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ABSTRACT 

Background 

Identifying frequently mutated regions is a key approach to discover DNA elements influencing 

cancer progression. However, it is challenging to identify these burdened regions due to mutation 

rate heterogeneity across the genome and across different individuals. Moreover, it is known that 

this heterogeneity partially stems from genomic confounding factors, such as replication timing 

and chromatin organization. The increasing availability of cancer whole genome sequences and 

functional genomics data from the Encyclopedia of DNA Elements (ENCODE) may help 

address these issues.  

Results 

We developed a Negative binomial regression-based Integrative Method for mutation Burden 

analysiS (NIMBus). Our approach addresses the over-dispersion of mutation count statistics by 

(1) using a Gamma-Poisson mixture model to capture the mutation-rate heterogeneity across 

different individuals and (2) estimating regional background mutation rates by regressing the 

varying local mutation counts against genomic features extracted from ENCODE.  

We applied NIMBus to whole-genome cancer sequences from the PanCancer Analysis of Whole 

Genomes project (PCAWG) and other cohorts. It successfully identified well-known coding and 

noncoding drivers, such as TP53 and the TERT promoter. To further characterize the burdening 

of non-coding regions, we used NIMBus to screen transcription factor binding sites in promoter 

regions that intersect DNase I hypersensitive sites (DHSs). This analysis identified mutational 

hotspots that potentially disrupt gene regulatory networks in cancer. We also compare this 

method to other mutation burden analysis methods. 

Conclusion 

NIMBus is a powerful tool to identify mutational hotspots. The NIMBus software and results are 

available as an online resource at github.gersteinlab.org/nimbus.  
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Background 

Population-level analysis, which looks for regions mutated more frequently than 

expected, is one of the most powerful ways of identifying deleterious mutations in diseases [1-3]. 

The availability of whole genome sequencing (WGS) has provided unprecedented statistical 

power to perform such analyses. An accurate quantification of mutation burden is important to 

help uncover the genetic cause of various diseases, which in turn would allow for targeted 

therapies in clinical studies.  One typical application of such analysis is to find burdened regions 

in cancer genomes as potential drivers.  

However, mutation burden tests for somatic variants in cancer research remain 

challenging for several reasons. First, it is well known that cancer genomes are heterogeneous 

[4]. If a constant mutation rate is assumed, the positional level mutation counts often demonstrate 

larger than expected variance, known as overdispersion. This assumption results in poor data 

fitting and can lead to numerous false positives [5], so it is necessary to introduce more 

sophisticated models to handle this mutation rate heterogeneity. Second, numerous genomic 

features have been reported to largely affect the mutation process [6-12], necessitating careful 

correction in burden analysis. These features include chromatin status and replication timing. 

Various strategies have been suggested for integrating these features to calibrate background 

mutation rate [7, 13-18]. However, these strategies may be limited by both the number and kinds 

of features used to model background mutation rate. For instance, cancer cells are usually highly 

heterogeneous and thus are not necessarily matched by features from a single cell type. 

Moreover, assay data does not necessarily exist for each feature type in all cell types. Lastly, 

many studies have shown that noncoding mutations can serve as driver events for diseases. For 

example the mutations in the TERT promoter were found to be associated with cancer 

progression [19-21]. A recent study of non-coding mutations in breast cancer identified driver 

mutations in three genes – FOXA1, NEAT1, and RMRP [22]. Hence, unified analysis of coding 

and noncoding regions is needed to give a thorough annotation of discovered hotspots. 

Here, we propose a Negative binomial regression based Integrative Method for mutation 

Burden analysiS (NIMBus) that addresses the three problems mentioned above. It first intuitively 

treats mutation rates from different individuals as random variables with a gamma distribution, 

and resultantly models the pooled mutation counts from a heterogeneous population as a 
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negative binomial distribution to handle overdispersion. Furthermore, to capture the effect of 

covariates, NIMBus integrates extensive features in all available tissues from Roadmap 

Epigenomics Mapping Consortium (REMC) and the Encyclopedia of DNA Elements 

(ENCODE) project to create a covariate matrix to predict the local mutation rate with high 

precision through regression.  

In addition, NIMBus was used to analyze the most comprehensive noncoding annotations 

from ENCODE in two ways. First, our approach enabled us to effectively pinpoint mutation 

hotspots associated with disease progression and to better understand the associated biological 

mechanisms. This was accomplished by applying our method to the transcription start site (TSS) 

regions. Second, NIMBus targeted key transcription factor binding sites to give insight into the 

potential mechanisms for transcriptional regulation. Lastly, we compared our results to those 

from ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium [23].  To better 

illustrate how NIMBus works, Figure 1 gives its workflow. 

Results 

We designed our NIMBus model based on statistical and biological problems inherent in 

our data, and then we demonstrated our model’s many applications. Compared to the Poisson 

distribution, the negative binomial model better accounts for the heterogeneity and 

overdispersion in the mutation rate across diseases and samples. Local mutation rates are also 

affected by genomic features such as endogenous DNA damage and chromatin organization. 

NIMBus addresses both of these concerns by utilizing a negative binomial regression and also by 

adjusting the local background mutation rate based on the genomic context. The covariates used 

in our model achieved the best prediction accuracy when the tissue type was matched, however 

when matching was not possible, pooling the tissue types increased power. Because of the 

availability of established knowledge surrounding coding regions, we first used NIMBus to 

identify significantly mutated coding regions. Then, we also tested our model on KEGG 

pathways aimed at pinpointing significant pathways comprised of these coding regions. 

Additionally, we applied NIMBus to noncoding regions and identified both well documented and 

novel burdened genes. Lastly, we benchmarked our result against other methods [23, 24] and 

compared it to a list of empirically supported cancer genes from COSMIC [25]. 
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Heterogeneity from various sources leads to large overdispersion in mutation counts data 

First, it is known that there is significant mutation rate heterogeneity across diseases and 

samples. For this reason, it is usually incorrect to assume a homogeneous mutation rate per 

nucleotide or to consequently use binomial tests to calculate P values. To demonstrate this, we 

collected WGS variants from 649 cancer patients and 7 cancer types (Fig. S1). In our data, the 

median number of variants was as low as 70 in Pilocytic Astrocytoma (PA) and as high as 

21,287 in Lung adenocarcinoma (LUAD). Even within the same cancer type, mutation counts 

vary dramatically from sample to sample (lowest at 1,743 and highest at 145,500 in LUAD, Fig. 

2A). In addition, there are also large regional mutation rate differences within the same sample 

(Fig. S2). Therefore, distributions based on constant mutation rate assumption usually fit poorly 

to mutation count data (Fig. 2B, dashed lines with +, Fig. S3). In light of these issues, we utilized 

a two-parameter negative binomial distribution to further capture the over-dispersed nature of 

mutation counts data, which improves fitting to real data significantly (dashed lines with star in 

Fig. 2B). 

