department of Bioengineering, Stanford University, Stanford, CA 94305
11	³ Department of Microbiology and Immunology, Stanford University School of
12	Medicine, Stanford, CA 94305
13	⁴ Chan Zuckerberg Biohub, San Francisco, CA 94158
14	
15	*: equal contributions.
16	⁺ Correspondence: <u>kchuang@stanford.edu</u>
17	
18	Keywords: open-source experimentation, Arduino, PBP2, PBP3, temperature-sensitive
19	mutants

20 Abstract

21	Single-cell imaging, combined with recent advances in image analysis and microfluidic
22	technologies, have enabled fundamental discoveries of cellular responses to chemical
23	perturbations that are often obscured by traditional liquid-culture experiments.
24	Temperature is an environmental variable well known to impact growth and to elicit
25	specific stress responses at extreme values; it is often used as a genetic tool to
26	interrogate essential genes. However, the dynamic effects of temperature shifts have
27	remained mostly unstudied at the single-cell level, due largely to engineering
28	challenges related to sample stability, heatsink considerations, and temperature
29	measurement and feedback. Additionally, the few commercially available temperature-
30	control platforms are costly. Here, we report an inexpensive (<\$110) and modular
31	Single-Cell Temperature Controller (SiCTeC) device for microbial imaging, based on
32	straightforward modifications of the typical slide-sample-coverslip approach to
33	microbial imaging, that controls temperature using a ring-shaped Peltier module and
34	microcontroller feedback. Through stable and precise (±0.15 $^{\circ}$ C) temperature control,
35	SiCTeC achieves reproducible and fast (1-2 min) temperature transitions with
36	programmable waveforms between room temperature and 45 °C with an air objective.
37	At the device's maximum temperature of 89 °C, SiCTeC revealed that Escherichia coli
38	cells progressively shrink and lose cellular contents. During oscillations between 30 $^\circ$ C
39	and 37 °C, cells rapidly adapted their response to temperature upshifts. Furthermore,

- 40 SiCTeC enabled the discovery of rapid morphological changes and enhanced sensitivity
- 41 to substrate stiffness during upshifts to nonpermissive temperatures in temperature-
- 42 sensitive mutants of cell-wall synthesis enzymes. Overall, the simplicity and
- 43 affordability of SiCTeC empowers future studies of the temperature dependence of
- 44 single-cell physiology.

45 Introduction

46

47	While chemical perturbations during single-cell imaging experiments have been made
48	possible by microfluidic technologies [1, 2], other environmental variables such as
49	temperature have been more difficult to precisely and rapidly manipulate during an
50	experiment. Temperature has dramatic effects on virtually all cellular processes,
51	including polymer behavior [3, 4], RNA and DNA polymerases [5, 6], ribosomal
52	elongation [7], and overall enzyme kinetics and function [8]. These diverse,
53	temperature-dependent processes have global impacts on cell growth, which cells must
54	integrate and collectively optimize at each temperature [9].
55	
56	Two predominant elements of experimental design limit our understanding of how
57	cells respond to changes in temperature. First, bulk experiments are the standard for
58	investigating the effects of temperature on steady-state cellular growth [10, 11]. By
59	contrast, single-cell investigations reveal insights into morphological dynamics and
60	population heterogeneity that cannot be achieved through bulk experimentation.
61	Second, experimental designs tend to employ a single experimental temperature that
62	maximizes growth rate (e.g. 37 °C for the enteric bacterium <i>Escherichia coli</i>). As a result,
63	how cells respond to temperature fluctuations, such as during transitions into and out
64	of a host, remains understudied; in <i>E. coli</i> , the few studies of temperature shifts have

65	shown long time scales for growth-rate equilibration [12] and transient changes to the
66	synthesis rate of tRNA synthetases [13]. While intriguing, these limited results highlight
67	the need for a device that enables single-cell imaging to investigate how individual cells
68	respond to temperature fluctuations at high spatiotemporal resolution.
69	
70	Current microscope incubators are useful for maintaining temperature during time-
71	lapse imaging, but are unable to precisely control the temperature of samples at short
72	timescales. Consequently, a stage-top temperature controller for single-cell imaging is
73	ideal for studying how cells transition between temperatures at high temporal
74	resolution. Engineering such a device has remained challenging, as modifying
75	temperature in real time requires sample stability, careful temperature measurement,
76	and control feedback. Most commercial devices lack the capacity to program arbitrary
77	temperature shift profiles and often can only heat samples to temperatures slightly
78	higher than 37 °C. Further, the high cost of these devices (>\$10,000) prohibits broad
79	accessibility.
80	

Recent low-cost alternatives to expensive laboratory techniques include electroporation
[14], fluorescence microscopy and optogenetics [15], and nucleic acid extraction [16]. In
addition to making science more open and accessible, particularly in resourcechallenged institutions and countries [17], open-source experimentation can drive new

85	applications that are not currently achievable with commercial equipment, akin to the
86	impact of the development of the open-source Linux kernel on computing [18]. Inspired
87	by these successes, here we built an affordable and flexible temperature controller for
88	single-cell imaging that meets several crucial design objectives: (1) inexpensive and
89	accessible components, (2) easy to assemble and compatible with traditional slide-
90	mount techniques, (3) temperature-stable, (4) reusable, (5) capable of rapid temperature
91	switching, (6) programmable complex temperature routines, and (7) digital temperature
92	readout in real time. We provide instruction to construct this device in just a few hours
93	using a ring-shaped Peltier module heater and open-source temperature control
94	software for <\$110. We used this device, the Single-Cell Temperature Controller
95	(SiCTeC), to discover that wild-type <i>E. coli</i> cells rapidly adapt to temperature
96	oscillations and lose cellular material at extreme temperatures, and that the phenotypes
97	of temperature-sensitive <i>E. coli</i> cell-wall mutants quickly manifest but depend on the
98	stiffness of the substrate on which they are grown. We anticipate that SiCTeC will drive
99	fundamental research into the temperature dependence of cellular physiology and serve
100	as a highly accessible device for precisely controlling environmental temperature.

101 **Results**

102

103 **Design of the temperature-control device**

104	To increase the utility of an inexpensive microscope stage-top temperature-control
105	device, we based our development on existing imaging and sample preparation
106	approaches. Our design modifies the traditional use of agarose hydrogel pads on glass
107	slides as sample mounts [19] by adding a simple heating component and a temperature
108	sensor (Fig. 1). To enable rapid and precise temperature changes, we implemented a
109	Peltier-module design. Peltier modules are inexpensive semiconductor devices that
110	drive large temperature gradients through the thermoelectric effect [20]. Although
111	Peltier modules usually require large heatsinks to dissipate excess heat during cooling,
112	we allowed the SiCTeC to self-heat (without a heatsink) to increase speed and
113	performance, owing to its small size. SiCTeC consists of a ring-shaped Peltier module
114	that permits illumination of samples during microscopy, which is crucial for single-cell
115	investigations (Fig. 1A,B), and also ensures that heating is uniform across the sample.
116	
117	We monitor temperature using a thermistor, a device for which log(resistance) depends

118 approximately linearly on the inverse of temperature, which we calibrated using a

119 commercial thermocouple device (Methods). We sealed the thermistor to the coverslip

120 by wrapping thermal tape around the slide and coverslip (Fig. 1C).

121

122	To actively control the temperature, we use the open-source Arduino platform to
123	implement a proportional-integral-derivative (PID) algorithm, which is commonplace
124	in systems design control [21] (Fig. 2A). Two separate methods control the temperature
125	setpoint: (1) manual control, using a potentiometer with a set range of temperature
126	values (Fig. 2B, S1A), or (2) programmed control with an executable function using the
127	Arduino software. Having two options allows the user to either set target temperatures
128	dynamically or to execute more complex temperature programs. The open-source
129	software Processing [22] displays the temperature readout from the Arduino in real
130	time and writes power and temperature data to a table (Fig. S1B). The temperature is
131	read every 500 ms, and the error, defined as the difference between the current and
132	target temperatures, is used as input for the PID algorithm (Fig. 2A). Starting from a 12
133	V power supply, we use a buck converter to step down the power input, given the 5 V
134	limit on the Peltier module (Fig. 2B, S1A). To modulate the power, we use a motor
135	driver, which receives a pulse-width-modulation (PWM) signal from the Arduino's PID
136	output (Fig. 2B, S1A). Together, these components are soldered onto a breadboard and
137	placed into a plastic enclosure (Fig. S1A).
138	

139 Due to their small size, imaging bacteria is conventionally performed with high-

140 magnification oil-immersion objectives, which act as heatsinks when in contact with

