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Aging clocks dissociate biological from chronological age. The estimation of biological age is 

important for identifying gerontogenes and assessing environmental, nutritional or therapeutic 

impacts on the aging process. Recently, methylation markers were shown to allow estimation of 

biological age based on age-dependent somatic epigenetic alterations. However, DNA methylation 

is absent in some species such as Caenorhabditis elegans and it remains unclear whether and how 

the epigenetic clocks affect gene expression. Aging clocks based on transcriptomes have suffered 

from considerable variation in the data and relatively low accuracy. Here, we devised an approach 

that uses temporal scaling and binarization of C. elegans transcriptomes to define a gene set that 

predicts biological age with an accuracy that is close to the theoretical limit. Our model accurately 

predicts the longevity effects of diverse strains, treatments and conditions. The involved genes 

support a role of specific transcription factors as well as innate immunity and neuronal signaling in 

the regulation of the aging process. We show that this transcriptome clock can also be applied to 

human age prediction with high accuracy. This transcriptome aging clock could therefore find wide 

application in genetic, environmental and therapeutic interventions in the aging process.    

Introduction 

Aging is the driving factor for several diseases, the declining organ function and overall progressive loss 

of physiological integrity1. Aging biomarkers that predict the biological age of an organism are 

important for identifying genetic and environmental factors that influence the aging process and for 

accelerating studies examining potential rejuvenating treatments. Initial studies have shown evidence 

that methods predicting the biological age are indeed sensitive enough to detect the effect of 

geroprotective therapies2–5. Diverse studies tried to identify biomarkers and predict the age of 

individuals, ranging from proteomics, transcriptomics, the microbiome, frailty index assessments to 

neuroimaging and DNA methylation6–16. Several age predictors based on easy to obtain medical 

records or hematological data have shown some promising results but are still lacking in overall 

accuracy17–21.  
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DNA Methylation clocks 

Currently, the most common predictors are based on DNA methylation. An elastic net regression 

model based on whole blood-derived 71-methylation sites could predict a validation cohort with a 

correlation coefficient of 0.91 and a root-mean-square error (RMSE) of 4.9 years (for details on 

parameters reported from the literature, see methods). Genes with nearby age-associated 

methylation markers predicted the age of 488 public available whole blood gene expression samples 

with an RMSE of 7.22 years22. The first multi-tissue predictor of age comprising 51 distinct tissue and 

cell types utilized 353 CpG methylation sites and resulted in a correlation of 0.96 and a median absolute 

difference of 3.6 years23. Consequently, a variety of epigenetic aging clocks in humans24,25 with as few 

as 8 CpG sites26 and also other organisms3,27 were devised. Despite these advances there are still 

challenges and weaknesses28: A recent report showed that the improved prediction of chronological 

age from DNA methylation might limit its use as a biomarker of aging. A hypothetical perfect prediction 

of the chronological age would not give any information of the biological age of the organism. The 

deviation of the prediction from the chronological age (so called age acceleration residual) can 

therefore give insight into the probable mortality.  The improvement of the chronological age predictor 

is thereby accompanied by a decreased association between mortality and the bias of prediction29. The 

same study found a potential cellular composition confounder effect in those epigenetic clocks. After 

correction for this confounder, no significant association between the age acceleration residual and 

mortality was found, suggesting that the biggest effect is driven by differences in the cellular 

composition and thereby might limit the usage of the DNA methylation marks itself as biomarkers. 

Transcriptomics clocks 

The DNA methylation marks themselves might influence the transcriptional response22,30,31, but aging 

also affects the transcriptional network by altering the histone abundance32, histone modifications33–

37 as well as the 3D organization of chromatin38,39. The difference in RNA molecule abundance, thereby, 

integrates a variety of regulation and influences resulting in a notable gene expression change during 

the lifespan of an organism40–46, aging-associated changes in transcriptional elongation47 and a 

systemic length-driven transcriptome imbalance48. A recent study identified six gene expression 

hallmarks of cellular aging across eukaryotes from yeast to humans49 and the suppression of the 

transcriptional drift has been shown to extend the lifespan of C. elegans50. These studies sparked 

interest in the identification of transcriptomic aging biomarkers, an RNA expression signature for age 

classification and the development of transcriptomic aging clocks. 

Peters et al. extended previous classification approaches51–55 to a regression, which allows the 

computation of the predicted age and developed a transcriptional aging clock based on whole-blood 

microarray samples for half of the human genome and reported an r2 of up to 0.6, an average 
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difference of 7.8 years and an association of the predicted age to blood pressure as well as smoking 

status56. Similarly, Mamoshina et al. build a transcriptomic aging clock of human muscle tissue. A deep 

feature selection model performed best with an r2 of 0.83 and a mean absolute error of 6.24 years57. 

Recently, Affymetrix samples of the cortex, the hippocampus and the cerebellum were used to train a 

deep learning predictor to an r2 of 0.91 and an RMSE of 7.76 years58. 

However, microarray data have the drawbacks of a limited range of detection, high background levels 

and the detection of just a subset of the transcriptome. To overcome these limitations, a 

transcriptional age predictor based on human RNA-seq data from the GTEx project59 yielded Spearman 

correlation coefficients of up to 0.84, dependent on the tissue60. By applying an ensemble of linear 

discriminant analysis classifiers, a model with an r2 of 0.81, a mean absolute error of 7.7 years and a 

median absolute error of 4.0 years was obtained in a dataset derived from cell culture of healthy 

donors61. The same model also predicted an accelerated age in 10 patients with the premature aging 

disease Hutchinson-Gilford progeria syndrome (HGPS). The first across-tissue transcriptional age 

calculator using a LASSO regression showed that splicing events could predict with an overall accuracy 

of 71 %62, while  an across-tissue prediction on gene expression data showed that an elastic net 

regression was the most accurate with an average Pearson correlation coefficient across tissues of 0.33 
63. Apart from mRNA sequencing, a study of human peripheral blood micro RNAs samples was able to 

predict the age with an r2 of 0.49 64. Moreover, it has been shown that for lung tissue of mice 

transcriptional clocks are more accurate than epigenetic clocks65. 

Proteomics clocks 

Proteomics has been used in encouraging recent studies on human aging clocks and biomarker 

discovery. The first proteomics aging clock based on human blood plasma identified age-associated 

proteins that were used to build an elastic net prediction with an r2 of 0.88 66, which could later be 

improved to an r2 of 0.94 67. Recently, a study based on blood proteins predicted human age with a 

Pearson correlation of 0.88 more accurately than a combination of these proteins with metabolites 

and several clinical lab tests showing the versatility of also only a subset of proteins68. A review of 32 

different human proteomics and aging studies aiming to identify common age-associated proteins that 

could be robustly identified regardless of the technique or population diversity used, resulted in an 

age predictor based on 83 proteins that were reported in three or more out of the 32 different studies 

and reported a Spearman correlation of 0.91 69. This study also showed the current limitation of the 

usage of proteomics for age prediction: there is no standard in the generation of proteomic data and 

different techniques detect different subsets of proteins, which might lead to a measurement bias, i.e. 

some important age-related proteins might have been overlooked, while other were reported too 

frequently.  
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Summarizing, a large variety of data, techniques and analyses have been used to identify aging-

biomarkers and -clocks in humans. However, these analyses also showed a pronounced variability and 

difficulties in replicability. Indeed, a recent analysis70 of gene expression, plasma protein, blood 

metabolite, blood cytokine, microbiome and clinical marker data71,72, showed that individual age slopes 

diverged among the participants over the longitudinal measurement time and subsequently that 

individuals have different molecular aging pattern, called ageotypes73. Moreover, a recent 10-year 

longitudinal study74 showed that individuals are more similar to themselves than to others with the 

same age and a twin study75 demonstrated that the global effect of age in gene expression is small. 

These interindividual differences are even more pronounced between different ethnicities and sex19,76 

and show that it is still difficult to pinpoint biomarkers for aging in humans. 

C. elegans aging clocks 

Model organisms, instead, can give a more controllable view on the aging process and biomarker 

discovery and several studies have been conducted in mice and rats3,27,65,77–79 and similarities between 

model organism and human aging have been described80–82. C. elegans has revolutionized the aging 

field and has vast advantages as a model organism83–87. Even isogenic nematodes in precisely 

controlled homogenous environments have surprisingly diverse lifespans, however, the underlying 

causes are still not completely understood88. Several predictive biomarkers of C. elegans aging have 

been described89–92 and the measurements of physiological processes, such as movement, pharyngeal 

pumping and reproduction have been used to predict lifespan93 and the age with an RMSE of 1.7 days94. 