Local mutation rate is confounded by many genomic features 

It has been reported that local mutation rates are associated with many well-known 

genomic features, such as mRNA expression, GC content, replication timing, and chromatin 

organization [11]. We found that the WGS data in our datasets also demonstrated similar 

characteristics. For example, Fig. S4 shows how mutation counts at a 1mb resolution (the first 70 

bins on chromosome 1) are correlated with several genomic features. 

Somatic mutation rate has been reported to be confounded by several genomic features 

[7-9]. We examined two such genomic features: endogenous DNA damage and chromatin 

organization. Endogenous DNA damage, such as oxidation and deamination, can affect single-

stranded DNA during replication. The accumulative damage effect in the later replicated regions 

will result in increased mutation rate. We have observed a similar trend in our data. For example, 

the Pearson correlation between normalized mutation counts and replication timing values in 

BRCA is as high as 0.67 in the first 70 1mb bins (Fig. S4A). 
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Another example is that the chromatin organization, which arranges the genome into 

heterochromatin- and euchromatin-like domains, has a dominant influence on regional mutation 

rate variation in human somatic cells [11]. Consistently, we also find that mutation counts are 

significantly associated with the DNase-seq signal (Pearson correlation=�0.61, P=1.52� 10��, 

Fig S4B). Therefore, it is important to accurately estimate local background mutation rate for 

mutation burden analysis. 

Negative binomial regression precisely estimates local mutation rates by correcting the 

influence of many genomic features 

(A) Features in matched tissues usually provide best prediction accuracy but features in 

unmatched tissue still help 

It has been reported that the most accurate local mutation rate prediction can be achieved 

by using features from matched tissue [9]. Hence, we specifically selected variants in two 

distinct cancer types, breast cancer (BRCA) and medulloblastoma (MB), and predicted their 

local mutation rates with a few features from matched (or loosely matched) and unmatched 

tissues (Table S2). Relative error, defined as the normalized difference of observed and predicted 

value (Equation 1), was used to assess model performance. Consistent with previous analyses, 

we find that features in matched tissues usually outperform those from unmatched tissues. For 

example, the relative error is only 0.128 by using breast tissue related features to predict BRCA 

mutation rates, which is noticeably smaller than an error of 0.195 when using brain related 

features (Table S3). Similarly, brain related features have more predictive power compared to 

breast related ones for MB mutation rates (error of 0.135 VS. 0.183). 

Specifically, we represented mutations rates in BRCA and MB as ��
� and  ��

� for the ��� 

bin 1mb bin. 7 genomic features in breast related features were extracted from REMC, including 

DNASeq, H3K27me3, H3K36me3, H3K4me3, H3K9me3, mRNA-seq and methylation data 

(features starting with B_ in Fig. S6A), denoted by ��,	
� , 	 , ��,


� . Similarly, we also used 8 

features in brain related tissues for MB denoted by ��,	
� , 	 , ��,�

�  (H3K27me3, H3K27ac, 

H3K36me3, H3K4me1, H3K4me3, H3K9me3, mRNA-seq and methylation, features starting 
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with M_ in Fig. S6A). We found that these features were correlated both within and across 

tissues (as shown in the correlation plot in Fig. S6A).  

To compare the performance of regressions using (loosely) matched and unmatched 

tissues, four regression models can be run as shown in Table S2. The scatter plots of the 

observed and predicted values were given in Fig. S6B.  To compare model performance, we 

defined the relative error ���  as  

��� � ����������
���                                                         (1). 

Relative errors for these four models were given in Table S3. 

However, biologically meaningful tissue matching remains challenging and usually is not 

an optimal process for researchers without enough domain knowledge. Specifically, if samples of 

distinct hidden subtypes were pooled together for a certain disease, tissue matching would be 

more difficult. Furthermore, even after the optimally matched tissue has been identified, we 

frequently need to handle missing features in that tissue. We noticed that many genomic features 

are correlated both within and across tissues (correlation plot in Fig. S6A), which leads to 

suboptimal but still decent regression performance (scatter plots given in Fig. S6B). This is 

extremely helpful when processing WGS from diseases without matched features. For example, 

there are no prostate related features in REMC, but features in other tissues still help to estimate 

the local mutation rates. 

(B) Pooling features from multiple tissues significantly improves local background mutation rate 

prediction 

In light of the correlated nature of covariates, especially those epigenetic features [9, 26], 

we first performed principal component analysis (PCA) on the covariate matrix to address the 

multicollinearity problem during regression. The correlation of each principal component (PC) 

with the mutation counts data varies significantly across different cancer types (boxplots in Fig. 

S7B). For example, the first PC demonstrates a Pearson correlation of 0.653 in LICA, which is 

much higher than 0.352 in PRAD. Therefore, it is necessary to run a separate regression model 

for each cancer type. 
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Since numerous PCs have been shown to be associated with mutation rates, we tried to 

investigate the joint effect of multiple PCs to predict the local mutation rates. Particularly, for 

each cancer type, we first ranked the individual PCs by their correlations with mutation rates, 

and then selected the top 1, 30, and 381 PCs to estimate the local mutation rate. Fig. 3A shows 

that using more PCs can noticeably boost prediction accuracy in all cancer types. For example, in 

BRCA the Pearson correlation is only 0.472 if 1 PC is used in regression, but rises to 0.655 and 

0.709 if 15 and 30 PCs are used respectively. The correlation increases to 0.818 after using all 

381 PCs. As a result, in all of the following analyses, we used all 381 PCs for accurate local 

mutation rate estimation. 

As shown in Fig. 3B, we achieved good prediction accuracy through regression against 

all PCs of the covariate matrix in all cancer types. The Pearson correlations of the observed 

mutation counts and the predicted �̂�� vary from 0.668 in PA to 0.958 in LICA. Scatter plots are 

given in Fig. S8. 

It has been reported that many genomic signal tracks demonstrate noticeable correlations 

across features and tissues [26]. Hence, we first centered and scaled the covariate matrix � and 

then performed PCA on it to obtain ��. The cumulative proportion of variance explained by the 

PCs was given in Fig. S7 A. As expected, there is lots of redundancy in the covariate table. The 

first PC may explain as much as 55.69% of variance, and it takes up to 15 and 106 PCs to 

capture 90% and 99% of variance. 

We also calculated the Pearson correlation of PC � with mutation counts in cancer type � 

as 	��. Then the absolute correlation value 
	��
 was averaged over different cancer types as 	�	 to 

rank the PCs. The top 20 PCs with highest 	�	 were selected and boxplot for each of the PCs was 

given in Fig. S7 B. 

For each cancer type, we tried to predict the local mutation rate by correcting the 

covariate matrix after PCA projection. The Pearson correlation of the predicted and observed 

mutation rates are given in Fig. S8. It is worth mentioning that although there are no features 

matching prostate tissue in REMC, we can still achieve a very high correlation of 0.81 with the 

help of 381 unmatched but correlated features. This indicates that our model can still provide 

acceptable performance even when somatic WGS of a disease is given without optimally 

matched covariates.  
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In addition, the number of available variants obviously affects prediction performance, 

though it is not the only factor. As shown in Fig. 3B, the limited number of variants, such as 

those in the quiet somatic genomes of pilocytic astrocytoma (PA), can usually restrict our 

prediction precision (lowest correlation at 0.668 among 7 cancer types). However, other factors, 

such as the number of effective covariates, quality of mutation calls, and molecular similarity of 

pooled samples of the same disease can also influence the prediction performance considerably. 