141	samples. This issue can lead to incorrect temperature measurements and/or lack of
142	temperature control at the sample plane due to heat dissipation, and also dramatically
143	limits the speed of temperature shifts. Further, the physical constraints of keeping the
144	thermistor in contact with the coverslip near the sample could obstruct imaging. To
145	circumvent these issues, SiCTeC uses a 40X air objective with a relatively high
146	numerical aperture (NA: 0.95) and a 1.5X tube lens to achieve an effective magnification
147	of 60X. We found that this setup produces measurements of cellular dimensions with
148	similar precision and accuracy to a 100X oil-immersion objective (NA: 1.45) (Fig. S2).
149	
150	The largest design challenge was to achieve imaging stability at high temperatures;
151	hydrogel melting and subsequent focus and sample drifting rendered this goal
152	problematic. To address these issues, we used a silicone gasket to secure hydrogels of at
153	least 3% agarose (w/v), which have higher melting point and stiffness than lower
154	agarose concentrations [23] (Fig. 1B,C). We also limited the maximum power delivered
155	to the device at PWM = 50, out of a possible PWM = 255. In addition, we found that
156	slower PID parameters allowed the hydrogel to equilibrate gradually, while still
157	reaching the target temperature over a time period much shorter (1-2 min) than the
158	doubling time of a fast-growing species such as <i>E. coli</i> (20-60 min) (Table S2).
159	

160 SiCTeC maintains and increases temperature quickly across a wide range of

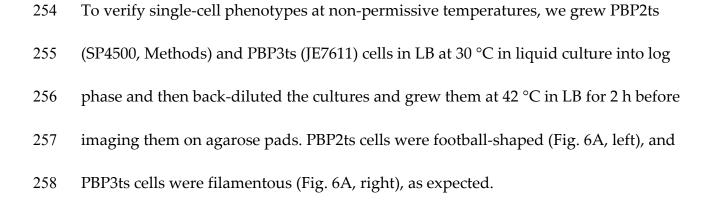
161 temperatures

162	To determine whether SiCTeC could maintain temperature for long periods of time, we
163	set up an agarose pad with exponentially growing wild-type E. coli MG1655 cells from a
164	37 °C liquid culture to mimic a typical time-lapse imaging experiment and attempted to
165	maintain the temperature of the pad at 37 °C using our device. Monitoring the
166	temperature at the coverslip using a thermistor for 24 h revealed that the temperature
167	was highly stable, with a mean of 37.0 \pm 0.15 °C and a maximum deviation of 0.6 °C (Fig.
168	3A, S3A). To validate that the temperature of the cells was essentially constant, we
169	monitored cell growth for the first 70 min before the population became crowded,
170	resulting in growth inhibition by surrounding cells (Fig. 3B,C). Cell morphology was
171	maintained throughout the 70 min (Fig. 3B) and was consistent with previous studies
172	performed at steady state [24]. Growth rate was maintained with an average of 1.98 h^{-1}
173	(Fig. 3C), similar to previous steady-state measurements of growth at 37 °C [25],
174	indicating that the cells experienced a constant temperature environment.
175	
176	To measure the capacity of our device to maintain temperature across a range of
177	temperatures, we heated an agarose pad from room temperature to temperatures

178 ranging from 25 °C to 45 °C (Fig. 3D). In each case, the temperature equilibrated at the

179 desired value within 2 min, and was maintained thereafter with a standard deviation

180	<0.2 °C (Fig. 3D,E). Up to 40 °C, the temperature control error did not depend on the
181	target temperature (Fig. 3E); at higher temperatures the standard deviation remained
182	low (<0.3 °C; Fig. 3E), although the slower PID parameters produced small oscillations
183	around the target temperature (Fig. 3D), likely due to rapid cooling of the device at
184	higher temperatures.
185	
186	To further interrogate the speed and flexibility of SiCTeC, we increased the temperature
187	from 25 °C to 46 °C in a stepwise manner (Fig. 3F). The setpoint was first increased to 28
188	°C and then increased by 2 °C every 5 min. In each case, the target temperature was
189	reached within 2 min and remained stable thereafter (Fig. 3F). Higher temperatures
190	underwort small assillations (Fig. 2D), consistent with the single shift from room
190	underwent small oscillations (Fig. 3D), consistent with the single shift from room
190	temperature to 45 °C (Fig. 3D).
191	
191 192	temperature to 45 °C (Fig. 3D).
191 192 193	temperature to 45 °C (Fig. 3D). SiCTeC can also achieve much higher temperatures than have been previously been
191 192 193 194	temperature to 45 °C (Fig. 3D). SiCTeC can also achieve much higher temperatures than have been previously been considered accessible for single-cell time-lapse imaging. At ~1/5 the maximum power of
191 192 193 194 195	temperature to 45 °C (Fig. 3D). SiCTeC can also achieve much higher temperatures than have been previously been considered accessible for single-cell time-lapse imaging. At ~1/5 the maximum power of the Peltier module, the device stably reached 89 °C (Fig. 4A). Shifting the temperature
191 192 193 194 195 196	temperature to 45 °C (Fig. 3D). SiCTeC can also achieve much higher temperatures than have been previously been considered accessible for single-cell time-lapse imaging. At ~1/5 the maximum power of the Peltier module, the device stably reached 89 °C (Fig. 4A). Shifting the temperature from 37 °C to 89 °C melted the agarose hydrogel, but the silicone gasket provided a


200	maintained their shape but decreased in size, coincident with blebbing (Fig. 4B,C).
201	Similar blebbing has been observed at very high temperatures using electron
202	microscopy, and has been attributed to loss of outer-membrane material through
203	vesiculation [26]. After cooling to room temperature, cells eventually became phase-
204	bright, indicative of extreme protein stress (Fig. 4D) [27].
205	
206	Taken together, these data indicate that SiCTeC can impose temperature increases with
207	almost arbitrary waveforms over an extremely wide range of temperatures.
208	
209	SiCTeC enables temperature oscillations via passive cooling for rapid temperature
210	downshifts
211	Complex temperature dynamics can also involve temperature downshifts. To determine
212	the speed at which the temperature drops back to ambient levels after the device was
213	turned off, we grew <i>E. coli</i> cells to steady state at 30 °C and then placed them on an
214	agarose pad subjected to oscillatory cycles of upshifts to 37 °C for 10 min followed by
215	passive cooling (PWM=0, Fig. S3B) for 10 min (Fig. 5A). Active heating to 37 °C was
216	
	achieved with a time constant of ~0.6 min, similar to our previous measurements (Fig.
217	achieved with a time constant of ~0.6 min, similar to our previous measurements (Fig. 3D). Cooling exhibited a time constant of ~1.9 min (Fig. 5B), which is slower than the

°C). Thus, temperature changes in both directions can be achieved sufficiently quickly
to program repeatable, precise, and nearly arbitrary temperature dynamics.

221

222	To determine how <i>E. coli</i> cells respond to temperature oscillations, we quantified the
223	growth rate of hundreds of cells throughout the first 60 min of the experiment (until the
224	pad became crowded and growth slowed). Growth rate responded slowly to the initial
225	temperature upshift, increasing by only ~14% after 10 min (Fig. 5C). However, growth
226	rate responded much more quickly to the subsequent upshift (Fig. 5C), reaching the
227	steady-state value of ~2 h ⁻¹ within 7-8 min after the temperature increase was initiated.
228	Downshift responses followed a similar trend: the decay of the growth rate was faster
229	during the second downshift than during the first (Fig. 5C). These data reveal that cells
230	adapt their response to temperature oscillations within a single oscillatory period (20
231	min), which is shorter than a single doubling time for <i>E. coli</i> .
232	
233	SiCTeC enables discovery of phenotypes associated with temperature-sensitive
234	mutations
235	A common strategy for studying loss-of-function mutations in essential genes has been
236	to isolate temperature-sensitive (ts) mutants that only grow at the permissive
237	temperature [28]. In many cases, it is thought that the switch to the non-permissive
238	temperature destabilizes the protein of interest, making it non-functional, and

239	eventually results in growth inhibition. SiCTeC is ideal for examining how quickly
240	growth inhibition emerges upon the temperature transition, as well as the phenotypic
241	consequences of the switch. We focused on temperature-sensitive mutants of two
242	penicillin-binding proteins (PBP) in <i>E. coli</i> . PBP2 is an essential enzyme responsible for
243	cell wall cross-linking during elongation [29]. When PBP2 is fully inhibited by the
244	antibiotic mecillinam, cells are unable to properly maintain their rod-like shape and
245	become round [30]. PBP3 carries out cell wall cross-linking during cell division [31], and
246	its inhibition by the antibiotic cephalexin inhibits division and causes filamentation [32].
247	For both proteins, temperature-sensitive mutants have been isolated in which the
248	proteins become functionally compromised and cells ultimately cannot grow at high
249	temperatures (42 °C) [30, 32]. SiCTeC allowed us to shift these mutants from the lower,
250	permissive temperature (30 °C) up to the non-permissive temperature (42 °C) and to
251	track the entire trajectory of morphological changes in individual cells; such single-cell
252	investigations have been inaccessible using traditional techniques.
253	

259

260	To monitor single-cell morphology during the upshift, we grew the PBPts mutants into
261	steady state (Methods) in liquid LB at 30 °C, placed them on a 3% agarose pad, and
262	shifted the temperature to 42 °C using SiCTeC (Fig. 6B). In PBP3ts cells, division halted
263	almost immediately but cells continued to elongate (Fig. 6C,D). Within 75 min after
264	shifting to 42 °C, mean cell length increased nearly 4-fold (Fig. 6E), while the growth
265	rate was maintained (Fig. S4B). Thus, the temperature shift inactivates PBP3 almost
266	immediately without causing any obvious side effects at the cellular level.
267	
268	On 3% agarose pads, PBP2ts cells remained approximately rod-shaped 40 min after the
269	shift to 42 °C (Fig. 6F, top). By 40 min, some cells had started to lyse (Fig. 6F, top); lysis
270	continued at 100 min, at which point cells were either small spheres or short rods (Fig.
271	S4A). These data suggested that growth on the 3% agarose pad unexpectedly altered the
272	morphological trajectory and compromised the mechanical integrity of the cell wall. To
273	test this hypothesis, we performed a similar experiment on 1.5% agarose pads, which
274	have substantially lower mechanical stiffness [23]. In this case, we observed swelling of
275	PBP2ts cells within 15 min after shifting to 42 °C, and the football-shaped phenotype
276	was reached within 45 min without any signs of lysis (Fig. 6F, bottom).
277	

- 278 These results demonstrate that SiCTeC enables novel biological discoveries by
- 279 providing information about single-cell dynamics that is inaccessible in bulk liquid-
- 280 culture experiments.