A first transcriptomic clock of C. elegans aging using microarray data of 104 single wildtype worms 

predicted the chronological age with 71% accuracy95. When the prediction was based on modular 

genetic subnetworks inferred from microarray data with support vector regression, the age of sterile 

fer-15 mutants at 4 timepoints was predicted with an r2 of 0.91. The same approach on the 104 

individual N2 wildtype worms yielded an r2 of 0.77 indicating that for microarray data subnetworks of 

genes result in better prediction compared to single gene predictors, likely due to the noisiness of the 

datatype96. Although the accuracy of this model is reasonable, it is limited by the fact, that no lifespan-

affecting genotypes or treatments were tested and that the validation dataset, although tested on 

single worms, resulted in an increased prediction error. Recently, an initial age prediction based on 

microarray data predicted 60 RNA-seq samples with a Pearson correlation of 0.54  and was improved 

to an r of 0.86 when the chronological age was rescaled by the median lifespan of the corresponding 

sample97. Even though this model instead of chronological age predicted the biological age of a variety 

of C. elegans genotypes, it is limited by the accuracy of the prediction. Moreover, the biological age is 

not reported in days, but as a variable with values between 0 and ~2.5, which makes it harder to 

interpret.  
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To date, no aging clock for C. elegans has been built solely on RNA-seq data and been shown to predict 

the biological age of diverse strains, treatments and conditions to a high accuracy. In this study, we 

build such a transcriptomic aging clock that predicts the biological age of C. elegans based on high 

throughput gene expression data to an unprecedented accuracy. We combine a temporal rescaling 

approach, to make samples of diverse lifespans comparable, with a novel binarization approach, which 

overcomes current limitations in the prediction of the biological age. Moreover, we show that the 

model accurately predicts the effects of several lifespan-affecting factors like insulin-like signaling, a 

dysregulated miRNA regulation, the effect of an epigenetic mark, translational efficiency, dietary 

restriction, heat stress, pathogen exposure, the diet and dosage dependent effects of drugs. This 

combination of rescaling and binarization of gene expression data therefore allows for the first time 

to build an accurate aging clock that predicts the biological age regardless of the genotype or 

treatment. Lastly, we show how our model has the potential to improve the prediction of the 

transcriptomic age of humans and might therefore be universally applicable to assess biological age. 

Results 

Temporal scaling and transcriptome data binarization allow precise biological clock 

predictions 

We downloaded and processed 904 publicly available RNA-seq samples for adult C. elegans for which 

corresponding lifespan data was available (Fig. 1, Table S1). Out of the 904 samples most (413) were 

wildtype N2 worm populations. A significant portion of 171 samples contained reads of temperature-

sensitive sterile strains like glp-1 or fem-1 or double mutants thereof. 59 samples contained a mutation 

in the insulin-like growth factor 1 receptor daf-2 and 45 a mutation in the dietary-restriction mimic 

strain eat-2 either as a single or as a combination with a different mutation. 216 samples did not cluster 

in one of the mentioned groups and contain a variety of different strains. 112 of the samples span 14 

different RNAi’s in 51 samples and 61 empty vector controls. Slightly more than half of the samples 

(490) were sequenced from a population that was undergoing a treatment (excluding RNAi or empty 

vector) that is different from the standard treatment of an E. coli OP50 diet at 20°C. The convoluted 

circle plot on the left side of Fig. 1 shows the overlap of the different possible combinations of strains, 

RNAi and treatments in our samples.  

We only downloaded and processed data for which the corresponding publication reported a median 

lifespan. The lifespan data is required to make strains with vastly different lifespans comparable. 

Without rescaling, an RNA-seq sample of a long-lived nematode beyond the normal lifespan of a 

wildtype worm would not be comparable to a wildtype sample, since no sample would be able to be 

generated. Lifespan-altering manipulations, e.g. a temperature shift, a daf-2 mutation or oxidative 
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damage, were shown to just shift the lifespan curve by stretching or shrinking it98. One interpretation 

would be, that all lifespan-affecting interventions converge on similar pathways, which affect the risk 

of death in a similar pattern, just at different velocities. Moreover, there have been descriptions of a 

transcriptional drift during C. elegans aging97,99, which might be due to a (dys-)regulation of single 

transcription factors100 and the suppression of this transcriptional drift might slow down the aging 

process50. Notably, age prediction could be improved by rescaling the chronological age by the median 

lifespan97. 

We, therefore, employed a strategy similar to Tarkhov et al. and rescaled the lifespan by the 

corresponding median lifespan of the sample. We set the median lifespan of a standard wildtype N2 

worm to µ=15.5 days adulthood. Using this standard lifespan, we calculated a correction factor to 

determine the biological age of a sample. For example, the correction factor of a strain with a 

measured median lifespan of 31 days, would be µ/31 = 0.5 and thereby assuming an aging rate 

reduction of 50%. This correction factor would be applied to each RNA-seq sample of the same strain 

and experiment. A sample sequenced e.g. at day 10 of adulthood, would be corrected to 10*0.5 = 5 

days of biological age. Applying the individual correction factors for each RNA-seq sample, allows us to 

build a classifier of the biological, instead of the chronological age. Importantly, by defining a standard 

lifespan of 15.5 days we are able to predict the biological age in days instead of a variable between 0 

and 2.5 as reported by Tarkhov et al. 

Owing to the fact that the public data was generated in multiple laboratories with different protocols 

and sequencers (see Table S1 for details) we expected noisy data with a strong batch effect. Indeed, 

the results of an elastic net regression (see Methods for details) on the raw counts-per-million (CPM) 

reads, resulted in a mediocre model with an r² of 0.78 a mean absolute error (MAE) of 1.02 days and a 

median absolute deviation (MAD) of 0.71 days. Fig. S1 shows the comparison of the rescaled biological 

age of the strains on the x-axis and the age predicted by the elastic net regression on the y-axis. 

Interestingly, the overall absolute error and the variance in the absolute error of the prediction 

increases strongly after ~5 d (Fig. S2). 

In order to mitigate this increase in variance, we used a novel approach and binarized the 

transcriptome data by setting the value of each gene to 1, if the CPM is bigger than the median CPM 

of the corresponding sample and 0 otherwise (see Methods for details), thereby reducing the noise, 

but retaining the information whether a gene is strongly transcribed or not. After this binarization, we 

trained an elastic net regression model with nested cross validation to obtain the best parameter 

setting and optimal set of genes (see Methods for details) that predict the biological age remarkably 

well with an r² of 0.96, a MAE of 0.46 d and a MAD of 0.33 d (Fig. 2a).  
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Interestingly, especially the increased variance in older samples, as seen in our initial analysis in Fig. 

S1, diminished and showed a strong improvement in overall accuracy. Comparison of the absolute 

error terms of the raw CPM and the binarized data prediction shows that the absolute error of the 

binarized prediction is lower than the prediction based on the raw CPMs regardless of the biological 

age of the worms. Furthermore, while the initial prediction on the raw data starts to get especially 

inaccurate starting from day 5, the increase in the binarized data is far less pronounced (Fig. S2a). 

Interestingly, also the variance of the absolute error terms stays more stable in the binarized data than 

the raw data and thereby demonstrating a more robust prediction regardless of the true age of the 

worms (Fig. S2b). 

These results show that the binarization approach strongly improves the prediction, especially in older 

samples, which have been shown to contain a noisier transcriptome. Indeed, this age-dependent 

noisiness so far hindered the identification of proper aging biomarkers. The binarization therefore 

might facilitate the identification by reducing the noise, while retaining the important information. To 

verify our prediction further, an independent dataset, not used in the nested cross-validation for 

optimization of the parameter and gene set, was predicted with an r² of 0.9, a mean error of 1.29 d 

and a median error of 1.01 d (Fig. 2b).  

The results show that the overall prediction is highly accurate, however, although lower than the 

increase in deviation in the raw data, the binarized data as well show a decrease in accuracy in samples 

with an older biological age (see also Fig. S2). This might be due to the lower sample size of older 

animals, but might also be influenced by the nature of bulk RNA-sequencing itself. Fig. S3a shows a 

standard lifespan curve of C. elegans. Until ~day 8 100% of non-censored worms are alive. Starting 

from day 8 the first worms die, until the median lifespan is reached at ~15.5 days and the maximum at 

~24 days. We can assume that the biological age of worms at the same chronological age follows a 

normal distribution (Fig. S3b). In other words, in a plate of synchronized worms at day 8 we would 

expect to see that most worms are also at a biological age of 8 days. However, some worms will be 

healthier while others are already close to death and will therefore be the worms that start dying early. 