For instance, although there are fewer variants in MB than those in BRCA, our regression for 

MB still outperforms that of BRCA (0.865 vs 0.818, Fig. 3B).  

Coding region calibration for NIMBus 

(A) Single gene target region analysis 

Since coding regions have been investigated in more detail than the noncoding regions, 

we first applied NIMBus on coding regions. First, we extracted coding regions from the 

GENCODE annotation v19 and ran NIMBus on both real and simulated datasets (details in 

Methods “Coding region annotation” and “Simulated variants for all cancer types” sections). We 

found that in all cancer types analyzed, NIMBus effectively controlled P value inflation 

compared to the method mentioned in [4]. For example, in LUAD the P values for real data fall 

on the diagonal with the uniform P values, apart from a few outliers that represent the true 

significant signals (black dots on the right side in Fig. 4). After P value adjustment using the 

Benjamin–Hochberg method, only 11 genes are reported as mutated in LUAD, while none were 

discovered on the simulated data (orange dots in Fig. 4). On the other hand, the method using a 

constant mutation rate assumption reported 6,023 genes to be significantly mutated, indicating 

severe P value inflation. 

Table 1 – Top genes after p-value combination 

Rank Gene p-value Adjusted p-value PubMed ID 

1 TP53 4.33E-139 4.3311E-139 17401424 

2 DDX3X 7.30E-18 3.64888E-18 22820256 
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3 KRAS 7.68E-06 2.56097E-06 19847166 

4 MUC4 1.79E-05 4.46636E-06 19935676 

5 CDH1 1.53E-04 3.06519E-05 10973239 

6 ARID1A 1.42E-03 0.000236255 22037554 

7 SMARCA4 2.64E-03 0.000377726 18386774 

8 FGFR1 5.94E-03 0.000742868 23817572 

9 OTOP1 3.33E-02 0.003694811 - 

10 STK11 4.69E-02 0.004691876 - 

11 SPOP 4.94E-02 0.004493795 - 

12 PTEN 5.77E-02 0.004812088 - 

13 SMO 1.65E-01 0.012684045 - 

14 TAS2R31 4.76E-01 0.033983962 - 

15 TBC1D29 5.14E-01 0.034276895 - 

 

We also used Fisher’s method to combine P values from all cancer types. In total, 15 

genes were discovered to be significantly mutated. Twelve of them are well documented as 

related with cancer progression. The top genes are shown in Table 1 and their PubMed ID is 

given in the last column for reference. These results showed that NIMBus is able to find sensible 

mutational hotspots as cancer drivers. 

(B) Mutation burden of KEGG pathways 

Using the KEGG pathway dataset, consisting of 288 unique pathways, we performed a 

network mutation burden test on each pathway for each cancer type to discover significantly 
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mutated pathways. We found that of the seven cancer types analyzed, four cancer types exhibited 

significantly mutated KEGG pathways (�
�� 
 0.05). In particular, we found 5 significant 

pathways in BRCA, 5 in LICA, 10 in GACA, and 3 in LUAD. No significant pathways were 

found in MB, PA, or PRAD. The significant pathways and their associated cancer types are seen 

in Table 2, as well as the Benjamin-Hochberg adjusted p-value. The significant pathway list 

includes pathways associated with the p53 signaling pathway, apoptosis, and cell growth – which 

are known to be associated with cancer. In addition to these well-studied pathways, we were able 

to discover many novel pathways, including other signaling and disease-associated pathways. 

These results demonstrate a novel way to use NIMBus as a way to conduct mutation burden tests 

in biologically meaningful networks in the genome. 

Table 2 -- Significant pathways and P values 

KEGG Description LICA GACA  LUAD BRCA 

04115 p53 signaling pathway **** **** - **** 

04210 Apoptosis **** **** - **** 

04110 Cell cycle; growth and * - - - 

04919 Thyroid hormone *** **** * ** 

05014 Amyotrophic lateral **** **** ** **** 

04310 Wnt signaling pathway - **** - - 

04722 Neurotrophin signaling - **** - **** 

04010 MAPK signaling - *** - - 

05216 Thyroid cancer pathway - * - - 

05219 Bladder cancer, - * - - 

04742 Taste transduction - - * - 

* P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001 

 

NIMBus discovered a list of mutated noncoding regions from cancer WGS data 

As a fair comparison to our NIMBus model, the global and local models were used on the 

same data to identify mutational hotspots. First, the global model assumes the per nucleotide 
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mutation rate is constant across the genome and different individuals. Hence the mutation counts 

within the test region could be considered as a Binomial distribution. Then, the local model uses 

a Binomial regression against the same set of covariates to compensate regional mutational 

heterogeneity, but ignores the heterogeneity across individuals. On the other hand, our NIMBus 

model captures mutational heterogeneity arising from both different individuals and regions from 

the genome, which allows more flexibility of mutation counts modeling (details see the method 

section). 

We applied NIMBus on WGS variant calls for all seven cancer types to predict the individual 

somatic burden P values, and compared these results to those from global and local Binomial 

models (details in the Methods “WGS variants data used” section). Similar to the results in the 

coding region analysis, both global and local Binomial models generated too many burdened 

regions in all noncoding annotation categories, as evidenced by the poor fitting in Fig. 2B. For 

example, in liver cancer after P value correction, NIMBus identified 21 promoters as highly 

mutated, while local and global binomial models identified 79 and 641, respectively. Hence, our 

negative binomial assumption in NIMBus effectively captured the overdispersion and controlled 

the number of false positives. To further demonstrate this, we provided the Q-Q plots of P values 

in promoter regions for all seven cancer types in Fig. 5B as a quality check. In theory, if no 

significantly burdened regions are detected, the P values should follow uniform distribution. As 

shown in Fig. 5B, the majority of our P values follow the uniform assumption, with the 

exception of a few outliers representing true signals, indicating reasonable P value distributions 

for all cancer types. BRCA and GACA, as well as PRAD and LUAD, have a greater number of 

outliers than other cancer types. This may relate partially to statistical power – these cancer types 

have a greater number of mutations and more patients than those cancer types without the same 

number of outliers. In addition to the QQ plots in Fig. 5B, we also looked at the proportion of 

significantly burdened promoter regions for each cancer type. We found that GACA has more 

than twice the number of burdened promoter regions as other cancer types. In addition to 

statistical power to measure this burdening, this may also relate to underlying differences in 

tumor biology. 

To summarize the mutation burdens from all cancer types, we used Fisher’s method to 

calculate the final P values for all three models. Similar to P values from a single cancer type, the 

combined P values are severely inflated in both global and local Binomial models, but are 
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rigorously controlled by NIMBus (table C in Fig. 5). For example, NIMBus reported only 39 

transcription start sites (TSS) as burdened, compared to 164 and 263 for the other two methods.  