281 DISCUSSION

282	Here, we have demonstrated that a stage-top temperature controller for single-cell
283	imaging at above-ambient temperatures can be assembled using low-cost and accessible
284	components (Table S1). SiCTeC can achieve relatively fast temperature increases (1-2
285	min; Fig. 3D), and passive cooling is sufficiently fast for single-cell studies (4-5 min; Fig.
286	5A,B). While the SiCTeC can in principle achieve much faster heating using more
287	aggressive PID parameters, we found that melting of the pad and subsequent image
288	plane and cell drifting made such conditions incompatible with traditional agarose pad-
289	based single-cell imaging. To achieve faster cooling, the device would need to draw
290	heat to maintain a temperature gradient (heatsink) and include a method for quick heat
291	dissipation (such as a fan). While we were able to incorporate both features in prototype
292	devices, our studies indicate that the simpler and less complex device we have
293	presented here is sufficient for studies of cell growth. A large heatsink with fan-assisted
294	heat dissipation would potentially allow for stable below-ambient temperatures in
295	future iterations of the device.
• • •	

296

Some commercial devices are capable of very short heating and cooling times (~10 s)
using a fluidic approach [33]. These devices are limited in agarose pad sample sizes,
making long-term experiments difficult. Using large agarose pads, we can image for
many hours on our device without drying or starvation. Further, fluidic designs have a

301	maximum temperature of 45 °C [33], whereas SiCTeC can maintain extreme
302	temperatures of nearly 90 °C (Fig. 4). The flexibility of our device in terms of
303	programming near-arbitrary temperature dynamics is also unmatched. While other
304	modified devices have recently been constructed to allow for imaging at extreme
305	temperatures [34, 35], these instruments are more expensive than SiCTeC, highly
306	customized, and limited to fluorescence imaging. Our device is entirely compatible with
307	both brightfield and fluorescence imaging, which can be utilized to study protein
308	localization and expression changes during temperature shifts as long as the
309	temperature dependence of fluorescence is accounted for [36].
310	
311	Perhaps most importantly, SiCTeC offers a highly affordable, flexible, reusable
311312	Perhaps most importantly, SiCTeC offers a highly affordable, flexible, reusable alternative that can be constructed by nearly any lab. Our device has many use cases,
312	alternative that can be constructed by nearly any lab. Our device has many use cases,
312313	alternative that can be constructed by nearly any lab. Our device has many use cases, such as on-the-fly temperature changes and more complex, programmable temperature
312313314	alternative that can be constructed by nearly any lab. Our device has many use cases, such as on-the-fly temperature changes and more complex, programmable temperature changes. Sample temperature can be varied in a stepwise fashion (Fig. 3) or driven in
312313314315	alternative that can be constructed by nearly any lab. Our device has many use cases, such as on-the-fly temperature changes and more complex, programmable temperature changes. Sample temperature can be varied in a stepwise fashion (Fig. 3) or driven in oscillations (Fig. 5); while the consequences of both of these perturbations have yet to be
 312 313 314 315 316 	alternative that can be constructed by nearly any lab. Our device has many use cases, such as on-the-fly temperature changes and more complex, programmable temperature changes. Sample temperature can be varied in a stepwise fashion (Fig. 3) or driven in oscillations (Fig. 5); while the consequences of both of these perturbations have yet to be fully explored, here we discovered that during temperature oscillations <i>E. coli</i> cells
 312 313 314 315 316 317 	alternative that can be constructed by nearly any lab. Our device has many use cases, such as on-the-fly temperature changes and more complex, programmable temperature changes. Sample temperature can be varied in a stepwise fashion (Fig. 3) or driven in oscillations (Fig. 5); while the consequences of both of these perturbations have yet to be fully explored, here we discovered that during temperature oscillations <i>E. coli</i> cells experience a much faster acceleration of growth during the second temperature upshift

technique familiar to microbiologists, with components collectively priced at less than
\$110 (Table S1) and assembled in just a few hours.

323

324	For bacteria, temperature changes are unavoidable within a host (e.g. fever) and in the
325	environment (diurnal cycles and climate change on short and long timescales,
326	respectively). Yet, we know little about how key processes such as bacterial responses to
327	antibiotics depend on temperature. Tracking single-cell dynamics is often critical to
328	understanding how cells respond to environmental perturbations. For instance, E. coli
329	cells grow more slowly at steady-state at high osmolarity, yet maintain their growth
330	rate immediately after an increase in medium osmolarity [37], demonstrating that
331	turgor pressure does not determine growth rate (despite the decrease in steady-state
332	growth rate as osmolarity increases). In this capacity, SiCTeC has the potential to spur
333	future studies of the temperature dependence of cellular physiology in a wide variety of
334	organisms. Agarose pads can be used to modify the nutrient and chemical environment,
335	and the modification of pad stiffness provides the ability to examine the impact of
336	mechanics on cellular responses to temperature changes. Temperature can even be used
337	to modulate the stiffness of a hydrogel [38], enabling the study of how cells adapt to
338	dynamic substrate mechanics. With a simple extension of our design, we anticipate that
339	a similar Peltier-based strategy can be incorporated into a microfluidic platform [39],
340	enabling both long-term imaging (e.g. repeated oscillations) and chemical perturbations

- 341 throughout a single temperature-shift experiment. The straightforward and inexpensive
- 342 construction of our device should facilitate addressing many important questions across
- 343 organisms that inhabit environments whose temperatures are well-regulated (e.g. the
- 344 mammalian gut) and fluctuating (e.g. soil).

345 METHODS

540

347 Strains and cell culture

- 348 The *E. coli* strains used in this study were MG1655, *ftsI730* (JE7611, PBP3ts) [40], and
- 349 *pbpA45* (SP4500, PBP2ts) [41]. All experiments were carried out in rich medium
- 350 (lysogeny broth, LB).

351

352 Wild-type cells were inoculated directly into LB from frozen stocks and grown

353 overnight at 37 °C, then diluted 1:200 into fresh LB and grown for 2 h at the desired

354 temperature. For temperature-shift experiments, cells were diluted 1:10 twice at the

initial temperature to establish steady-state growth.

356

- 357 PBPts strains were grown from frozen stocks overnight at 30 °C, diluted 1:100 into fresh
- LB, and grown for 4 h (due to their slower growth rates). Cells were then diluted 1:10
- 359 twice to establish steady-state growth before shifting to the non-permissive
- 360 temperature.

361

362 **Thermistor calibration**

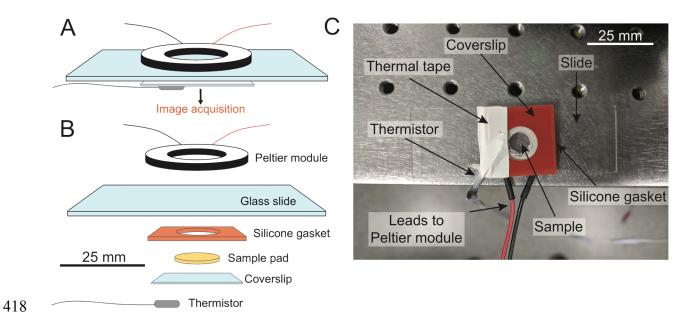
From 20 °C to 50 °C, thermistor temperature *T* is approximately related to the resistance *R* through the equation $\frac{1}{T} = A + B \ln R$. Thus, we estimated *B* based on pairwise