While the peak of this bell curve will therefore be the chronological age of the worm population, some 

worms will be biologically younger and some older (Fig. S3b). Starting from the next day, the first part 

of the worm population will die (Fig. S3c). Assuming the normal distribution of the biological age of the 

worms and a hypothetical maximum biological age as shown with the dotted line in Fig. S3d we can 

hypothesize that the biologically older worms will die off first and thereby truncate the biological age 

distribution on the right side of the curve (Fig. S3d). This truncation will shift the true median biological 

age towards the left side, as indicated by the green line. This becomes more noticeable at the median 

lifespan of 15.5 days, where by definition 50% of the population is dead (Fig. S3e). Following the same 

reasoning from above, we see that the right half of the biologically older worms died, while the 
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younger half of the population stayed alive. However, this clearly skews the distribution, since the 

oldest 50% of the population is dead and therefore won’t contribute to the average biological age 

anymore. Indeed, the median biological age, will be the median of the remaining, alive worms, i.e. the 

left part of the curve. This will result in a shift of biological age, especially for chronologically older 

populations (Fig. S3f). In consideration of this biological age shift, an RNA-seq sample sequenced at 

15.5 days will have a younger true population-median biological age, which will introduce a bias into 

the regression model. The bias will be not as pronounced in younger samples, since most of the 

population will still be alive (Fig. S3b). 

To alleviate this bias, we calculated a second correction term that takes into consideration the 

hypothetical biological age distribution of the sequenced population (methods for details). Applying 

this correction before the optimization of the regression, resulted in an improved prediction model, 

especially for the independent dataset. The new model utilizes 576 genes and predicts the full dataset 

slightly better, with an r² of 0.96, a mean error of 0.45 d (-1.73 %) and a median error of 0.32 d (-2.18 

%) (Fig. S4a). The independent dataset is now predicted with an r² of 0.93, a mean error of 1.04 d (-

19.55 %) and a median error of 0.9 d (-11.57 %) (Fig. 2c). These data indicate that it might be 

worthwhile including a correction for the survival bias of worms in older populations. 

To confirm that not every gene set of 576 genes results in a similar prediction, we randomly sampled 

576 genes and recorded the resulting absolute errors and r² values. The boxplot in Fig. 2d shows the 

distribution of r² values centering around the mean of 0.488 with a standard deviation of 0.117. The 

blue dot shows the result of our predicted gene set as a clear outlier at 0.96. The MAE and MAD are 

centered around 1.27 d and 0.911 d with a standard deviation of 0.066 and 0.063 respectively (Fig. 

S4b). 

To assess the precision of the age prediction, we next probed how close this model approaches the 

theoretical limit of a biological clock. The downloaded data is annotated in whole days alive from 

adulthood and thereby including a variance of +/- 12 h to the actual chronological age. Random 

sampling of this error alone gives a mean error of 0.236 (+/- 0.006) d, a median error of 0.187 (+/- 

0.006) d and a r² of 0.986 (+/- 0.002). However, since lifespan assays, even done under the same 

conditions in the same laboratory, will vary, we can assume that the reported median lifespan, used 

for the temporal rescaling, will also be including an inherent experimental error. Indeed, it has been 

shown that lifespan assays are heavily affected by the number of animals and less, but substantially, 

by the scoring frequency, thereby indicating that many lifespan studies are underpowered and often 

driven by stochastic variation101. Computing the mean and SD of lifespan assays for one genotype with 

the same treatment for several publications, shows that the variation is indeed on average ~7 % for 

one standard deviation from the mean with a range between 5.44 % to 8.83 % (Table S3). An 
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assumption of a moderate 5 % deviation between assays increases the mean error to 0.302 (+/- 0.007) 

d, the median error to 0.244 (+/- 0.008) d and reduces the r² to 0.98 (+/- 0.002). These theoretical 

optima, shown as dotted lines in the boxplots in Fig. 2d and Fig. S4b, clearly display the quality of our 

prediction. We conclude that the prediction based on the set of 576 genes is close to the theoretical 

optimum. 

Next, we compared our model to a previous model97 that described three sets of aging-associated 

genes. The first set, consisting of 327 genes was generated by a meta-analysis of publicly available 

microarray data, the second consists of 902 age-associated genes generated by an RNA-seq 

experiment, and finally, a sparse subset with only 71 genes that was used for the biological age 

prediction. The gene set derived from microarray data performed worst on the prediction of the 904 

RNA-seq samples with an r² of 0.52, followed by the gene set of 902 genes with an r² of 0.58 and finally 

the sparse predictor with an r² of 0.62 (Fig. S5a-c). The latter corresponds to a Pearson correlation of 

0.79, and is thereby similar to the Pearson correlation of 0.86 as published by Tarkhov et al. 

Binarization improves the prediction of the two larger gene sets as well to an r² of 0.74 and 0.78 

respectively (Fig. S5d-e). The r² of the sparse predictor decreased to 0.57, however, the MAE and MAD 

decreased and thereby also show that a single quality assessment is not enough to give a good 

evaluation (Fig. S5f). 

These comparisons indicate that our new model consisting of 576 binarized genes predicts the 

biological age of C. elegans to a high accuracy and superior to previously existing models. 

 

Prediction of multiple lifespan-affecting factors 

Since our model is able to predict the biological age to a high accuracy, we next tested the capability 

of the model to predict the effect of multiple lifespan-affecting factors. We used the previously 

determined 576 predictor-genes and trained an elastic net regression on the 904 RNA-seq samples, 

excluding the data for the respective publication. This is thereby a different cross-validation approach 

where we excluded a whole dataset from a paper at a time. 

First, we tested the well-known effect of insulin-like signaling on the biological age and could see that 

a daf-2 mutation reduces the predicted biological age compared to the WT strain of the same 

experiment significantly by 41.3 % in 4-day adult C. elegans (Fig. 3a). This corresponds to a 1.71-fold 

lifespan extension. Since the WT sample of this dataset102 was already longer lived than our standard 

15.5 days, we computed also the comparison against 15.5 d which resulted in a 2.31-fold increase in 

lifespan for daf-2. The even longer lived daf-2; rsks-1 double mutant is accordingly predicted to be 
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even younger with a significant reduction of 56.8 % in 4-day adults, corresponding to a 2.32-fold 

lifespan extension (Fig. 3b)103. 

To see, whether short-lived mutants can also be predicted correctly, we next tested mir-71, which has 

been shown to regulate the global miRNA abundance during aging and to directly influence lifespan104. 

Compared to wildtype, mir-71 is predicted to be 56 % older in 5-day adults, corresponding to a -1.56-

fold lifespan reduction (Fig. 3c). In addition, samples of a gain-of-function skn-1 mutation, detrimental 

for lifespan, got correctly predicted to be 77.2 % older than wildtype worms at day 2 (Fig. 3d). 

Interestingly, this adverse effect can be rescued by a loss-of-function mutation in wdr-5 and the 

subsequent abolishment of the epigenetic mark H3K4me3105, which is remarkably also reflected in our 

prediction. Loss of protein homeostasis decreases overall fitness and is a hallmark of aging. In C. 

elegans the loss of uridine U34 2-thiolation in tut-1; elpc-1 double mutants has been shown to have a 

negative impact on efficient translation and to promote protein aggregation106. Strikingly, this effect 

on translational efficiency is also reflected in the transcriptomic aging clock for day-1 adults, which are 

predicted to be 196 % older than their wildtype counterpart (Fig. 3e). 

These data show, that the transcriptomic clock can effectively predict the biological age of a variety of 

mutants and pathways, ranging from the insulin pathway, miRNA’s, the epigenetic mark H3K4me3 and 

translational efficiency. 

Since both, long-lived and short-lived strains seem to be predicted with the correct pattern, we next 

asked whether we could predict the effect of dietary restriction (DR) on the biological age. Although a 

slight effect, the dietary restricted worms are predicted to be 12.9 % younger than their normal-fed 

counterpart at day 4 of adulthood (Fig. 3b). Dietary restriction induced longevity was shown to depend 

on the PMK-1/p38 signaling-regulated innate immune response. In C. elegans sek-1 is part of the PMK-

1/p38 signaling cascade and required for longevity in dietary restricted worms107. Noticeably, the same 

trend can be observed in our prediction for day-6 adults (Fig. 4a). A two-way ANOVA showed a 

significant interaction between the effects of the strain and dietary restriction (p=0.004), which 

indicates that the effect of DR is dependent on sek-1 activation. Although in this dataset the adjusted 

p-value of the effect of DR in WT worms is not significant (p=0.057) it is interesting to note, that the 

dietary restricted worms are on average 32 % younger than the ad libitum fed WT worms and thereby 

showing a stronger effect than the 12.9 % reduction in Fig. 3b. This could be due to strain differences 

of the different laboratories or suggest that positive effects of DR add up over time.  