Additionally, out of the 39 TSS elements, several of them have been experimentally 

validated or computationally predicted in other work to be associated with cancer. For instance, 

TP53 is a well-studied tumor suppressor gene that is involved in many cancer types, and the 

combined P value for the TP53 TSS is ranked second in our analysis (P=4.26� 10���) [27]. 

Another TSS element found to be significantly burdened is LMO3, which interacts with the 

tumor suppressor TP53 and regulates its function. LM03 ranked fourth in our analysis (P=3.25�
10��
) [28]. Similar to previous reports, we also identified the AGAP5 TSS site as a mutation 

hotspot, ranking third (P=7.07� 10���) in our analysis [28]. Another important example is the 

TSS site in TERT, which ranked fifth in our results (P=1.55� 10���) and has been 

experimentally validated to be associated with multiple types of cancer progression [19-21]. The 

discovery of such results shows that NIMBus may contribute to mutation driver event discovery 

in genetic diseases. 

To further extend our analysis of non-coding mutational burdening, we examined 

transcription factor binding sites within promoter regions with evidence of functional activity via 

co-location with DNase I hypersensitive sites (DHSs). This analysis was performed on a per-

cancer type basis, with assays matched to cancer types (Table S5). In total, 14 cancer types were 

examined. For 7 of the cancer-types with available RNA-seq expression in ENCODE, gene 

expression was used to limit the analysis to TFs with non-negligible expression (>1 FPKM). In 

total, after multiple-testing correction, 1450 noncoding regions were identified with significant 

mutation burdening. Although significantly burdened sites were identified for all cancer types 

analyzed, certain cancer types contained disproportionate numbers of burdened promoter/TF 

sites. Skin-Melanoma (401 burdened sites), Myeloid-MPN (296 burdened sites), and Lymph-

BNHL (274 sites), were the cancer types with the greatest number of non-coding promoter/TF 

regions identified. The promoter/TFBS regions of common cancer-associated genes were 

identified as overburdened, such as TERT in Liver-HCC and TP53 in Lung-SCC.  

We compared the burdened noncoding regions identified by NIMBus to those identified 

using another method, OncodriveFML [24]. Across 14 cancers, OncodriveFML identified a total 

of 249 unique burdened noncoding regions, while NIMBus identified a total of 1,380 unique 
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burdened noncoding regions. Twenty-three genes were shared between both methods, including 

STAT3 and MYC. Notably, OncodriveFML did not identify the noncoding regions of TERT or 

TP53 to be significantly burdened.  

We also compared the regions identified through this method, to an independently derived set 

of non-coding driver mutations identified by the ICGC/TCGA Pan-Cancer Analysis of Whole 

Genomes Consortium [23]. The PCAWG Consortium tested six different types of noncoding 

regions (3’UTR, 5’UTR, enhancers, promoters, long non-coding RNA genes (lncRNA), and 

promoters of lncRNA genes). Overall, NIMBus found the noncoding regions of 1,380 unique 

genes to be burdened across 14 cancers, while the PCAWG Consortium’s noncoding driver 

analysis found a total of 29 genes to be burdened across 12 cancers. Eighteen burdened genes 

were shared in both analyses, but NIMBus identified 1,362 additional unique genes that the 

PCAWG Consortium did not. The shared genes included the well-studied TERT gene. While the 

PCAWG Consortium found TP53 to be mutated in its coding region, their noncoding analysis 

did not find it to be mutationally burdened. Using NIMBus we find TP53 to be significantly 

burdened in both its coding and noncoding regions, which is supported heavily in literature [29].   

We used the Cancer Gene Census as compiled by COSMIC (Catalogue of Somatic Mutations 

in Cancer) to further analyze NIMBus’s performance [25]. Cancer genes were either classified as 

Tier 1 (possessing strong evidence) or Tier 2 (possessing developing evidence). Of the 18 

burdened genes that were identified by NIMBus and the PCAWG Consortium, one gene (TERT) 

was identified as a Tier 1 gene and one gene (MALAT1), a lncRNA gene, was identified as a 

Tier 2 gene [30]. While NIMBus identified a total of 56 Tier 1 genes and 13 Tier 2 genes, the 

PCAWG Consortium identified 2 Tier 1 genes and 1 Tier 2 gene; and OncodriveFML identified 

37 Tier 1 genes and 1 Tier 2 gene.  Among the Tier 1 genes identified by NIMBus, CXCR4 is a 

chemokine receptor that interacts with the chemokine molecule CXCL12 [31]. The 

CXCR4/CXCL12 pathway has substantial literature support that establishes the role of the 

CXCR4 gene in cancer [32, 33]. Another Tier 1 gene identified by NIMBus, ERBB2, is a 

transmembrane tyrosine kinase receptor that is often overexpressed in cancer [34]. Anti-ERBB2 

antibodies (under the generic name trastuzmab) can be used to treat breast and gastric cancer [35, 

36]. Our benchmarking results are summarized in an Excel spreadsheet on our NIMBus Github 

website.  
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By comparing our results to those generated from well-known, previously existing methods, 

we find that NIMBus not only robustly pinpoints already well documented findings, but also 

identifies additional burdened genes with both developing and existing experimental support.  

Discussion 

Thousands of somatic genomes are now available due to the fast development of whole 

genome sequencing technologies, providing us with increasing statistical power to scrutinize the 

cancer mutation landscape. At the same time, thanks to the collaborative efforts of large 

consortia, such as REMC and ENCODE, tens of thousands of functional characteristic 

experimental results on human genomes have been released for immediate use to the whole 

community. Hence, integrative frameworks are of urgent need in order to explore the interplay 

between WGS data and these functional characteristic data. It will not only be important to 

accurately search for mutational hotspots as driver candidates for complex diseases but also to 

better interpret the underlying biological mechanisms of diseases for clinicians and biologists. 

In this paper, we proposed a new integrative framework called NIMBus to analyze cancer 

genomes. Due to the heterogeneous nature of various somatic genomes, our method treated the 

individual mutation rate as a gamma distributed random variable to mimic the varying 

mutational baseline for different patients. Resultantly, it modeled the mutation counts data using 

a two-parameter negative binomial distribution, which improved data fitting dramatically as 

compared to previous work (Fig. 2B). It then uses a negative binomial regression to capture the 

effect of a widespread list of genomic features on mutation processes for accurate somatic 

burden analysis. 

Unlike previous efforts, which use very limited covariates to estimate local mutation rate in 

very qualitative way, we explored the whole REMC and ENCODE data and extracted 381 

features that best describe chromatin organization, expression profiling, replication status, and 

context effect in all possible tissues to jointly predict the local mutation rate at high precision. In 

terms of covariate correction, NIMBus demonstrated three obvious advantages: 1) It incorporates 

the most comprehensive list of covariates in multiple tissues to achieve accurate background 

mutation rate estimation; 2) It provides an integrative framework that can be extended to any 

number of covariates and successfully avoids the high dimensionality problem of other methods 
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[5, 7], which is extremely important due to the rapidly growing amount of available functional 

characteristic data available and the drop in cost of sequencing technologies; 3) It automatically 

utilizes the genomic regions with the highest credibility for training purposes, so users do not 

have to be concerned about performing carefully calibrated training data selection and complex 

covariate matching processes. 