365 measurements at two temperatures
$$T_1$$
 and T_2 using the equation $B = \ln {\binom{R(T_1)}{R(T_2)}} / {\binom{1}{T_1} - \frac{1}{T_2}}$.
366 The resistances at 4, 22, 30, and 37 °C were 274, 114, 81, and 60 kΩ, respectively. The
367 average estimate of *B* across all pairwise combinations was 3950 °C⁻¹, suggesting that
368 the nominal resistance at 25 °C was close to 100 kΩ, in agreement with the
369 manufacturer's specifications (https://www.makeralot.com/download/Reprap-Hotend-
370 Thermistor-NTC-3950-100K.pdf). Measurements were in close agreement with a highly
371 sensitive thermocouple (Omega Engineering).
372
373 **Sample preparation and imaging**
374 LB-agarose pads were prepared by boiling 1.5% or 3% ultrapure agarose (Sigma
375 Aldrich) in LB, then pipetting 150 µL of liquid agarose medium into a silicone gasket
376 (Grace Bio-Labs) on a glass slide, which was compressed with another glass slide. The
377 pad was allowed to solidify at the initial temperature for shift experiments. Typically,
378 the microscope was kept at the initial temperature using a temperature-controlled
379 microscope enclosure (Haison Technology).
380
381 One microliter of cells at the initial temperature was placed onto the center of the pad
382 and allowed to dry at the initial temperature before placing a coverslip on the pad. The
373 thermistor was sealed on the coverslip with thermal tape. The device was placed onto
374 the microscope slide mount, and leads from the electrical control components were

385	attached. During time-lapse imaging, the temperature readout and PWM signal were
386	visualized in real time using the open-source software Processing v. 3.5.4. All relevant
387	data from the device were saved as a .csv file upon exit from the visualization tool.
388	
389	Samples were imaged in phase-contrast using a Ti-Eclipse stand (Nikon Instruments)
390	with a 40X Ph2 air objective (NA: 0.95) (Nikon Instruments) along with a 1.5X tube lens,
391	or a 100X Ph3 oil-immersion objective (NA: 1.45) (Nikon Instruments). Images were
392	acquired using a Zyla 4.2 sCMOS camera (Andor Technology); time-lapse images were
393	acquired every 30 s. The microscope system was integrated using μ Manager v. 1.41 [42].
394	
395	Image analysis
395 396	Image analysis To account for the drift that can occur during temperature shifts (data not shown), time-
396	To account for the drift that can occur during temperature shifts (data not shown), time-
396 397	To account for the drift that can occur during temperature shifts (data not shown), time- lapse data were aligned using the Template-Matching plugin [43] in ImageJ [44]. These
396 397 398	To account for the drift that can occur during temperature shifts (data not shown), time- lapse data were aligned using the Template-Matching plugin [43] in ImageJ [44]. These aligned images were segmented by the deep neural network-based machine learning
396 397 398 399	To account for the drift that can occur during temperature shifts (data not shown), time- lapse data were aligned using the Template-Matching plugin [43] in ImageJ [44]. These aligned images were segmented by the deep neural network-based machine learning framework <i>DeepCell</i> [45]. To train the network, approximately 200 cells were manually
 396 397 398 399 400 	To account for the drift that can occur during temperature shifts (data not shown), time- lapse data were aligned using the Template-Matching plugin [43] in ImageJ [44]. These aligned images were segmented by the deep neural network-based machine learning framework <i>DeepCell</i> [45]. To train the network, approximately 200 cells were manually outlined to produce a training dataset for our specific imaging conditions. Trained
 396 397 398 399 400 401 	To account for the drift that can occur during temperature shifts (data not shown), time- lapse data were aligned using the Template-Matching plugin [43] in ImageJ [44]. These aligned images were segmented by the deep neural network-based machine learning framework <i>DeepCell</i> [45]. To train the network, approximately 200 cells were manually outlined to produce a training dataset for our specific imaging conditions. Trained networks were used to generate binary images for feature (extracellular/cell

- 405 measure the centerline of rod-shaped cells to calculate cellular geometries [47]. Growth
- 406 rate was defined as the time-derivative of the logarithm of cell length, and growth-rate
- 407 trajectories were binned to show population-average behaviors.

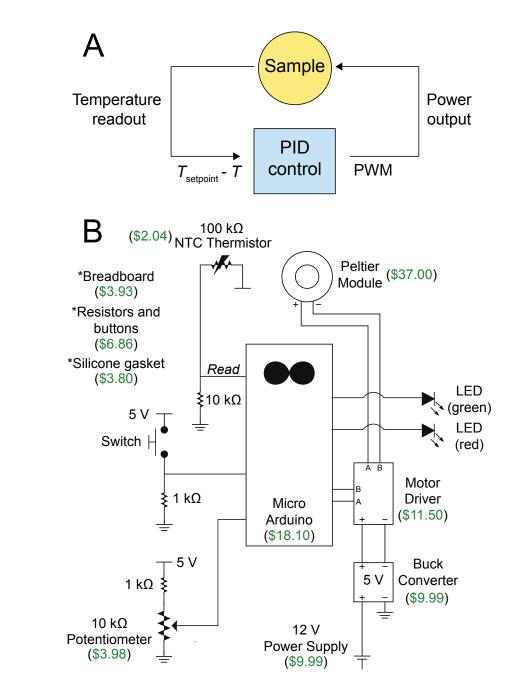
408 Author Contributions


- 409 B.D.K., L.Z., and K.C.H. designed the research; B.D.K. and L.Z. performed the research;
- 410 B.D.K. and L.Z. analyzed the data; and B.D.K., L.Z., and K.C.H. wrote the manuscript.

411

412 Acknowledgments

- 413 The authors thank members of the Huang lab and George Korir for helpful discussions,
- 414 and Paul Rujigrok, Heidi Arjes, and Fred Chang for comments on the manuscript. The
- 415 authors acknowledge funding from the Allen Discovery Center at Stanford on Systems
- 416 Modeling of Infection (to K.C.H). K.C.H. is a Chan Zuckerberg Biohub Investigator.

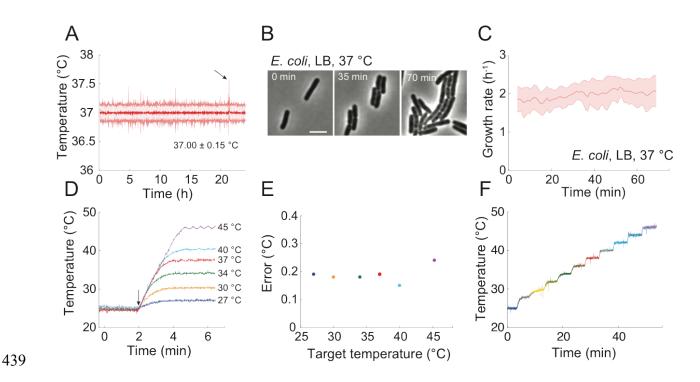

417 FIGURES

419 Figure 1: SiCTeC: an easy-to-assembly temperature controller for single-cell imaging.

420	A) Schematic of a temperat	ure-controlled sample slide	e. A ring-shaped Peltier
-----	----------------------------	-----------------------------	--------------------------

- 421 module delivers heat to the sample, and the temperature is monitored at the
- 422 coverslip using a thermistor. Images of cells can be acquired using most
- 423 microscopy systems, and processed using automated segmentation and tracking
- 424 algorithms.
- 425 B) Exploded schematic of the slide in (A).
- 426 C) Photo of sample slide with Peltier module and thermistor. The thermistor is
- 427 sealed to the coverslip with thermal tape, and power is delivered to the Peltier
- 428 module using electronic control components (not shown).

429

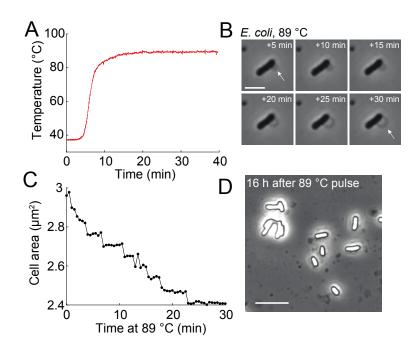

430 Figure 2: Design of an inexpensive control system.

431 A) Control design for proportional-integral-derivative (PID) temperature control.

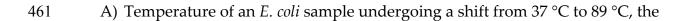
432 The temperature (*T*) is read by the thermistor at the coverslip, and its difference

433 with respect to the setpoint ($T_{setpoint}$) is used as an input to the PID algorithm.

- 434 Pulse-width-modulation (PWM) signals are used to modulate the power input to
- 435 the Peltier module.
- 436 B) Circuit design for the temperature-control system. Components are labeled with
- 437 their estimated itemized price in US dollars. Asterisks indicate items not shown.
- 438 The total cost is ~\$107 (Table S1).