Next, we decided to test, whether different lifespan-shortening stressors can be predicted correctly. 

Both heat stress (Fig. 4b) and pathogen exposure to either P. aeruginosa or S. aureus (Fig. 4c, d) showed 

a strong increase in the predicted biological age. The former increased the prediction by 169.3 % in 

day 3 adults, while the latter increased the predicted age by 421.4 %, respective 101 %, in day 1 adults.  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.29.123430doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.123430
http://creativecommons.org/licenses/by-nd/4.0/


11 
 

While heat or pathogen exposure can lead to a quick demise of the animals, we wondered whether 

also more subtle changes in lifespan by different diets and subsequent nutrient metabolism could be 

detected. It has been shown that an E. coli K12 variant’s indole secretion extends fecundity and overall 

health- and lifespan in C. elegans, while an isogenic E. coli strain (K12tnaA) with a deletion in the indole-

converting gene does not have these benefits. This effect on health span was reported to be not yet 

visible in worms on day 8, but only showed a significant difference on the next tested timepoint on day 

15 108.  Intriguingly, the same pattern can be observed in RNA-seq samples of day 3 and day 12 (Fig. 

4e). A two-way ANOVA showed a significant treatment effect (p=0.034) indicating the sensitivity of the 

approach. Moreover, in accordance with the published results, a subsequent Tukey post-hoc test 

showed no difference between the diets on day 3 (adjusted p=0.9), while day 12 showed a 15.3 % 

increased biological age in the K12tnaA diet (adjusted p=0.0506). Consistent with the link between 

diet-dependent changes in nutrient metabolism and lifespan, it has been shown that the lifespan-

extending effect of Metformin is, at least partially, regulated by a bacterial nutrient pathway109. A two-

way ANOVA of the predicted biological age of day-2 adults, grown on either E. coli OP50 or a 

Metformin-resistant OP50 strain, with or without Metformin showed as well a significant bacteria 

effect (p=0.045) as a significant drug effect (p=0.004). A subsequent Tukey post-hoc test showed a 

significant reduction of the biological age of Metformin treated wildtype worms grown on OP50 (-34.5 

%), but no significant effect in worms grown on Metformin-resistant OP50 (Fig. 4f). 

Next, we asked whether the effect of the duration time of a drug, might be reflected on the 

transcriptomic age. The antidepressant Mianserin has been shown to extend the lifespan of C. elegans 

by inhibiting serotonergic signals, which is lessening the age-dependent transcriptional drift. This effect 

is more pronounced in animals that were treated starting from day 1, compared to starting the 

treatment from day 3 50. Our prediction of day 10 adults resembles this conclusion; a one-way ANOVA 

showed a significant difference (p=0.0008) and an ensuing Tukey post-hoc test revealed statistical 

significance between all three cases, with the biggest effect in worms treated from day 1 (Fig. 4g). 

An interesting and challenging questions is, whether the combination of different lifespan-extending 

drugs might have a synergistic effect or not. Admasu et al. reported that not all combinations of drugs 

have an additional effect. While the combination of Rapamycin with Allantoin had no effect on the 

lifespan of wildtype worms, the triple combination with Rifampicin surprisingly had the biggest 

effect110. Interestingly, while the administration of Rifampicin, Rapamycin and Allantoin significantly 

reduced the predicted age by 17.7 % (Fig. 4h), the double combination of Rapamycin and Allantoin did 

not change the predicted lifespan, which is in accordance with the published lifespan results. 

Lastly, we decided to check the effect of proteotoxic stress on the transcriptional age and downloaded 

a new dataset for which no direct lifespan data was published and which contained treatments that 
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were not included in any of the analyses and nested cross-validations above111. We tested the samples 

of two different dosages of the proteasome inhibitor bortezomib (BTZ) and the knockdown by RNAi of 

the proteasomal subunit RPN-6.1 and saw a significant increase in the biological age or all three 

samples (Fig. 4i). Notably, the effect of BTZ shows a dose dependency. rpn-6.1 RNAi has been shown 

to strongly reduce the lifespan of WT worms112 and BTZ supposedly mimics the effects by directly 

blocking the proteasome and has been shown to dramatically reduce the lifespan of starved worms113. 

Moreover, although no direct lifespan data is available for normal fed worms, 10 µM BTZ leads to an 

early death starting from day 3 111, while 25 µM even increased the dying rate (Fabian Finger, personal 

communication). These results demonstrate that the nested cross-validation was sufficient to prevent 

overfitting, that our model extends beyond the data described here and that even lifespan-affecting 

stressors unknown to the model, i.e. proteasomal stress, are correctly predicted. 

In conclusion, we demonstrated that our transcriptomic aging clock of C. elegans is highly accurate and 

versatile usable. We showed, that it correctly predicts the effects of insulin-like signaling, a modified 

miRNA regulation, the effect of an aberrant active transcription factor and the reversal of this effect 

by an epigenetic mark, translational efficiency, dietary restriction and the requirement of the intact 

innate immune system on its lifespan-extending effect, heat stress as well as pathogen exposure and 

the effects of diet-depending metabolites. Lastly, we also showed that the predictor is able to correctly 

identify the effect of Metformin through the hosts microbiota, the dosage-dependent effect of drugs 

and the counterintuitive fact that the combination of lifespan extending drugs might not be necessarily 

synergistic. Strikingly, our model extends beyond the data used for the nested cross-validation and is 

able to correctly predict the biological age of worms, for which no direct lifespan data was available. 

 

Functional characterization 

The final regression model utilizes 576 genes, out of which 294 have a negative coefficient and thereby 

are mostly expressed in young worms, while 282 genes have a positive coefficient and thereby increase 

the predicted age if active. Intriguingly, the protein-coding genes with a negative coefficient were 

enriched on the X-chromosome and are significantly less expressed from chromosome I and II (Fig. 

S6a). Protein-coding genes with a positive coefficient show a opposite trend and are significantly 

enriched on chromosome I and II, while depleted from chromosome IV (Fig. S6b, c). Interestingly, a 

WormExp114 gene set enrichment analysis of the genes with a negative coefficient, so those that are 

associated with younger samples, are enriched in age-related categories that are downregulated with 

aging (Fig. 5a). Moreover, the 294 genes are enriched in the pmk-1, elt-2, pqm-1 and daf-16 

transcription factor target category (Fig. 5b). A motif search at the promoter regions of the genes with 

a negative coefficient corroborates this finding and shows a significant enrichment in the GATA 
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transcription factors PQM-1 and ELT-3 (Fig. S7a). Although the gene set enrichment analysis with 

WormExp did not show a significant enrichment of transcription factors in the gene set with a positive 

coefficient, the motif search also identified the GATA motif enriched at the promoter regions (Fig. S7b). 

Notably, the GATA transcription factor elt-6 is within the top 30 % of genes with a positive coefficient 

in our gene set and thereby correlated with older worms and has been shown to increase during 

normal aging and to increase the lifespan upon knock down by RNAi115. Interestingly, genes associated 

with younger worms are also enriched in genes that are upregulated in germline-ablated animals (Fig. 

5c), which in general exhibit an increased lifespan. Genes with a positive coefficient on the other hand 

are enriched in categories that show an increase with age (Fig. 5d).  

A subsequent functional enrichment analysis with String v.11116 and geneSCF117 revealed a strong 

enrichment of signal peptides, transporter activity, and neuropeptides, which suggest that especially 

systemic responses influence the aging process (Fig. 5e). Neurotransmitters, although not directly 

enriched in the GO-term analysis, might as well play an important role. hic-1 is one of the genes with 

the strongest increase in predicted age of our gene set. It has been previously shown to be present at 

the presynaptic terminal of cholinergic neurons and to regulate the normal secretion of acetylcholine 

neurotransmitter and Wnt vesicles118. In the same manner, the dopamine receptor dop-4 is in the top 

25 % of genes with a negative coefficient and has been shown to promote healthy proteostasis and 

the innate immunity as well as detoxification genes119. Interestingly, the innate immune response and 

cytochrome P450 enrichment in our gene set might indicate a role of a general stress response, 

detoxification and drug metabolism during the aging process. Consistent with a general stress 

response, we also find csa-1 in the list of genes with a positive coefficient, which might indicate an 

increased DNA damage load in older worms. 