The length of training bins � is an important parameter for NIMBus. On one side, a shorter 

bin size will be advantageous in the P value evaluation as it can remove the mutational 

heterogeneity across regions more effectively at a higher resolution. On the other side, a smaller 

� sometimes will result in worse mutation rate prediction performance for two reasons. First, 

sensible mutation rate quantification is necessary in each single bin for the regression purpose. 

However, somatic mutations are usually sparsely scattered across the genome due to limited 

number of disease genomes available at the moment. In the extreme case, when � is so small that 

most bins have zero mutations, it is difficult for the regression model to capture the relationship 

between mutations and covariates. Second, some of the covariates are only reported to be 

functional on a large scale [11], so reducing � will not necessarily boost prediction precision. 

Optimal bin size selection is still a challenging problem that needs further case-by-case 

investigation. In our analysis, we used a 1 Mb bin size for all cancer types. 

Noncoding regions represent more than 98% of the whole human genome, and are 

investigated less mainly due to limited knowledge of their biological functions. NIMBus is also 

designed to explore the most comprehensive collection of noncoding annotations. Therefore, it 

collects the up-to-date, full catalog of noncoding annotations of all possible tissues from 

ENCODE and our previous efforts from the 1000 Genomes Project. Additionally, it further 

customizes these annotations specifically for somatic burden analysis. All these integrated 

internal annotations of NIMBus can be either tested for somatic burden or used to annotate the 

user specific input regions. 

We applied NIMBus to 649 cancer genomes of seven different types collected from public 

data and collaborators. The burden test P values for each cancer type were deduced and Fisher’s 

method was used to calculate the combined P values. We first evaluated the performance of 

NIMBus on coding regions, which have been investigated with much detail by researchers. 

Many well-documented cancer associated genes were discovered by NIMBus (Table 1 and Table 
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S4). We also repeated the same analysis on a simulated dataset and found no significant genes. 

These results demonstrate that NIMBus is able to find overly mutated genes effectively while 

rigorously controlling false positives. It should be mentioned that one limitation of this analysis 

is the limited statistical power due to a lack of WGS data. This in turn results in appropriately 

conservative predictions. However, with the increasing availability of more WGS data and 

advances in sequencing technology, finding a more complete list of heavily burdened genes will 

become possible. 

In addition to single gene burden analysis tests, we were able to detect significantly mutated 

KEGG pathways, including the TP53 signaling pathway and apoptosis pathway, both of which 

are implicated in cancer progression. We also examined the burdening of TFBS located in 

promoter regions that intersect with DHSs. 1450 TFBS/promoter regions were identified with 

disproportional mutation rates. A subset of these regions was also found to affect downstream 

gene expression when mutated. This approach identified novel, gene-regulatory regions that may 

affect cancer development and also provides an example of how the NIMBus method may be 

extended to examine gene networks. The adaptability of NIMBus to analysis of gene networks 

may prove useful in determining significantly mutated regions of the genome that are not 

physically adjacent. Though NIMBus is able to determine some well-known cancer associated 

pathways that are heavily burdened, there still remains some challenges in interpreting other 

pathways. One reason may be due to constrained availability of pathway annotations, which may 

result in false positives. Future work could be done here to build and validate other pathways. 

Additionally, when using Fisher’s method, it is possible that the p-values of the regions or genes 

in a pathway that are combined are not entirely independent, which could result in some false 

positives, since we do not know the exact joint distribution of the p-values. This may be an area 

of future study. 

Furthermore, numerous noncoding elements were also reported as significantly mutated 

(Table C in Fig. 5). Included were some well-known regions, such as the TP53, LMO, and TERT 

TSS, proving the effectiveness of NIMBus in identifying disease-associated regions. 

To some degree somatic variants can be considered as the limit of extremely rare germline 

variants because they are almost private variants to particular cells. On the contrary, common 

germline variants have somewhat different characteristics from rare germline ones as they often 
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have low functional impact and are linked to other variants. As the germline variant becomes 

more rare, the linkage decreases and the functional impact usually increases up to what we 

observe for somatic variants. Thus, we would expect the methods here to work well for rare 

germline variants (e.g. de novo ones and those confined to small populations)  

Scanning the TFBS within regulatory elements allowed us to gain more power than simply 

analyzing whole regulatory regions. Some identified burdened genes were shared with the 

PCAWG Consortium, however we also identified a number of additional genes that are classified 

by COSMIC as possessing strong experimental evidence.   

Conclusions 

In summary, NIMBus is the first method that integrates comprehensive genomic features to 

analyze the mutation burdens of disease genomes. Such external data does not only help to better 

estimate the background mutation rate for successful false positive and negative control, but also 

provides the most extensive noncoding annotations for users to interpret their results. It serves as 

a powerful computation tool to accurately predict driver events in human genetic diseases and 

potentially identify biological targets for drug discovery. 

Methods 

WGS variants data used  

We collected 649 whole genome variant calls from public resources and collaborators. This data 

set contains a broad spectrum of 7 different cancer types, including breast cancer (BRCA, 119 

samples), gastric cancer (GACA, 100 samples), liver cancer (LICA, 88 samples), Lung 

adenocarcinoma (LUAD, 46 samples), prostate cancer (PRAD, 95 samples), Medulloblastoma 

(MB, 100 samples), and Pilocytic Astrocytoma (PA, 101 samples) (Figure S1, Table S1). GACA 

samples were from Wang et al [37] and PRAD samples were obtained from our collaborators. 

The remaining comes from samples published by Alexandrov et al [38]. 

Local background mutation rate estimation 

(A) Feature selection 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.29.124149doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.124149


Numerous studies showed many genomic features severely affect the mutation process, and such 

covariate effect should be removed for somatic burden analysis [7, 11]. We first collected all the 

signal track files from major histone modification marks, chromatin status, methylation, and 

mRNA-seq data from the REMC. Signal files were processed in bigWig format at 20nt 

resolution. Multiple replicates were averaged if available. Since replication timing has been 

proved to be associated with mutation rate in several articles [5, 7, 11], we also collected 8 

replication timing bigWig files from the ENCODE project. Lastly, as researchers have observed 

elevated mutation rates in regions wither lower GC content in certain diseases, we also include 

the GC percentage files in our covariate list and generated its corresponding bigWig files. 

(B) Human genome gridding and covariate matrix calculation  

Different from the calibrated training data selection mentioned in [17], we divided the whole 

genome into bins with fixed length l, such as 1mb, 100kb, 50kb, etc. Only autosomal 

chromosomes and chromosome X were included in our analysis to remove the gender imbalance 

in the mutation data or covariates.  