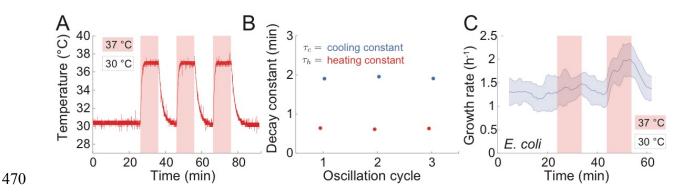


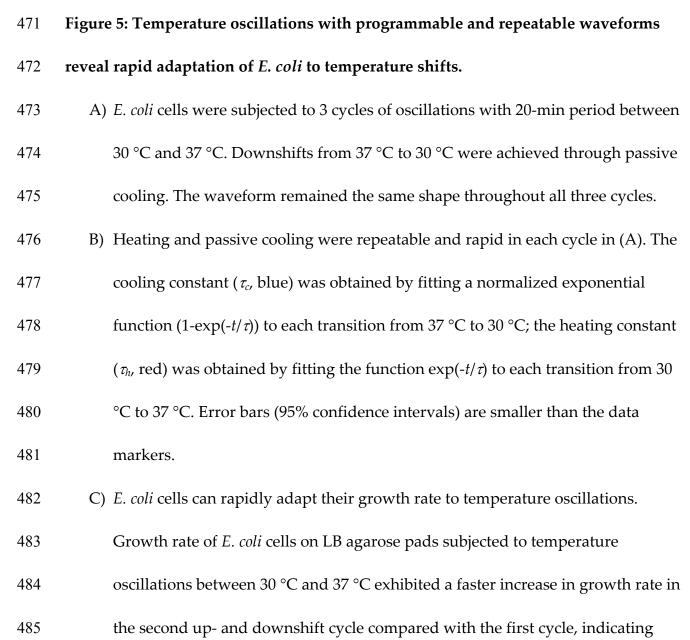
- 441 **fluctuations**.
- 442 A) Temperature readout during maintenance of a sample at 37 °C for 24 h. The
- 443 temperature was binned every 1 min; the shaded region represents ± 1 standard


444 deviation. Arrow points to the most extreme outlier ($0.6 \,^{\circ}$ C).

- B) Time-lapse images of *E. coli* grown on an agarose pad maintained at 37 °C using
- 446 SiCTeC as monitored in (A). Cell morphology and viability were maintained
- 447 throughout 70 min of tracking. LB, lysogeny broth. Scale bar: 4 μm.
- 448 C) Population-averaged growth rate of *E. coli* cells was approximately constant
- 449 during 70 min of maintenance at 37 °C as monitored in (A). Shaded region
- 450 represents ± 1 standard deviation (n = 301 cells).

451	D)	Temperature-shift experiments from 25 °C demonstrate rapid equilibration at
452		target temperatures of 27-45 °C. The device was maintained at 25 °C for 2
453		minutes and then shifted to the target temperature. Arrow indicates time of shift.
454	E)	The error in temperature maintenance was less than 0.3 °C at each target
455		temperature in (D), defined as the standard deviation over 3-min windows.
456	F)	Temperature stepping experiment from 25 °C to 46 °C demonstrates the ability of
457		SiCTeC to achieve near arbitrary upshift waveforms. The initial step was to 28
458		°C, while all subsequent steps were increments of 2 °C at 5-min intervals.

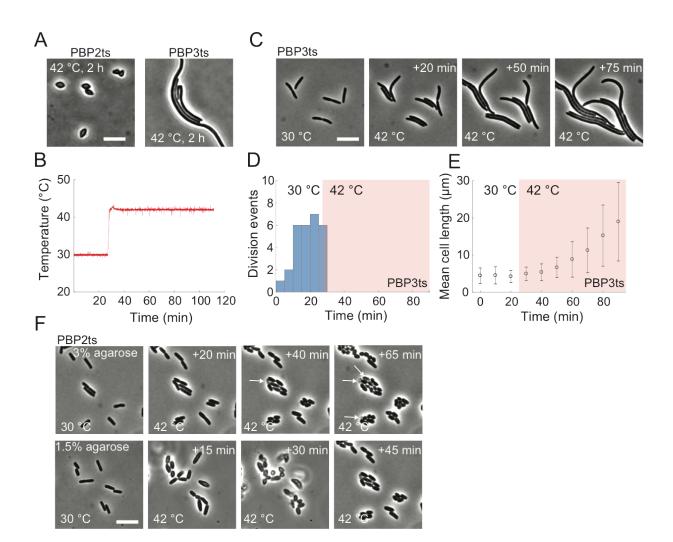

- 462 maximum temperature allowed by the device at PWM = 50. The system achieved
- 463 a steady state after 7 min. Scale bar: 3 μm.
- B) Time-lapse imaging of an *E. coli* cell at 89 °C for 30 min revealed halting of


465 growth and blebbing (arrows).

- 466 C) The cross-sectional area of the cell in (B) shrank progressively while temperature
- 467 was maintained at 89 °C.

459

- 468 D) Phase-contrast image of cells 16 h after a 30-min pulse at 89 °C reveals phase-
- 469 bright interior indicative of the unfolded protein response [27]. Scale bar: 8 μm.



rapid adaptation to the oscillations. The red and blue shaded regions represent

486

- 487 temperature upshifts and downshifts, respectively. Shaded region represents ± 1
- 488 standard deviation (n = 588 cells).

489

490 Figure 6: SiCTeC enables quantification of temperature-sensitive phenotypes

491 during transitions to non-permissive temperatures.

- 492 A) After 2 h of growth in liquid at the non-permissive temperature 42 °C,
- 493 temperature sensitive (ts) mutants of the cell wall synthesis enzymes PBP2 (left,
- 494 strain SP4500) and PBP3 (right, strain JE7611) adopted football-shaped and
- filamentous morphologies due to inhibition of the elongasome and divisome,
- 496 respectively. Scale bar: 8 μm.

497	B)	SiCTeC supported the desired temperature profile, as indicated by the
498		temperature readout while shifting PBP2ts cells from its permissive temperature
499		(30 °C) to 42 °C.
500	C)	After a shift from 30 °C to 42 °C, PBP3ts cells rapidly halted division and
501		elongated filamentously, as expected due to inhibition of cell division. Scale bar:
502		8 μm.
503	D)	Division events of PBP3ts cells, binned into 5-min windows, were only observed
504		during growth at 30 °C or almost immediately after the shift to 42 °C (n = 33 total
505		division events).
506	E)	Mean cell length of PBP3ts cells increased continuously throughout the shift
507		from 30 °C to 42 °C (n = 31-40 cells per data point).
508	F)	PBP2ts mutants are sensitive to hydrogel stiffness. After a shift from 30 °C to 42
509		°C, the PBP2ts mutant grown on 3% agarose pads (top) remained approximately
510		rod-shaped rather than adopting the rounded phenotype in (A), and a
511		subpopulation of cells lysed (arrows). By contrast, cells grown on 1.5% agarose
512		pads (bottom) became football-shaped as in (A) within 30 min, without
513		noticeable cell lysis. Scale bar: 8 μm.

514 **REFERENCES**

515

- 516 1. Rojas ER, Billings G, Odermatt PD, Auer GK, Zhu L, Miguel A, et al. The outer
- 517 membrane is an essential load-bearing element in Gram-negative bacteria. Nature.
- 518 2018;559(7715):617-21. doi: 10.1038/s41586-018-0344-3. PubMed PMID: 30022160;
- 519 PubMed Central PMCID: PMCPMC6089221.
- 520 2. Ting SY, Bosch DE, Mangiameli SM, Radey MC, Huang S, Park YJ, et al.
- 521 Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-
- 522 Ribosylating Toxins. Cell. 2018;175(5):1380-92 e14. doi: 10.1016/j.cell.2018.09.037.
- 523 PubMed PMID: 30343895; PubMed Central PMCID: PMCPMC6239978.
- 524 3. Li G, Moore JK. Microtubule dynamics at low temperature: evidence that tubulin
- recycling limits assembly. Molecular Biology of the Cell. 2020;0(0):mbc.E19-1-0634. doi:
- 526 10.1091/mbc.E19-11-0634. PubMed PMID: 32213119.
- 527 4. Zimmerle CT, Frieden C. Effect of temperature on the mechanism of actin
- 528 polymerization. Biochemistry. 1986;25(21):6432-8. doi: 10.1021/bi00369a014. PubMed

529 PMID: 3790531.

- 530 5. Ryals J, Little R, Bremer H. Temperature dependence of RNA synthesis
- 531 parameters in Escherichia coli. J Bacteriol. 1982;151(2):879-87. PubMed PMID: 6178724;
- 532 PubMed Central PMCID: PMCPMC220338.

- 533 6. Kong H, Kucera RB, Jack WE. Characterization of a DNA polymerase from the
- 534 hyperthermophile archaea Thermococcus litoralis. Vent DNA polymerase, steady state
- 535 kinetics, thermal stability, processivity, strand displacement, and exonuclease activities.
- 536 J Biol Chem. 1993;268(3):1965-75. PubMed PMID: 8420970.
- 537 7. Farewell A, Neidhardt FC. Effect of temperature on in vivo protein synthetic
- 538 capacity in Escherichia coli. J Bacteriol. 1998;180(17):4704-10. PubMed PMID: 9721314;
- 539 PubMed Central PMCID: PMCPMC107486.
- 540 8. Elias M, Wieczorek G, Rosenne S, Tawfik DS. The universality of enzymatic rate-
- temperature dependency. Trends Biochem Sci. 2014;39(1):1-7. doi:
- 542 10.1016/j.tibs.2013.11.001. PubMed PMID: 24315123.
- 543 9. Dill KA, Ghosh K, Schmit JD. Physical limits of cells and proteomes. Proc Natl
- 544 Acad Sci U S A. 2011;108(44):17876-82. doi: 10.1073/pnas.1114477108. PubMed PMID:
- 545 22006304; PubMed Central PMCID: PMCPMC3207669.
- 546 10. Herendeen SL, VanBogelen RA, Neidhardt FC. Levels of major proteins of
- 547 Escherichia coli during growth at different temperatures. J Bacteriol. 1979;139(1):185-94.
- 548 PubMed PMID: 156716; PubMed Central PMCID: PMCPMC216844.
- 549 11. Barber MA. The Rate of Multiplication of Bacillus Coli at Different Temperatures.
- 550 The Journal of Infectious Diseases. 1908;5(4):379-400. doi: 10.1093/infdis/5.4.379.