To conclude, these results further validate the genes used for the age prediction and indicate that the 

aging process might be driven by the dysregulation of single transcription factors (Fig. 5b) and a 

systemic signal transmitted by signal peptides (Fig. 5e).  

 

Human data 

To demonstrate, that our novel approach is also usable for other organism we downloaded a recent 

human dermal fibroblast RNA-seq dataset generated from cell culture of 133 healthy individuals with 

ages between 1 and 94 and 10 patients with Hutchinson-Gilford progeria syndrome (HGPS) with ages 

between 2 and 9 61. Fleischer et al. showed that an LDA ensemble approach can predict the age of the 

133 healthy patients with a r² of 0.81, a mean error of 7.7 years and a median error of 4.0 years. 

Moreover, they find a statistical increased predicted biological age of HGPS patients, as would be 
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expected from a premature aging disease. However, as they mention, the ensemble method has some 

limitations, i.e. the discretization of age, the computational cost and the difficult interpretation of the 

influence of gene expression changes on the predicted age. 

Our regression-based method is fast to compute, does not require the discretization of age and directly 

allows the effect-interpretation of the activity of single genes on the predicted age. Using the elastic 

net regression on the unbinarized data resulted in a model of 132 predictor genes and in a similar 

prediction quality as the elastic net regression by Fleischer et al. (Fig. S8a) and similarly the HGPS 

samples are not predicted to be biologically older (Fig. S8b). However, binarization of the data before 

calculating the elastic net regression improved the results dramatically to an r² of 0.91, a MAE of 6.63 

years and a MAD of 5.24 years (Fig. 6a). Moreover, our model predicts the HGPS patients to be 

significantly older (Fig. 6b). This new model contains 141 predictor genes (Table S5), out of which 25 

are significantly enriched in the biological process regulation of cell death. Interestingly, among the 

predictor genes the forkhead transcription factor FOXO1 –a regulator of the aging process in C. elegans 

and mammals–  is positively correlated with age thus further supporting the evolutionary conservation 

of transcriptionally regulated longevity mechanisms120.  

To summarize, these data indicate, that elastic net regression on binarized gene expression data is not 

only usable in the nematode C. elegans, but possibly also in more complex organisms like humans. 

 

Discussion 

The molecular understanding of aging on the genetic121, epigenetic122, transcriptomic123, proteomic69  

and metabolomic124 level has made steady progress over the recent years. Especially usage of C. 

elegans has led to a number of important discoveries125,126. However, up to date no single model could 

predict the biological age of any organism to a high accuracy in diverse strains, treatments and 

conditions. In our study, we show that the binarization of gene expression data allows a biological age 

prediction of C. elegans to an unprecedented accuracy and for the first time the prediction of a variety 

of lifespan-affecting factors. Additionally, we show that the binarization approach, even without the 

biological rescaling might be applicable to and improving the predictions of other organisms. This is in 

contrast to the currently most widely used epigenetic clocks, which are limited to organisms with DNA 

methylation marks. Moreover, our results suggest that especially the innate immune system and 

neuronal signaling are important for an accurate prediction and therefore also might play an essential 

role in the aging process. 

Binarization of the gene expression data hugely improved the predictability of the biological age. 

Interestingly, the biggest deviation from the true biological age is in the samples treated with heat 
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shock or in mir-71, eat-2 and skn-1(gof) mutants. Heat shock treatment and an eat-2 mutation have 

been shown to exhibit a different aging trajectory and to diverge from the temporal scaling approach 

proposed by Stroustrup98. Similarly, skn-1(gof) and mir-71 display a sharp drop in lifespan104,105 that 

cannot totally be accounted for with our median-lifespan-rescaling approach. Incorporating the whole 

lifespan curve could therefore improve the prediction even further. In this regard, it is also noteworthy 

that the utilized bulk-sequencing data introduce several biases that might not be reflected in a simple 

rescaling approach. We tried to alleviate some of the potential biases with our second rescaling 

approach, which should reduce the error that is introduced by the fact that especially the biologically 

older part of a population dies of first. However, it has been published that C. elegans dies of at least 

2 different types of death127. An early death with a swollen pharynx, induced by an increased bacterial 

content, or a later death with an atrophied pharynx. This might introduce a different bias, since the 

initial transcriptional response close to an early death might be different from the response to a later 

death. Nevertheless, even with these limitations our model predicts the biological age of worms 

remarkably well. 

The increasing error and increase in variance of the age predictor in older worms is especially visible 

in the unbinarized model. This might be due to the known age-dependent increase in transcriptional 

variety128,129 that limits the ability of the regression model to pick an accurate subset of genes. Different 

hypotheses have been proposed that try to explain this transcriptional noise. In C. elegans it might be 

partially regulated by a microRNA feedback loop that is dependent on mir-71104, serotonergic signals50, 

and the decline of the GATA transcription factor ELT-2 during aging100. One interesting possibility is the 

idea that the increasing noise is driven by accumulating somatic mutations over the course of aging. 

Indeed, Enge et al. demonstrated an increase in the transcriptional noise as well as an age-dependent 

accumulation of somatic mutations in single human pancreatic cells, however, they did not find any 

support for a causal relationship between exonic mutations and transcriptional dysregulation130,131. 

Interestingly, it has been recently proposed that single-cell aging is split into a normal aging and a 

catastrophe aging phase. During the normal aging phase transcriptional noise even decreases, while it 

dramatically increases in the second aging phase132. The authors propose that chromatin state 

transition rates and thereby also the stability of the regulatory network might play an important role. 

Indeed, it has been shown that the stability of a gene network is intrinsically linked to longevity and 

genotoxic stress resistance43. An important factor of transcriptional regulation and therefore network 

stability are transcription factors. 

Transcription Factors 

Similar to Tarkhov et al. we find an enrichment in targets of DAF-16, the GATA transcription factors 

PQM-1 and ELT-2, and PMK-1 in our predictor gene set. DAF-16 is known to be involved in a variety of 
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stress responses and longevity pathways133–136. Furthermore, it has been shown to be activated during 

the normal aging process, where it regulates different targets from the canonical daf-2-mediated 

activation137. The authors proposed that this stabilizes the transcriptome during normal aging. GATA 

transcription factors have been found to be relevant for a variety of tissue-specific stress responses138, 

to have a functional role in the aging process115, and to promote together with daf-16 developmental 

growth and survival amid persistent somatic DNA damage139. Moreover, deactivation of elt-2 has been 

described as a major driver of normal C. elegans aging100 and pqm-1 has been shown to decline with 

age, to be involved in daf-2-mediated longevity140 and reproductive aging141. Interestingly, it has been 

shown that pqm-1 is required for the systemic stress signaling pathway upon proteotoxic stress via 

innate immunity-associated proteins142. The p38 MAPK family member pmk-1 is an important gene in 

the nematode’s pathogen defense system and innate immunity.  

Innate Immune Response 

The innate immune system of C. elegans has been linked to several lifespan-affecting pathways143,144 

and a general systemic stress resistance145. Schmeisser et al. for example showed that dietary 

restriction (DR) dependent lifespan extension requires a limited neuronal ROS signaling via a reduced 

mitochondrial complex 1 activity that activates PMK-1/p38146. Conversely, a recent study showed, that 

DR extends lifespan dependent on the downregulated, but intact p38-ATF-7 pathway107. The lifespan 

extension from reduced insulin-like signaling has similarly been shown to be at least partially 

dependent on the p38 response to AMPK-induced ROS signaling102 and that this response works in 

parallel to the DAF-16 regulation of longevity147. Notably, the often-used DR-mimic eat-2 mutants have 

also been shown to only display longevity if grown on a bacterial lawn that activates the innate immune 

response due to bacterial accumulation in the intestine148. Furthermore, it has been shown that the 

intestinally-produced and secreted innate immunity related protein IRG-7 can lead to the activation of 

the p38-ATF-7 pathway and is required for the longevity in germlineless nematodes149. Apart from 

long-lived mutants, PMK-1 expression was also observed to decline with normal age, leading to an 

innate immunosenescence in C. elegans that has been proposed to be a driving factor of the aging 

process150. This immunosenescence and the overall involvement of the innate immune system in aging 

has also been shown in other model organisms77,151–153 and might demonstrate an evolutionary 

conservation. Our work falls in line with these reports and supports an important role of the innate 

immune response in C. elegans aging. 