Repetitive regions on the human genome are known to generate artifacts in high throughput 

sequencing analysis mainly due to their low mappability. We downloaded the mappability 

consensus excludable table used in the ENCODE project from 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/wgEncodeD

acMapabilityConsensusExcludable.bed.gz. Any fixed length bins that overlap with this table 

would be removed from the training process. We also downloaded the gap regions of hg19 from 

the UCSC genome browser, which include gaps from telomeres, short_arms, heterochromatin, 

contigs, and scaffolds. The fixed length bins that intersect with these gap regions were also 

removed in our analysis. Together these are known as the blacklist regions. 

 Then, 381 features are extracted from both REMC and ENCODE, and the average signal in the 

bins is calculated. All the bigWig files generated in step one were used to calculate the average 

signal using the bigWigAverageOverBed tool for each fixed length bin we generated above. 

When calculating the GC percentage, if the sequence information is not available at a certain 

position (such as the Ns), such position will be excluded in the averaging process. In the end, we 

summarized all the covariates values in each bin into a covariate table, with columns indicating 
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different features and rows representing different training bins. We let ��,� denote the average 

signal strength for the ��� bin and ��� covariate, where � � 1, � , � and � � 1, � , �. 

(C) Use negative binomial distribution to handle mutation count overdispersion 

Suppose there are � � 1, � , � different diseases (or disease types) in the collected WGS data, 

and � � 1, � , �� unique samples, for example different patients, for each disease (or disease type 

such as liver cancer or lung cancer) �. Let ���,� and  ���,� denote the observed mutation count and 

rate for the ��� bin defined above for sample � in disease �. In previous efforts, scientists assume 

that mutation rate ���,� is constant across different regions of the human genome, samples, and 

diseases, so they have that ���,� � �  for ��, �, �. Hence ���,� follows a Poisson distribution with 

the probability mass function (PMF) given in equation (2). 

 !"��,� � ���,�# � �����,�����,����
�,�

���,�! � �������,�
���,�!                                   (2) 

However, somatic genomes are heterogeneous because mutation rates vary considerably among 

various diseases, samples, and regions of the same genome, severely violating the assumption in 

equation (2). As a result, fitting of ���,� is usually very poor because overdispersion is often 

observed [5]. Simply assuming a constant mutation rate will generate numerous false positives. 

Instead, in our model we assume that different ���,� are random variables that follow a Gamma 

distribution with probability density function (PDF) 

 !���,� � �# � �
�������������

� ����������
	


�
�
                                    (3). 

where $�� % 0 and &�� % 0. In equation (3), $�� and &�� are the shape and scale parameters 

respectively. Assume that ��� � ∑ ���,������  is the overall mutation rate from all samples in bin � of 

disease �. Its distribution can be readily obtained through convolution as  

 !��� � �# � �
�����������������

� ������������
	


�
�
                       (4). 
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If we let ��� � ∑ ���,������  represent the total mutation counts in region � from all disease samples, 

�, then the conditional distribution of ���  given ��� can be written as 

 (���|���* � �������
������

�����!                                          (5). 

By integrating (4) into (5), the marginal distribution of ���  can be denoted as a negative binomial 

distribution ([39], page 50 in [40]).  

 !���|$�� , +��# � , �
� !��-

����� ������� ����
�������������! ,

!��� !��-
���

                     (6a). 

Equation (6a) is the PDF of a negative binomial distribution with .(���* � ��$��&�� and 

/01(���* � ��$��&��(1 2 &��*. To better interpret (6a), we define &�� � ���3�� and ��$�� � 1 3��⁄ . 

Then equation (6a) can be rewritten as (6b). 

 "��(���|���, 3��* � , �
� #�����-

� #��$ �%��� � #��$ &
�%� #��$ &����� ��

, #������ #�����-
���

           (6b) 

The mean and variance of ���  from (6b) can be described as ��� and ���(1 2 ���3��* respectively. 

Our model in equation (6b) is convenient due to its explicit interpretability. First, it assumes that 

the individual mutation rates are heterogeneous by modeling ���,� as i.i.d. Gamma distributed 

random variables. Unlike the constant mutation rate assumption where /01(���* � .(���*, our 

model captures the extra variance of ���  due to population heterogeneity. Our model in (6b) also 

clearly separates the two main parameters ��� and 3�� with physically interpretable meanings: the 

mean and overdispersion, respectively. Here a larger 3�� indicates a more severe degree of 

overdispersion, which is usually due to larger differences in mutation rates. 

(D) Accurate local background mutation rate estimation by regression  

After modeling ���  with a negative binomial distribution, we then estimate the local mutation rate 

by correcting the covariate matrix 5 described above. Again ��,� denotes the average signal 

strength in the ��� bin and ��� covariate, where � � 1, � , � and � � 1, � , �. Because the 

genomic features in the covariate matrix are correlated and may introduce multicollinearity if 
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directly used in regression, we first apply principal component analysis (PCA) to matrix 5. We 

define 5′ to be the covariate matrix after PCA and ��,��  as each element in 5′.  

A generalized regression scheme is used here. Suppose 6� and 6' are two link functions. We 

then use linear combinations of covariate matrix 5′ to predict the transformed mean parameter, 

���, and overdispersion parameter, 3��, as 

6�(���* � log(���* � exp(=�� 2 =����,�� 2 � 2 =����,�� 2 � 2 =(� ��,(� *                       

6'(3��* � log(3��* � exp(>�� 2 >���),�� 2 � 2 >���,�� 2 � 2 >(� ��,(� *   (7). 

Here we use a log link function for both 6� and 6', so the regression model in (7) is a negative 

binomial regression. Note that � contains 381 genomic features in all available tissues. In the 

following analysis, we use all features to run the regression in (7) to achieve better performance. 

The GAMLSS package in R is used to estimate the parameters in (7) as >��� , � , >�(� , =?�� , � , =?(� . 

Generally, there are biological reasons to explain how ��� changes with covariates. For example, 

single-stranded DNA in the later replicated regions usually suffers from accumulative damage 

resulting in larger ���. It is more difficult to interpret such a relationship with 3��. Hence, we 

simplify equation (7) by assuming 3�� is constant in our real data analysis, meaning the 

overdispersion parameter 3, was modeled as a constant across all bins (3�� � $@��A0�AB for 

� � 1, … , �. 

After the training process through equation (7) in the main manuscript, the estimates of 

parameters for negative binomial regression can be represented by >��� , � , >�(� , =?�� , � , =?(� . To 

obtain the optimal local mutation rate for test region D, which may be either an internal 

noncoding annotation such as enhancer or a user-defined element, we should first extend this 

region into the training bin length � centered at the center of test region D (blue parts in Fig. S2). 

Then the covariates values after PCA projection in this extended bin should be calculate as 

(�),�� , � , �),(� *. Hence in this scheme, the local mutation parameters should be calculated as  

�)� � exp(=?�� 2 =?���),�� 2 � 2 =?���),�� 2 � 2 =?(� �),(� *                                    

3)� � exp(>��� 2 >����),�� 2 � 2 >����),�� 2 � 2 >�(� �),(� *                 (8). 
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However, in real data analysis there are usually millions of regions to be tested and for each 

region it needs to process 381 features. Hence, the above optimal scheme is usually 

computational expensive. Here we proposed an approximation scheme to calculate�̂)� and 3�)�. 