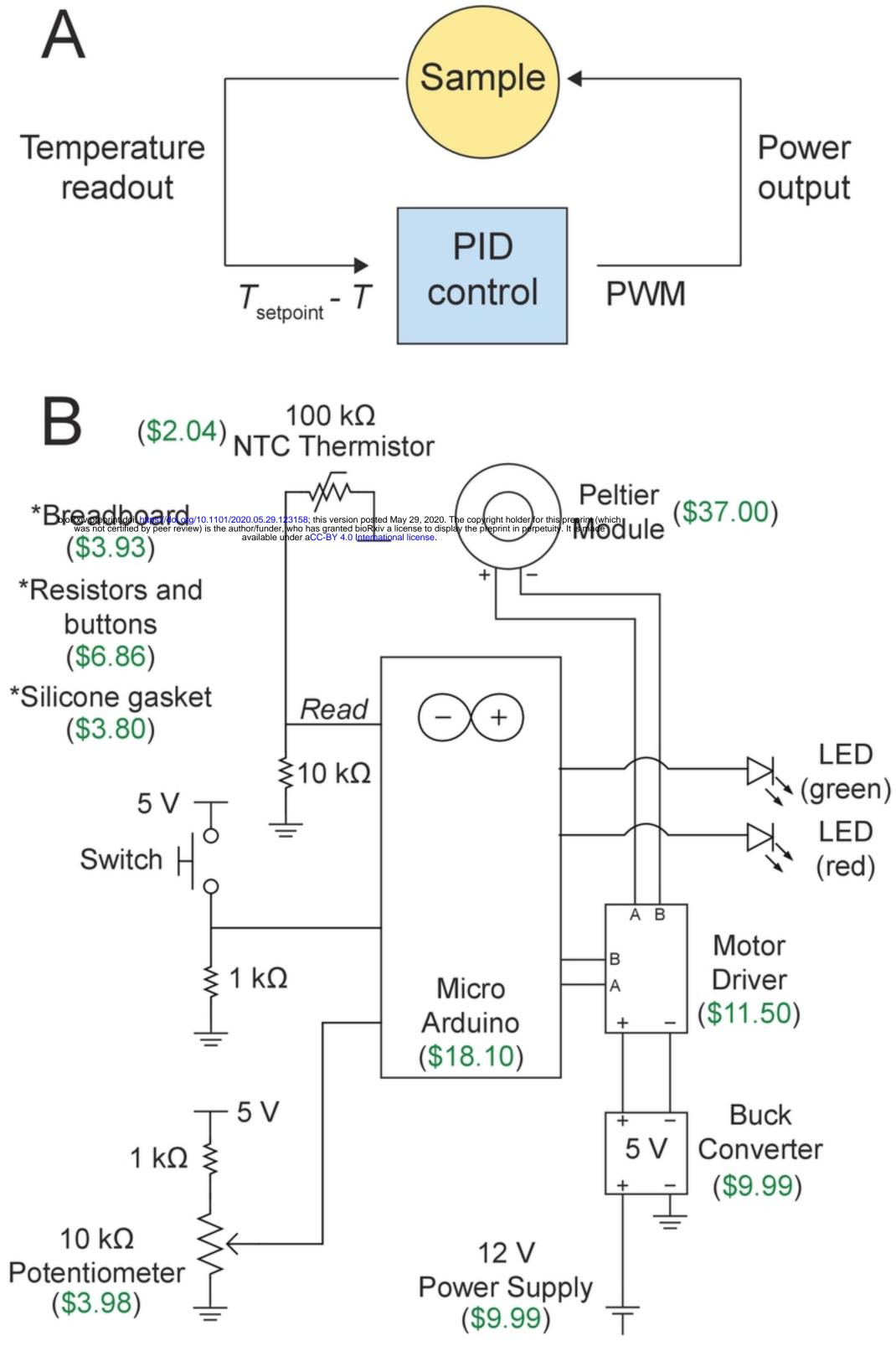
- 551 12. Chohji T, Sawada T, Kuno S. Effects of temperature shift on growth rate of
- 552 Escherichia coli BB at lower glucose concentration. Biotechnol Bioeng. 1983;25(12):2991-
- 553 3003. doi: 10.1002/bit.260251215. PubMed PMID: 18548633.
- 13. Lemaux PG, Herendeen SL, Bloch PL, Neidhardt FC. Transient rates of synthesis
- of individual polypeptides in E. coli following temperature shifts. Cell. 1978;13(3):427-
- 556 34. doi: 10.1016/0092-8674(78)90317-3. PubMed PMID: 350413.
- 557 14. Byagathvalli G, Sinha S, Zhang Y, Styczynski MP, Standeven J, Bhamla MS.
- 558 ElectroPen: An ultra-low-cost, electricity-free, portable electroporator. PLoS Biol.
- 559 2020;18(1):e3000589. doi: 10.1371/journal.pbio.3000589. PubMed PMID: 31922526;
- 560 PubMed Central PMCID: PMCPMC6953602.
- 561 15. Maia Chagas A, Prieto-Godino LL, Arrenberg AB, Baden T. The euro100 lab: A
- 562 3D-printable open-source platform for fluorescence microscopy, optogenetics, and
- 563 accurate temperature control during behaviour of zebrafish, Drosophila, and
- 564 Caenorhabditis elegans. PLoS Biol. 2017;15(7):e2002702. doi:
- 565 10.1371/journal.pbio.2002702. PubMed PMID: 28719603; PubMed Central PMCID:

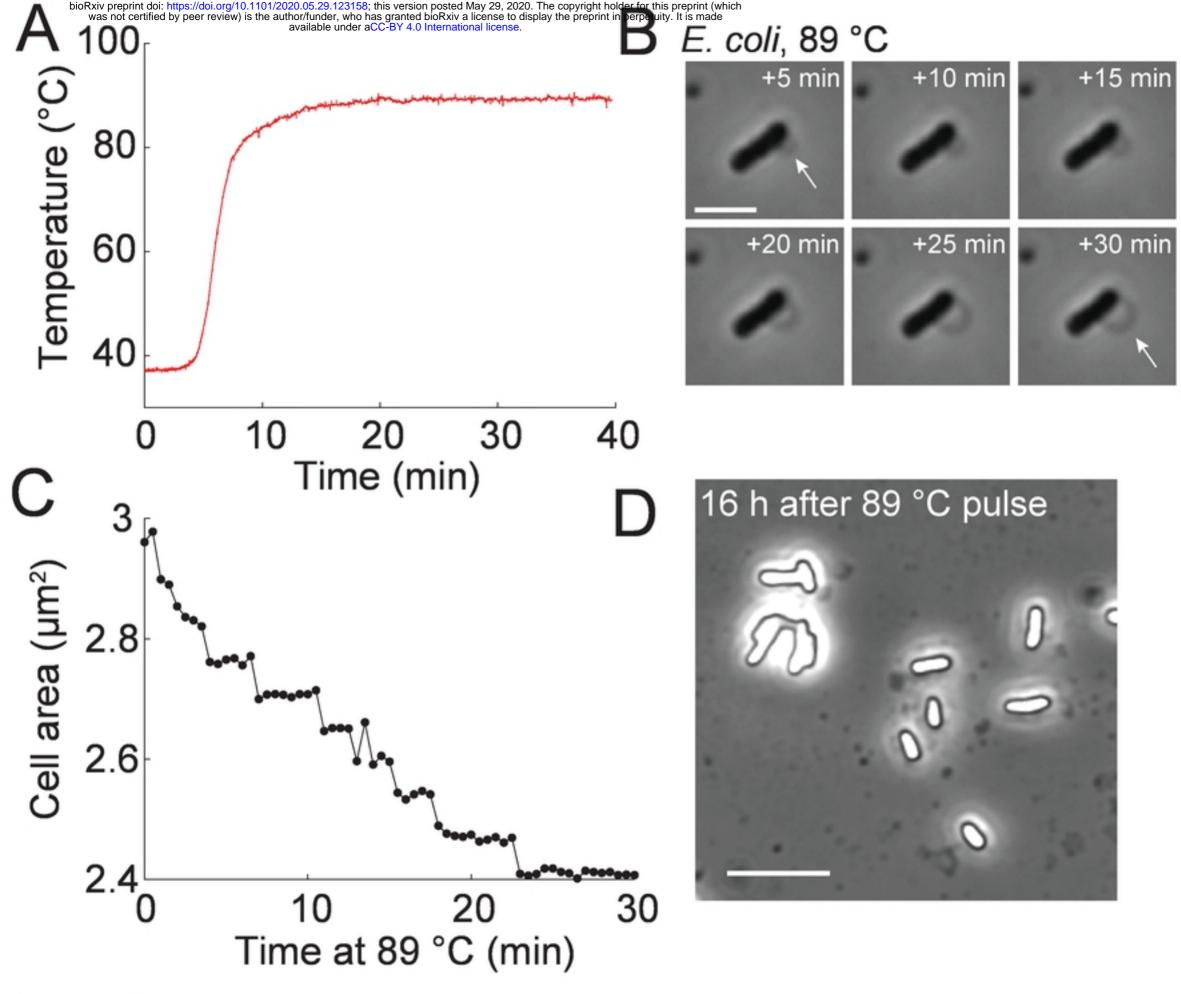
566 PMCPMC5515398.