Neuronal signaling 

Our model also shows an enrichment in the neuropeptide signaling pathway. Neuronal communication 

is important for the maintenance of homeostasis in response to different stressors and a changing 

environment and has therefore been implicated to have a major role in survival and the aging 
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process154. Even in C. elegans a cognitive decline can be observed with aging that can be modulated by 

common longevity pathways like insulin-like signaling155. It has also recently been shown that the 

suppression of excitatory neurotransmitter and neuropeptide signaling is partially required for the 

longevity of daf-2 mutants156 and similarly a glia-derived neuropeptide signaling pathway that affects 

the aging rate and healthspan of worms has been described and shows the potential for neuropeptide 

involvement in the aging process157. In line with this, we find hic-1 and dop-4 in our predictor gene set. 

hic-1 is important for the regulation of acetylcholine neurotransmitter118 and might therefore indicate 

a role of hic-1 in the locomotion defect that occurs with aging158. Besides the role of dop-4 in the innate 

immune response119, it has also been implicated to slow down habituation159. Older worms have been 

shown to exhibit a greater habituation and a slower recovery from it160. The fact that dop-4 has a 

negative coefficient in our age prediction suggests that it is less transcribed in older worm populations 

and thereby making it an interesting target for the cause of increasing habituation with age. 

Human Data 

Lastly, we demonstrated that binarized gene expression data also allows building an accurate human 

age prediction. Currently, the analysis is limited by the data amount and future studies should include 

more high-quality data from different cohorts with different environments and populations. Optimally, 

the data would be generated with biopsies from different tissues of living donors without the need of 

cell culture. Nevertheless, we demonstrated that binarization improves the level of prediction beyond 

the current standard and that it also allows for a prediction by an elastic net regression, which results 

in an easy interpretable gene set. Interestingly, we found a significant enrichment in the biological 

process regulation of cell death, including FOXO1, which indicates that certain age-related pathways, 

like insulin signaling are indeed relevant for multiple species and evolutionary conserved. 

Conclusions 

The binarized expression of our 576 genes is sufficient to predict the biological age of C. elegans 

independent of the underlying genetics or environment with an accuracy near the theoretical limit. 

Our analysis suggests that the innate immune response, neuronal signaling and single transcription 

factors are major regulators of the aging process independent of the strain and treatment. Although 

the temporal rescaling approaches will not be applicable in humans, we have also shown how the 

binarization approach improves the chronological age prediction of a recent human dataset. Our work 

establishes that an accurate aging predictor can be built on binarized transcriptomic data that extends 

beyond the training data, predicts lifespan effects across diverse genetic, environmental or therapeutic 

interventions, is employable in distinct species and might thus serve as a universally applicable aging 

clock. 
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Materials and methods 

Data processing 

The quality of the data was checked with FastQC161 and the data were preprocessed with Fastp162 with 

the following parameters: -g to trim polyG read tails caused by sequencing artifacts, -x to trim polyX, -

q 30 for base quality filtering and -e 30 to filter for an average quality score. Paired end samples were 

processed together. After preprocessing the samples were mapped with STAR-2.7.1a163 with the 

following parameters: --outFilterType BySJout --outFilterMultimapNmax 20 --alignSJoverhangMin 8 --

alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 --outFilterMismatchNoverReadLmax 0.04 --

alignIntronMin 20 --alignIntronMax 1000000 --alignMatesGapMax 1000000 --quantMode 

GeneCounts.  

The genome directories were generated with the ce11 genome, WBcel235.96 without rRNA and the 

parameter –genomeSAindexNbases 12 for C. elegans and the hg38 genome, GRCh38.97 without rRNA 

and the parameter –genomeSAindexNbases 14 for human data. The parameter –sjdbOverhang was 

set to the read length of the sample -1.  

The counts for unstranded RNA-seq were merged into one .csv file and edgeR164 was used to generate 

Count-Per-Millions (CPM). 
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Binarization 

To binarize the data first zero CPMs were masked by NaN. For the remaining data the median for each 

sample was calculated and genes bigger the median were set to 1, while genes smaller or equal to the 

median were set to 0, finally genes masked by NaN were set to 0 as well. 

Temporal Rescaling 

For the temporal rescaling we set the median lifespan of a standard worm to 15.5 days adulthood. We 

calculated a correction factor for every sample by dividing this standard lifespan by the median lifespan 

reported by the paper of the corresponding sample. The chronological age of each sample is multiplied 

with this correction factor to result in the approximated biological age of the sample. The chronological 

age, correction factor and biological age for every sample can be seen in Table S1. 

2nd Rescaling Approach 

For the 2nd rescaling of the biological age we set the maximum biological age of the worm to 15.5 days. 

Assuming a normal distribution of biological age around the chronological age of a worm population 

and further assuming that, on average, worms will die according to their biological age, we can assume 

that the maximum biological age of a worm is the median lifespan of 15.5 days. Worms living longer 

than the median lifespan were biologically younger and therefore did not cross the line of 15.5 days. 

Since the first worms start dying at around 9 days of adulthood, the oldest worms at day 8 should be 

biologically around 15.5 days old. Therefore, we approximated the standard deviation to be 8/3. 

Centering a normal distribution at 8 days with a SD of 8/3 will contain 99.73 % of the area under the 

curve within day 0 to day 16. 

Next, we approximated that the biological age distribution is not changing over time and that the SD 

over 8/3 stays stable. To calculate the median of the data after trimming the data at the maximum age 

of 15.5 days we first need to calculate how much data is trimmed. We approximate this by utilizing the 

error function: 

erf(𝑧) = 	
2
√𝜋

, 𝑒!"²𝑑𝑡
$

%
 

implemented in the Scipy165 library. 

The approximation of the percentage p of data that is remaining on the left side from the maximum 

lifespan of 15.5 days on the biological age x is: 
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𝑝 =
1
2 erf

⎝

⎜
⎛
15.5 − 𝑥
8
3;

√2
⎠

⎟
⎞
+ 0.5 

We can divide p by 2 to get the approximation of the new median percentage. 

To calculate the median in days, we need to revert the calculation. First, we subtract the new number 

from 0.5 to get the deviation from the original median and use the inverse error function to 

approximate s, the number of standard deviations that the new median is shifted to the left of the old 

median: 

 

𝑠 = 𝑒𝑟𝑓!&(0.5 − 𝑝)√2 ∗ 2 

The new median m, in other words the new rescaled biological age, can then be calculated by: 

𝑚 = 𝑥 − 𝑠 ∗
8
3 

where 8/3 is the standard deviation that we set in the beginning and x the biological age, i.e. the 

original median. 

Model fitting – Parameter search 

The age prediction models use an elastic net regression as implemented by Pythons sklearn166. The 

random_state was set to 0, the max_iter to 1000 and positive=False. The best parameter settings for 

alpha and the L1/L2 ratio were selected using a parameter grid search with a nested cross-validation 

approach. To avoid overfitting during the training we split the data into multiple partitions. Every 

sample of the same genetic background, with the same treatment and RNAi interference of the same 

rounded biological age to days were considered to be one partition. This makes sure, that samples 

with a similar transcriptome are taken out together during the process. The elastic net regression is 

trained on the remaining data and the partition that got taken out will be predicted. To get an overview 

of the accuracy of the model this process is repeated for the partitions in the dataset. In the end every 

sample will be predicted exactly once, which allows the comparison of the predicted with the true 

biological age. 

 A simple cross-validation like this gives an overview of the accuracy of the model, however, to select 

the best parameter setting a nested cross-validation is required, since otherwise information may leak 
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into the model and introduce another type of overfitting. Therefore, after splitting the data into the 

test and the train partitions (the outer loop), the latter will be split again into an inner test and train 

partition (the inner loop). This inner cross-validation will be computed for every parameter-set to 

compute the average of the absolute error for each parameter setting.  

This will be done for every partitioning in the outer loop to select the most stable parameter-set. The 

parameters selected by this approach for the binarized data are alpha=0.075 and l1_ratio=0.3. 

Model fitting – Optimal Gene Set 

To obtain the optimal gene set without overfitting a similar approach was taken. Instead of looping 

over different parameter settings the cross-validation for the gene set loops over a list of the genes 

with the highest absolute coefficients. First, for every training partition in the outer loop the full model 

with alpha=0.075 and l1_ratio=0.3 is computed. This will result in a model, where every gene is 

annotated with a coefficient. In the binarized model, the sum of the coefficients for all genes that are 

1 in the sample equals the predicted age. Therefore, a negative coefficient will result in a younger 

predicted age, while a positive coefficient will increase the predicted age. Next, we loop over different 

subsets of the top genes to identify the approximately optimal and smallest gene set for the given 

partition. For every gene set the inner cross-validation loop is computed and the gene set with the 

smallest average absolute error is saved. This will be done again for every partition in the outer loop 

to gain multiple gene sets. Similar to the parameter search the most stable gene set is taken by 

retaining only those genes that were used by every partition. This stable gene set selected by this 

approach for the binarized data are the 576 genes described in Table S2. 