Instead of using covariates for the extended bin centered at target region D, we used the values 

for the nearest training bin (�E),�� , � , �E),(� * (magenta parts in Fig. S2), and burden tests are 

performed after length adjustment. Since (�E),�� , � , �E),(� * has already been pre-calculated during 

the training process, our approximation scheme significantly reduced the computation burden for 

tests. 

Somatic burden tests using local background mutation rate 

(A) Background mutation rate calculation for target regions 

Suppose there are F regions to be tested. We use the local mutation rate to evaluate the mutation 

burden. For the D�� target region (D � 1, � , F), one way of calculating the covariates is to 

extend it into length � (illustrative figure given in Fig. S2). Then we calculate the average signal 

for feature � as �),� , � � 1, � � for this extended bin, and after PCA projection let �),��  represent 

the value for the ��� PC.  The local mutation parameters �̂)� and 3�)� in the extended bin for the 

D�� target region can be calculated as: 

�)� � exp (=?�� 2 =?���),�� 2 � 2 =?���),�� 2 � 2 =?(� �),(� *   

3)� � exp (>��� 2 >����),�� 2 � 2 >����),�� 2 � 2 >�(� �),(� *                         (9) 

In real data analysis, the length of the D�� test region �)  is much shorter than the length of the 

training bins (up to 1Mb). Hence �̂)� needs to be adjusted by a factor of �) �⁄ . Then 3�)� and the 

adjusted �̂)� can be used to calculate the disease specific P value, �)�. This above scheme is 

usually computationally expensive because there are usually millions of target regions to be 

tested. Therefore, we also propose an approximation method to replace the optimal �̂)�  and 3�)�  in 

our analysis (details under Supplemental Fig. S2). 
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(B) Combining P values for multiple disease types 

Sometimes it is necessary to analyze several related diseases (or disease types) to provide a 

combined P value. One typical example is in pan-cancer analysis.  In the above section, we 

calculated the P value for disease/disease type � as �)� for test region D. Fisher’s method can be 

used to combine these P values.  Specifically, the test statistic is 

G) � H2 ∑ ��(�)�**��� ~K'L2�B                                         (10) 

Here G) follows a centered chi-square distribution with 2� degrees of freedom, where � is the 

total number of diseases/disease types. The final P value, �) , can be calculated from G). To 

better illustrate how NIMBus works, Fig. 1 gives its workflow. 

As a fair comparison to our NIMBus model, the global and local Poisson models were used on 

the same data to identify mutational hotspots. The global Poisson model assumes the observed 

mutation counts follow a Poisson distribution and the Poisson rate is constant across the genome 

and across individuals. The local Poisson model also ignores the mutation rate heterogeneity 

across patients. However, it uses a Poisson regression against the same set of covariates as the 

NIMBus model to compensate large-scale mutational heterogeneity across the genome. 

Global and local Binomial models 

In [4], after pooling samples from a certain disease, a constant mutation rate was assumed at each 

single nucleotide over the genome. Hence, the number of mutations ���  within a given region 

with length ��  follows a Binomial distribution as  

 !"�� � ���# � ,+�,��- (���*���(1 H ���*+�����                                 (11) 

where ��� is the mutation rate at a single nucleotide. In a global Binomial model, ��� M � is 

assumed, and � is calculated in a genome-wide way. To remove the covariate effect, we may 

also assume a local Binomial model by using different ��� for different regions. Specifically, ��� 

can be approximated by the length normalized ��� in NIMBus. 

In order to check the degree of overdispersion in the mutation counts by Binomial assumption, 

we compared the observed and fitted mutation count data by Binomial distribution and provided 

the KS statistic in each cancer type. Specifically, we counted the number of mutations ���  in � 
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1mb bins generated in the Methods “Local background mutation rate estimation: (B)” section. 

Then the maximum likelihood estimate of mutation rate �̂� per position under the constant 

mutation rate assumption is calculated for cancer type �. Then we randomly generated � 

simulated mutation counts �́�� with �̂� and calculated the KS statistic. We repeated the above 

process 100 times and plot the cumulative density function (C.D.F) of these KS statistics. A large 

KS statistic near 1 indicates larger overdispersion in the mutation count data. From Fig. S3, we 

showed that in all 7 cancer types, Binomial model provides poor fitting. 

Coding region annotation 

We first extracted all the coding regions from the GENCODE v19 annotation. For annotation 

accuracy, we only selected the protein coding genes with gene_status labeled as “KNOWN” 

from the annotation. Then all the protein coding transcripts of the selected genes were selected. 

We merged multiple transcripts to get the final protein coding gene annotation as shown in Fig. 

S9. In total, 19,291 known protein-coding genes haven been used in this analysis. 

Noncoding annotations 

We collected the full list of noncoding annotations to the best of our knowledge and customized 

it suitable for burden analysis. This list includes promoter regions, transcription start sites (TSS), 

translated regions (UTR), transcription factor binding sites (TFBS), enhancers, ultra-conserved, 

and ultra-sensitive sites. Promoters and TSS sites of known protein coding genes were defined as 

the 2500 and 100 nucleotides (nt) before the transcripts annotated by GENCODE v19. We also 

collected all the TFBS and enhancers from all tissues that are uniformly processed through the 

ENCODE pipeline. In addition, the ultra-conserved and ultra-sensitive sites were defined as 

those under positive selection during transcription regulations in our previous method FunSeq 

[41]. 

Simulated variants for all cancer types 

For each variant in a set of whole genome sequencing data, we tried to find a new position in a 

100kb neighboring region (50k and 50k up and downstream each). Then we tested all the coding 

genes defined above on the original and simulated data set. Since the permuted size 100kb is 

relatively large as compared to the test region, a better method is supposed to give less or even 
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no positives on the permuted data set. The Q-Q plots of P values of protein coding genes in both 

real and simulated data were given in Fig. S10.  

Mutation burden test for networks in the genome 

In addition to testing single target regions, it is useful to extend our analysis to testing of 

networks. We took the KEGG pathway as a natural biological application of our network 

analysis[42]. Each coding gene represents a target region in the genome, and the gene set that 

makes up a pathway represents a network of genes. Since a KEGG pathway may consist of genes 

that are located on different chromosomes or regions of the genome, the mutation burden for a 

pathway will be heterogeneous. We assume that these heterogenous mutation burden levels are 

independent due to the disjoint, discontinuous association of each region. Therefore, for each 

pathway, we first determine the p-value of each coding gene in the pathway list using the local 

mutation burden calculations from NIMBus, and then combine them using Fisher’s method for a 

pathway associated p-value. This example can be seen in Figure 6. 

In our analysis, given a network of regions consisting of P (� � 1, � , P) individual regions, 

each with�( mutations, we can determine the p-value (�() associated with each individual 

region based on �( and Q(, and then combine these p-values to produce a single p-value (��-(.) 

associated with the network. To do this, we use Fisher’s method for combining p-values. 