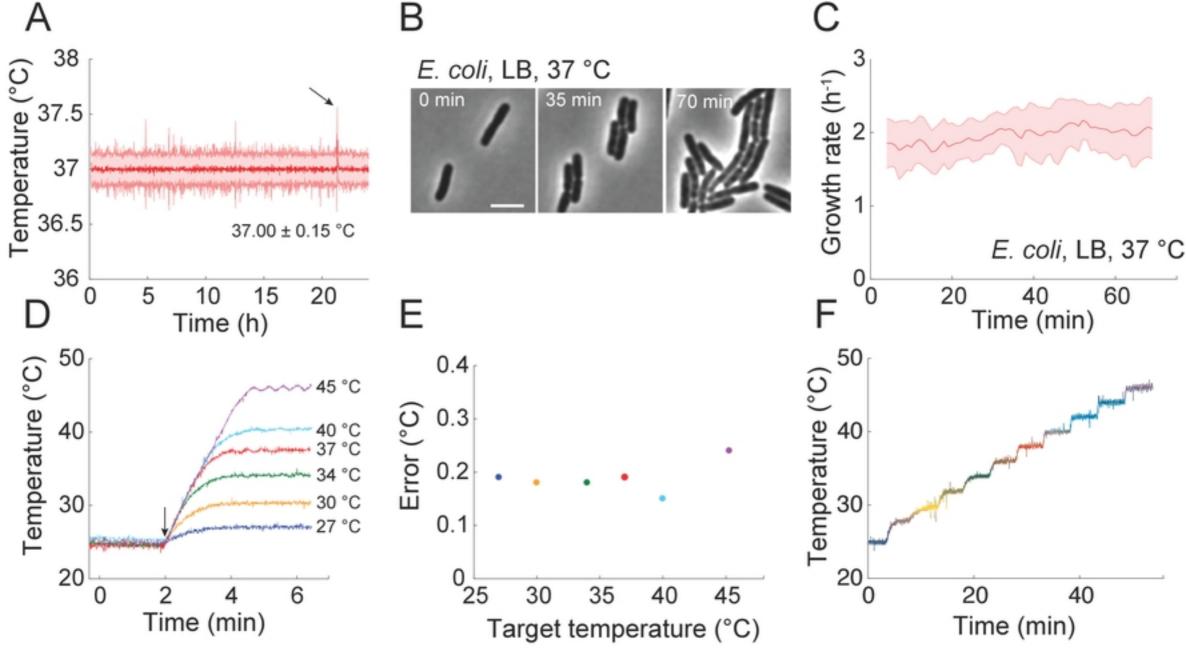
- 567 16. Oberacker P, Stepper P, Bond DM, Hohn S, Focken J, Meyer V, et al. Bio-On-
- 568 Magnetic-Beads (BOMB): Open platform for high-throughput nucleic acid extraction
- 569 and manipulation. PLoS Biol. 2019;17(1):e3000107. doi: 10.1371/journal.pbio.3000107.
- 570 PubMed PMID: 30629605; PubMed Central PMCID: PMCPMC6343928 Ltd), at which

- 571 some BOMB protocols were developed and have been donated to this project. SRH is
- 572 director of an agricultural engineering firm (CENENG Ltd).
- 573 17. Maia Chagas A. Haves and have nots must find a better way: The case for open
- 574 scientific hardware. PLoS biology. 2018;16(9):e3000014-e. doi:
- 575 10.1371/journal.pbio.3000014. PubMed PMID: 30260950.
- 576 18. Venezia P. Linux at 25: How Linux changed the world. InfoWorld. 2016.
- 577 19. Young JW, Locke JC, Altinok A, Rosenfeld N, Bacarian T, Swain PS, et al.
- 578 Measuring single-cell gene expression dynamics in bacteria using fluorescence time-
- 579 lapse microscopy. Nat Protoc. 2011;7(1):80-8. doi: 10.1038/nprot.2011.432. PubMed
- 580 PMID: 22179594; PubMed Central PMCID: PMCPMC4161363.
- 581 20. Seifert W, Pluschke V, Hinsche NF. Thermoelectric cooler concepts and the limit
- 582 for maximum cooling. J Phys Condens Matter. 2014;26(25):255803. doi: 10.1088/0953-
- 583 8984/26/25/255803. PubMed PMID: 24899626.
- 584 21. Kiam Heong A, Chong G, Yun L. PID control system analysis, design, and
- technology. IEEE Transactions on Control Systems Technology. 2005;13(4):559-76. doi:
- 586 10.1109/TCST.2005.847331.
- 587 22. Fry B. Processing: programming for the media arts. AI & Society. 2006;20(4):526588 38. PubMed PMID: 22054908.
- 589 23. Tuson HH, Auer GK, Renner LD, Hasebe M, Tropini C, Salick M, et al.
- 590 Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable

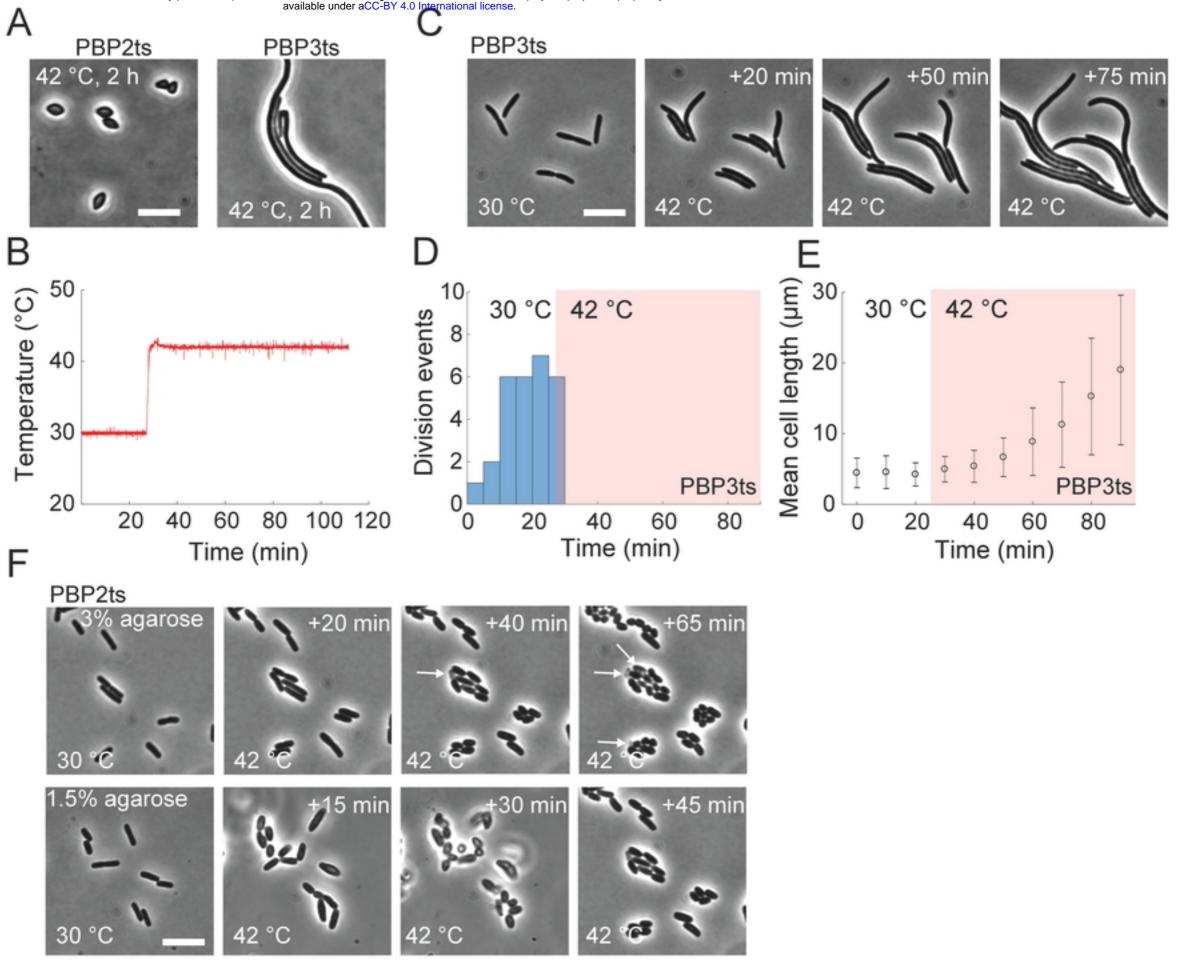
591	elasticity. Mol Microbiol. 2012;84(5):874-91. doi: 10.1111/j.1365-2958.2012.08063.x.
592	PubMed PMID: 22548341; PubMed Central PMCID: PMCPMC3359400.
593	24. Shi H, Colavin A, Bigos M, Tropini C, Monds RD, Huang KC. Deep Phenotypic
594	Mapping of Bacterial Cytoskeletal Mutants Reveals Physiological Robustness to Cell
595	Size. Curr Biol. 2017;27(22):3419-29 e4. doi: 10.1016/j.cub.2017.09.065. PubMed PMID:
596	29103935.
597	25. Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, et al. Robust growth
598	of Escherichia coli. Curr Biol. 2010;20(12):1099-103. doi: 10.1016/j.cub.2010.04.045.
599	PubMed PMID: 20537537; PubMed Central PMCID: PMCPMC2902570.
600	26. Katsui N, Tsuchido T, Hiramatsu R, Fujikawa S, Takano M, Shibasaki I. Heat-
601	induced blebbing and vesiculation of the outer membrane of Escherichia coli. J
602	Bacteriol. 1982;151(3):1523-31. PubMed PMID: 7050091; PubMed Central PMCID:
603	РМСРМС220434.
604	27. Coquel AS, Jacob JP, Primet M, Demarez A, Dimiccoli M, Julou T, et al.
605	Localization of protein aggregation in Escherichia coli is governed by diffusion and
606	nucleoid macromolecular crowding effect. Plos Comput Biol. 2013;9(4):e1003038. doi:
607	10.1371/journal.pcbi.1003038. PubMed PMID: 23633942; PubMed Central PMCID:
608	PMCPMC3636022.