Motif Search 

The set of genes with a coefficient > 0, respective ≤ 0, were used as input for the findMotifs function 

of Homer-4.9.1-6167 with the parameters -len 8,10 -start 300 -end 100. To make sure that the maximum 

number of genes got recognized by Homer we first converted the Wormbase IDs to the sequence name 

with WormBase’s SimpleMine168, and added ‘CELE_’ in front of it. These identifiers were then searched 

in the ‘worm.description’ file of Homer to gain the corresponding RefSeq IDs that are recognized by 

the program. The p-values were calculated with a hypergeometric test. 

Citation of age predictors from the literature 

Because currently no general consensus of quality assessment exists and different measurements are 

being reported, we state the measurements as reported in the cited paper in the introduction. Some 

of the most common used assessments are: 
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1. Mean absolute error (MAE): the mean of the absolute difference of predicted and true age. 

2. Root-mean-square-error (RMSE): the square root of the average squared differences. Larger 

errors have a larger effect on the RMSE than on MAE. 

3. Median absolute deviation (MAD): the median absolute difference of predicted and true age. 

4. Pearson correlation (r): measurement of how the predicted and true age changes together. 

Evaluates linear relationships. 

5. Spearman correlation (r): similar to Pearson correlation, but evaluates the monotonic 

relationship. Other than Pearson correlation the variables do not need to change at a linear 

rate. 

6. Coefficient of determination (r²): the fraction of the variance that is predictable with the 

model.  Often the r² is the square of the correlation coefficient, however, this is not true in the 

general case 
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Figure legends 

Figure 1. Data Overview 

Overview of the processed published data utilized in the paper. Pie charts show the distribution of 

different genotypes (blue), treatments (red) and RNAi’s (green). The convoluted pie chart on the left 

shows the overlap of the three classes. The middle pie charts show broader clusters with the number 

of samples annotated. The partition 'Sterile' contains multiple different genotypes that can't give rise 

to progeny and daf-2, as well as eat-2, might contain additional mutations. On the right finer partitions 

are shown for the RNAi's in green, treatments in red and strains excluding WT, eat-2, daf-2 and sterile 

mutants in blue. For a more detailed view see the Table S1. 

Figure 2. Biological age prediction 

(A) Results of the biological age prediction computed by cross-validation. The x-axis shows the rescaled 

biological age in days starting from adulthood. The y-axis shows the predicted age computed by an 

elastic net regression on binarized gene expression data. Every blue dot displays one RNA-seq sample. 

The regression line is shown in blue and the dotted line shows the perfect linear correlation. The 

distribution of the data is shown on the side of the plot. MAE= mean absolute error, MAD= median 

absolute deviation. 

(B) Prediction of the model on a new independent dataset consisting of 4 WT samples at different time 

points. The x-axis shows the rescaled biological age in days starting from adulthood. The y-axis shows 

the predicted age computed by an elastic net regression on binarized gene expression data. Data from 

GSE65765169. 

(C) Prediction of the same set of samples improved by the second rescaling approach.  

(D) The y-axis shows the r² of a given prediction. The box plot displays 1000 random models with 576 

genes. The prediction by our final model with an r² of 0.96 is shown as a blue dot and indicated by the 

arrow. The dotted line shows the theoretical limit of prediction given by the limit of accuracy in the 

chronological age annotation as well as variance in the lifespan data used for rescaling. 
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Figure 3. Biological age prediction of short- and long-lived mutants 

The box plots show the predicted biological age in days on the y-axis. Assuming the properties of a 

uniform temporal rescaling a lower predicted age will equal a longer lifespan. The corresponding whole 

dataset was set aside for the training of the final model for the corresponding plot. Blue dots display 

single RNA-seq samples. 

(A) The lifespan-extending daf-2(e1370) strain is predicted to be biologically younger than WT samples 

of the same chronological age (4.5 days). Note that the WT strain in this publication had a longer 

lifespan (19.4 days) than the standard 15.5 days and is thereby also predicted to be biologically younger 

than its chronological age. Data from GSE36041 102. 

(B) Dietary restriction (DR) and the long-lived double mutant daf-2(e1370); rsks-1(ok1255) are 

predicted to be significantly younger than WT samples of the same chronological age (4 days). Data 

from GSE119485 103,170. 

(C) The lifespan-shortening mir-71(n4115) mutation significantly increased the predicted biological age 

compared to samples of the same chronological age (5 days). Data from GSE72232 104. 

(D) The gain-of-function mutant skn-1(lax188) significantly increased the biological age, while an 

additional mutation in the epigenetic regulator wdr-5 rescues the biological age back to WT levels (2 

days). Data from GSE123531 105. 

(E) The double mutant tut-1(tm1297); elpc-1(tm2149) significantly increases the biological age 

(chronological age of 1 day). Data from GSE67387 106. 

*p<0.05, **p<=0.01, ***p<=0.001, independent t-tests were used for comparisons in (A), (C) and (E). 

One-way ANOVA with a post-hoc Tukey test was used in (B) and (D). Table S4 contains more detailed 

statistics.  

Figure 4. Biological age prediction of a variety of treatments and stressors 

The box plots show the predicted biological age in days on the y-axis. Assuming the properties of a 

uniform temporal rescaling a lower predicted age will equal a longer lifespan. The corresponding whole 

dataset was set aside for the training of the final model for the corresponding plot. Blue dots display 

single RNA-seq samples. 
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(A) The genotype-dependent effect of dietary restriction (DR) is resembled in the prediction of 

chronologically 6-day adults. A two-way ANOVA shows a significant interaction effect (p=0.004) 

between the genotype and the diet. AL = ad libitum fed. Data from GSE92909 107. 

(B) Heat shock induces a strong increase of the predicted biological age at a chronological age of 3 days 

in WT. Data from PRJNA523315 55. 

(C) Pathogen infection by P. aeruginosa at 25 °C at chronological age day 1 increases significantly the 

predicted age. Data from GSE122544 171. 

(D) Pathogen infection by S. aureus at 25 °C at chronological age day 1 increases significantly the 

predicted age. Data from GSE57739 172. 

(E) The change in diet from K12 to K12∆tnaA E. coli shows an increasing trend, especially in 

chronologically older population, as indicated by the different colors. A two-way ANOVA shows a 

significant diet effect (p=0.03) and almost significant interaction effect (p=0.067). Data from 

GSE101910 108. 

(F) The bacterial-strain-dependent effect of Metformin is resembled in the prediction. The box plots 

show wildtype worm populations at a chronological age of day 2 with either a standard OP50 E. coli 

diet or a Metformin-resistant OP50 (OP50-MR) strain with or without 50mM Metformin. A two-way 

ANOVA showed a significant treatment effect (p=0.004). Data from E-MTAB-7272 109. 

(G) The dosage-dependent effect of Mianserin is resembled in the prediction. The box plots show 

wildtype worm populations at a chronological age of day 10 either treated with water or 50µM 

Mianserin on day 3 or day 1. A one-way ANOVA showed significance (p=0.0008). Data from GSE63528 
50. 

(H) The effect of drug combinations at the chronological age of 6-days is resembled in the prediction. 

A one-way ANOVA showed significance (p=0.02). Data from GSE108263 110. 

(I) An independent dataset without a reported lifespan sequenced at the chronological age of day 1. 

Wildtype worms were treated with either 10 µM or 20 µM of the proteasome inhibitor Bortezomib 

(BTZ), or RNAi against the proteasomal subunit rpn-6. Data from GSE124178 111. 

*p<0.05, **p<=0.01, ***p<=0.001, independent t-tests were used for comparisons in (B), (C), and (D). 

One-way ANOVA with a post-hoc Tukey test was used in (G), (H), and (I). Two-way ANOVA with a post-

hoc Tukey test was used in (A), (E), and (F). Table S4 contains more detailed statistics. 
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Figure 5. Functional analysis of the predictor genes 

(A-D) WormExp gene set enrichment analysis for the 576 predictor genes. The x-axis displays the -log10 

of the adjusted p-value. Only statistically significant (adjusted p<0.05) enrichments are shown. (A-C) 

Gene set enrichment analyses for the genes with a coefficient <=0 for the Development/Dauer/Aging 

category (A), the TF Targets category (B), and the Tissue category (C). (D) Gene set enrichment 

analyses for the genes with a coefficient >0 for the Development/Dauer/Aging category. 