�( �  1R"( S �(|�(, Q(T                                                                 

G � H2 ∑ ��L�(B/(�� , GK'/'                                            (12) 

�+��0-1) �  12�
� RG S AT                                                            

We took the KEGG pathway as a natural biological application of our network analysis. Each 

coding gene represents a target region in the genome, and the gene set that makes up a pathway 

represents a network of genes. Since a KEGG pathway may consist of genes that are located on 

different chromosomes or regions of the genome, the mutation burden for a pathway will be 

heterogeneous. 
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Identification of predicted functional TF Motifs 

Transcription Factor Binding Sites (TFBSs) that fall within DHS regions and also within a 

promoter region were identified in a cancer-type-specific manner. First, transcription start sites 

(TSSs) were identified upstream of both coding and non-coding transcripts using the GENCODE 

Hg19 annotation. Promoter regions were defined as the region of 1.5k BP upstream and 1k BP 

downstream of a TSS. Second, in order to map transcriptional activity, DHS signal tracks from 

ENCODE were intersected with these promoter regions in order to identify areas of likely 

functional significance. This mapping was completed in a cancer-cell-type-specific manner for a 

total of 14 cancer types with whole genome sequencing from PCAWG and corresponding cancer 

cell lines from ENCODE (Table S5). Third, TFBSs from ENCODE were identified that intersect 

with these promoter and DHS regions. As further screening step, RNA-seq expression data was 

used to limit TFs analyzed to those with non-negligible expression. 7 cancer types had associated 

RNA-seq data in ENCODE (Tier 1 annotation - Myeloid-MPN, Lung-SCC, Liver-HCC, Panc-

AdenoCA, Breast-AdenoCa, Cervix-AdenoCA, Skin-Melanoma), 7 did not have matched RNA-

seq data (Tier 2 annotation - Lymph-CLL, Lung-AdenoCA, Lymph-BNHL, ColoRect-

AdenoCA, Myeloid-AML, Prost-AdenoCA, CNS-Medullo). For Tier 1 cancer types with RNA-

seq data, the matched RNA-seq data, TFs analyzed were limited to those with average FPKM > 1 

across replicates. 750 TFs were analyzed, 702 of which had RNA-seq-based expression level 

data available. For Tier 2 cancer types lacking this RNA-seq data, all 750 TFs were analyzed. 

The TFBSs identified were then aggregated at the gene level and carried forward to subsequent 

burdening analysis with NIMBus using the PCAWG variant call set. 

 

Benchmarking NIMBus 

We first benchmarked our noncoding results by comparing them to those derived by using 
OncodriveFML (v. 2.1.3) [24]. OncodriveFML was run via command line in a Python 3.5 
environment with the BBGLab bgparsers package (v. 0.7). In total, running our annotations and 
variants using OncodriveFML used 881.12 GB and took 43 hours. Significant results were 
identified using the Q value < 0.05.   
 
Secondly, we benchmarked our results to the driver genes independently identified by the 
PCAWG Consortium [23]. Two cancers (Cervix-AdenoCA and Myeloid-AML) that were 
analyzed by NIMBus were not available for direct comparison in the PCAWG Consortium data 
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(Text S2). Additionally, we used the well-known Cancer Gene Census COSMIC database to 
classify burdened genes according to their existing literature support. We downloaded the most 
current list from https://cancer.sanger.ac.uk/cosmic/download. More details can be found in 
Supplemental Text S2. 

 

Additional files 

Supplemental Figures 1-10 

Supplemental Tables 1-5 

Supplemental Texts 1-2 

The NIMBus model can flexibly be retrained and run using a new set of covariates, sequencing 

results, and target regions. Instructions and software are provided for this purpose at 

github.gersteinlab.org/nimbus. 
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Figures 
Figure 1. Flowchart of NIMBus. For a given disease � �1 � � � ��, ��  represents the total number of 

samples for that disease. In addition, there are a total of  	 features which are denoted as 
� … 
�. The 

mutations from the samples and the features are binned on the bins �� … �� for a total of 
. Two resulting 

matrices are produced, � and �. The matrix � is a � � 
 matrix consisting of mutation counts while � is 

an 
 � 	 matrix consisting of feature values. Training the negative binomial model gives, for each 

disease, � and � values for each bin, 
. The trained model can be applied to a set of user defined regions, 

1 … �, to evaluate relative mutation burden. This testing is associated with a set of p-values, �, for each of 

the K regions. The p-values from multiple regions may be combined using Fisher’s method. 

Figure 2. (A) Disease and sample mutation rate heterogeneity; (B) improved fitting by negative binomial 

distribution of mutation counts in 1mb bins in breast cancer (BRCA) and Medulloblastoma (MB). 

Figure 3. (A) Regression performance by correcting different number of PCs; (B) Regression performance vs. total 

number of variants used in all cancer types 

Figure 4. Q-Q plots of P values of real and simulated WGS data. 

Figure 5. (A) Number of overly mutated promoter regions in all cancer types; (B) Q-Q plots of P values for 

promoter regions; (c) total number of burdened regions in all noncoding annotations after merging P values from 7 

cancer types. B_local: local Binomial Model, B_global: global Binomial Model, DRM: Distal Regulatory Module, 

DHS:  DNase hypersensitivity site, TFBS: Transcription factor binding site, UTR: Untranslated region, Promoter: 2500 
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nucleotides (nt) upstream of the 1st nucleotide of GENCODE transcripts, TSS: Transcription Start Site. 100 nucleotides 

upstream of the 1st nucleotide of GENCODE transcripts, Ultraconserved region: region under positive cross-species 

selection in mammals, Ultrasensitive region: region with a greater than expected fraction of rare variants. 

Figure 6. Schematic plot of network analysis: The associated values of �(, Q( are extracted from NIMBus for each 

of the � genes, potentially located on different chromosomes. A single p-value, �(, is obtained for each gene. 

Fisher’s method is used to combine all of the p-values into a final p-value for the network, �+��0-1). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.29.124149doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.124149


Figure 1was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.29.124149doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.124149


BRCA.obs
BRCA.Binomial
BRCA.Negative.Binomial
MB.obs
MB.Binomial
MB.Negative.Binomial

0
0.

2
0.

4
0.

6

Pr
ob

ab
ilit

y

100 200 300 400
variant counts per bin

GC Content Chromatin Accessibility

Variant Rate
Feature Signal

1Mb bin index 1Mb bin index

Va
ria

nt
 R

at
e 

(n
or

m
al

iz
ed

)

Si
gn

al
 (N

or
m

al
iz

ed
)

Figure 2
A

B

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.29.124149doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.124149


Figure 3was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.29.124149doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.124149


0 2 4 6 8 10

0
10

20
30

40
lo

g(
P

_N
IM

B
us

)

log(P_uniform)

LUAD

real
simulated
diagonal

Figure 3

Figure 4was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.29.124149doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.124149


Figure 5
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprint (whichthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.29.124149doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.124149


Figure 6was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.29.124149doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.124149