609	28. Novick P, Field C, Schekman R. Identification of 23 complementation groups
610	required for post-translational events in the yeast secretory pathway. Cell.
611	1980;21(1):205-15. doi: 10.1016/0092-8674(80)90128-2. PubMed PMID: 6996832.
612	29. Typas A, Banzhaf M, Gross CA, Vollmer W. From the regulation of
613	peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol.
614	2011;10(2):123-36. doi: 10.1038/nrmicro2677. PubMed PMID: 22203377; PubMed Central
615	PMCID: PMCPMC5433867.
616	30. Tamaki S, Matsuzawa H, Matsuhashi M. Cluster of mrdA and mrdB genes
617	responsible for the rod shape and mecillinam sensitivity of Escherichia coli. J Bacteriol.
618	1980;141(1):52-7. PubMed PMID: 6243629; PubMed Central PMCID: PMCPMC293528.
619	31. Spratt BG. Distinct penicillin binding proteins involved in the division,
620	elongation, and shape of Escherichia coli K12. Proc Natl Acad Sci U S A.
621	1975;72(8):2999-3003. doi: 10.1073/pnas.72.8.2999. PubMed PMID: 1103132; PubMed
622	Central PMCID: PMCPMC432906.
623	32. Curtis NA, Eisenstadt RL, Turner KA, White AJ. Inhibition of penicillin-binding
624	protein 3 of Escherichia coli K-12. Effects upon growth, viability and outer membrane
625	barrier function. J Antimicrob Chemother. 1985;16(3):287-96. doi: 10.1093/jac/16.3.287.
626	PubMed PMID: 3902760.


627	33. Velve Casquillas G, Fu C, Le Berre M, Cramer J, Meance S, Plecis A, et al. Fast
628	microfluidic temperature control for high resolution live cell imaging. Lab Chip.
629	2011;11(3):484-9. doi: 10.1039/c0lc00222d. PubMed PMID: 21103458.
630	34. Pulschen AA, Mutavchiev DR, Sebastian KN, Roubinet J, Roubinet M, Risa GT, et
631	al. Live cell imaging of the hyperthermophilic archaeon Sulfolobus acidocaldarius
632	identifies complementary roles for two ESCRTIII homologues in ensuring a robust and
633	symmetric cell division. bioRxiv. 2020:2020.02.18.953042. doi: 10.1101/2020.02.18.953042.
634	35. Charles-Orszag A, Lord SJ, Mullins RD. High-temperature live-cell imaging of
635	cytokinesis, cell motility and cell-cell adhesion in the thermoacidophilic crenarchaeon
636	Sulfolobus acidocaldarius . bioRxiv. 2020:2020.02.16.951772. doi:
637	10.1101/2020.02.16.951772.
638	36. Balleza E, Kim JM, Cluzel P. Systematic characterization of maturation time of
639	fluorescent proteins in living cells. Nat Methods. 2018;15(1):47-51. doi:
640	10.1038/nmeth.4509. PubMed PMID: 29320486; PubMed Central PMCID:
641	PMCPMC5765880.
642	37. Rojas E, Theriot JA, Huang KC. Response of Escherichia coli growth rate to
643	osmotic shock. P Natl Acad Sci USA. 2014;111(21):7807-12. doi:
644	10.1073/pnas.1402591111. PubMed PMID: WOS:000336411300068.
645	38. Rombouts WH, de Kort DW, Pham TT, van Mierlo CP, Werten MW, de Wolf FA,
646	et al. Reversible Temperature-Switching of Hydrogel Stiffness of Coassembled, Silk-


- 647 Collagen-Like Hydrogels. Biomacromolecules. 2015;16(8):2506-13. doi:
- 648 10.1021/acs.biomac.5b00766. PubMed PMID: 26175077.
- 649 39. Wu F, Dekker C. Nanofabricated structures and microfluidic devices for bacteria:
- 650 from techniques to biology. Chem Soc Rev. 2016;45(2):268-80. doi: 10.1039/c5cs00514k.
- 651 PubMed PMID: 26383019.
- 40. Suzuki H, Nishimura Y, Hirota Y. On the process of cellular division in
- 653 Escherichia coli: a series of mutants of E. coli altered in the penicillin-binding proteins.
- 654 Proc Natl Acad Sci U S A. 1978;75(2):664-8. doi: 10.1073/pnas.75.2.664. PubMed PMID:
- 655 345275; PubMed Central PMCID: PMCPMC411316.
- 656 41. Spratt BG, Boyd A, Stoker N. Defective and plaque-forming lambda transducing
- bacteriophage carrying penicillin-binding protein-cell shape genes: genetic and physical
- mapping and identification of gene products from the lip-dacA-rodA-pbpA-leuS region
- of the Escherichia coli chromosome. J Bacteriol. 1980;143(2):569-81. PubMed PMID:
- 660 6451612; PubMed Central PMCID: PMCPMC294316.
- 661 42. Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N. Computer control of
- 662 microscopes using microManager. Curr Protoc Mol Biol. 2010;Chapter 14:Unit14 20. doi:
- 663 10.1002/0471142727.mb1420s92. PubMed PMID: 20890901; PubMed Central PMCID:
- 664 PMCPMC3065365.
- 43. Tseng Q, Wang I, Duchemin-Pelletier E, Azioune A, Carpi N, Gao J, et al. A new
- 666 micropatterning method of soft substrates reveals that different tumorigenic signals can


- 667 promote or reduce cell contraction levels. Lab Chip. 2011;11(13):2231-40. doi:
- 668 10.1039/c0lc00641f. PubMed PMID: 21523273.
- 669 44. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al.
- 670 Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676-
- 671 82. doi: 10.1038/nmeth.2019. PubMed PMID: 22743772; PubMed Central PMCID:
- 672 PMCPMC3855844.
- 45. Van Valen DA, Kudo T, Lane KM, Macklin DN, Quach NT, DeFelice MM, et al.
- 674 Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell
- 675 Imaging Experiments. Plos Comput Biol. 2016;12(11). doi: ARTN e1005177
- 676 10.1371/journal.pcbi.1005177. PubMed PMID: WOS:000391230900018.
- 677 46. Ursell T, Lee TK, Shiomi D, Shi H, Tropini C, Monds RD, et al. Rapid, precise
- 678 quantification of bacterial cellular dimensions across a genomic-scale knockout library.
- 679 BMC Biol. 2017;15(1):17. doi: 10.1186/s12915-017-0348-8. PubMed PMID: 28222723;
- 680 PubMed Central PMCID: PMCPMC5320674.
- 681 47. Knapp BD, Odermatt P, Rojas ER, Cheng W, He X, Huang KC, et al. Decoupling
- of Rates of Protein Synthesis from Cell Expansion Leads to Supergrowth. Cell Syst.
- 683 2019;9(5):434-45 e6. doi: 10.1016/j.cels.2019.10.001. PubMed PMID: 31706948; PubMed
- 684 Central PMCID: PMCPMC6911364.


685