(F) Functional enrichment analysis for the 576 predictor genes by String and geneSCF. The x-axis 

displays the -log10 of the adjusted p-value. The red line displays an adjusted p-value of 0.05. Different 

enrichment categories are color-coded. 

Figure 6. Transcriptomic human aging clock 

(A) Results of the age prediction computed by cross-validation on human fibroblast gene expression 

data. The x-axis shows the chronological age in years. The y-axis shows the predicted age computed 

by an elastic net regression on binarized gene expression data. Every blue dot displays one RNA-seq 

sample. The regression line is shown in blue and the dotted line shows the perfect linear correlation. 

The distribution of the data is shown on the side of the plot. MAE= mean absolute error, MAD= median 

absolute deviation. Data from GSE113957 61. 

(B) Box plots of age predictions of samples from Hutchinson–Gilford progeria syndrome patients (red) 

and predictions of age-matched healthy controls (blue) by the elastic net regression of binarized gene 

expression data. Progeria samples are predicted to be significantly older than age-matched healthy 

controls. 

**p<=0.01, calculated by an independent t-test. Table S4 contains more detailed statistics. 

 

Supporting Information Legends 

Figure S1. Alternative models 

Results of the biological age prediction computed by cross-validation. The x-axis shows the rescaled 

biological age in days starting from adulthood. The y-axis shows the predicted age computed by an 

elastic net regression on unbinarized CPMs. Every blue dot displays one RNA-seq sample. The 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.29.123430doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.123430
http://creativecommons.org/licenses/by-nd/4.0/


27 
 

regression line is shown in blue and the dotted line shows the perfect linear correlation. The 

distribution of the data is shown on the side of the plot. MAE= mean absolute error, MAD= median 

absolute deviation. 

 

Figure S2. Comparison of the binarized and unbinarized model error 

(A) The absolute error distribution between the predicted and true biological age is plotted for either 

the unbinarized (red) or binarized (blue) data. The x-axis shows the true biological age in days. The y-

axis the absolute error in days. While the unbinarized model strongly increases the absolute prediction 

error with age, the increase is less pronounced with the binarized model. 

(B) The bar plots show the standard deviation of the absolute prediction errors in days. The x-axis 

shows the true biological age in days. While the binarized model stays relatively stable over age, the 

unbinarized model increases the variance in the prediction error. 

Figure S3. Explanation of the 2nd rescaling 

(A, C, E) Standard lifespan curves of C. elegans with a median lifespan of 15.5 days. The X mark the 

chronological age for which we show the hypothetical age distributions in (B, D, F) respectively. (B, D, 

F) show the biological age distribution around the chronological age marked by the X. The biggest 

portion of the age-synchronized worm population will be as old as the chronological age. However, 

assuming a normal distribution of the biological age, we can assume that a part of the population is 

biologically younger, respective older. The green lines indicate the median biological age of the living 

worm population. The dotted line displays the maximum lifespan. 

(A, B) All non-censored worms are still alive in the population, i.e. no worm crossed the maximum 

lifespan line. The population age median is equal to the peak of the distribution. 

(C, D) The first (biologically older) worms died, leading to a truncation of the alive distribution of 

biological age in the population. This has the consequence that the true median of the alive fraction of 

the worms will be shifted to the left, away from the peak of the distribution. 

(E, F) At the median lifespan, 50 % of the population has died. Assuming a uniform shift of the biological 

age distribution results in the truncation of the right half of the distribution. The true population 

median is therefore even further shifted to the left. 
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Figure S4. Comparison of the model with random genes and the theoretical limit 

(A) Results of the biological age prediction computed by cross-validation. The x-axis shows the twice 

rescaled biological age in days starting from adulthood. The y-axis shows the predicted age computed 

by the elastic net regression after the second rescaling approach. Every blue dot displays one RNA-seq 

sample. The regression line is shown in blue and the dotted line shows the perfect linear correlation. 

The distribution of the data is shown on the side of the plot. MAE= mean absolute error, MAD= median 

absolute deviation. 

(B) The y-axis shows the mean absolute error (MAE), respective the median absolute deviation (MAD) 

of a given prediction in days. The box plots display 1000 random models with 576 genes. The prediction 

by our final model with a MAE of 0.45 and a MAD of 0.32 is shown as the blue dots and indicated by 

arrows. The dotted lines show the theoretical limit of prediction given by the limit of accuracy in the 

chronological age annotation as well as variance in the lifespan data used for rescaling. 

Figure S5. Comparison of our gene set to published gene sets 

Results of the biological age prediction computed by cross-validation based on different gene sets 

predicted by Tarkhov et al.97. The x-axes show the rescaled biological age in days starting from 

adulthood. The y-axes show the predicted age computed by an elastic net regression on unbinarized 

(A, B, C) or binarized (D, E, F) gene expression data. Every blue dot displays one RNA-seq sample. The 

regression lines are shown in blue and the dotted lines show the perfect linear correlation. The 

distribution of the data is shown on the side of the plot. MAE= mean absolute error, MAD= median 

absolute deviation. 

(A) Prediction based on the unbinarized CPMs of 327 genes generated by a meta-analysis of publicly 

available microarray data. 

(B) Prediction based on the unbinarized CPMs of 902 age-associated genes generated by an RNA-seq 

experiment. 

(C) Prediction based on the unbinarized CPMs of a sparse subset with 71 genes. 

(D) Prediction based on the binarized CPMs of 327 genes generated by a meta-analysis of publicly 

available microarray data. 

(E) Prediction based on the binarized CPMs of 902 age-associated genes generated by an RNA-seq 

experiment. 
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(F) Prediction based on the binarized CPMs of a sparse subset with 71 genes. 

Figure S6. Chromosome enrichment 

(A) Chromosome distribution of the 286 protein-coding predictor genes with a coefficient <=0 in blue 

and the number of protein-coding genes that would be expected if the genes were randomly 

distributed among the chromosomes in red. 

(B) Chromosome distribution of the 260 protein-coding predictor genes with a coefficient >0 in blue 

and the number of protein-coding genes that would be expected if the genes were randomly 

distributed among the chromosomes in red. 

(C) Differences of the observed to the expected numbers in percent for the protein-coding genes with 

a coefficient >0 in blue and with a coefficient <=0 in red. 

*p<0.05, **p<=0.01, ***p<=0.001, Hypergeometric tests were performed and the resulting p-values 

were corrected with the Benjamini-Hochberg procedure. Table S4 contains more detailed statistics. 

Figure S7. Motif enrichment nearby the TSS 

Results of a motif enrichment analysis for the region -300 bp to +100 bp from the transcription start 

site of the genes with a coefficient <=0 (A) and genes with a coefficient >0 (B). The columns show the 

name of the transcription factor in the first column with the known motif in the second column. 

Column 3 and 4 show the percentage of target genes, respective background genes, containing the 

motif in the described region. Column 5 shows the fold change enrichment, column 6 the 

corresponding Hypergeometric p-value and the last column the Benjamini-Hochberg adjusted q-value. 

Figure S8. Unbinarized human data 

(A) Results of the age prediction computed by cross-validation on human fibroblast gene expression 

data. The x-axis shows the chronological age in years. The y-axis shows the predicted age computed 

by an elastic net regression on unbinarized gene expression data. Every blue dot displays one RNA-seq 

sample. The regression line is shown in blue and the dotted line shows the perfect linear correlation. 

The distribution of the data is shown on the side of the plot. MAE= mean absolute error, MAD= median 

absolute deviation. 
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(B) Box plots of age predictions of samples from Hutchinson–Gilford progeria syndrome patients (red) 

and predictions of age-matched healthy controls (blue) by the elastic net regression of unbinarized 

gene expression data. Progeria samples show no significant increase in the predicted age compared to 

age-matched healthy controls. 

The p-value was calculated by an independent t-test. Table S4 contains more detailed statistics. 

Table S1. Data overview 

Table S2. C. elegans age prediction gene set 

Table S3. Lifespan variation 

Table S4. Statistics 

Table S5. Human age prediction gene set 

File S1. Python code 
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Fig. 2 Meyer and Schumacher
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Fig. 3 Meyer and Schumacher
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Fig. 4 Meyer and Schumacher
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Fig. 5 Meyer and Schumacher
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Fig. 6 Meyer and Schumacher
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