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Abstract.  1 

Prior research indicates that lower resting-state functional coupling between two brain 2 
networks, lateral frontoparietal network (LFPN) and default mode network (DMN), 3 
relates to better cognitive test performance. However, most study samples skew 4 
towards wealthier individuals—and what is adaptive for one population may not be for 5 
another. In a pre-registered study, we analyzed resting-state fMRI from 6839 children 6 
ages 9-10 years. For children above poverty, we replicated the prior finding: better 7 
cognitive performance correlated with weaker LFPN-DMN coupling. For children in 8 
poverty, the slope of the relation was instead positive. This significant interaction related 9 
to several features of a child's environment. Future research should investigate the 10 
possibility that leveraging internally guided cognition is a mechanism of resilience for 11 
children in poverty. In sum, “optimal” brain function depends in part on the external 12 
pressures children face, highlighting the need for more diverse samples in research on 13 
the human brain and behavior. 14 
 15 
  16 
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 3 

Introduction 17 

 18 

In the United States, one fifth of children are estimated to live below the poverty line 19 

(Semega et al., 2019). Relative to children living just above poverty, these children are 20 

least likely to have access to the federal social safety net, and they are at heightened 21 

risk for poor health and educational outcomes (Hoynes & Schanzenbach, 2018; 22 

Reardon, 2016). Compared to their peers whose families earn more money, children 23 

living in poverty tend to perform worse on tests of cognitive functioning (for a review, 24 

see Farah, 2017), itself a risk factor for later outcomes (e.g., Spengler et al., 2015). 25 

However, such broad comparisons obscure substantial variability within the group of 26 

children living in poverty, a large segment of whom score on par with their higher-27 

income peers. Here, we seek to understand this form of resilience—high cognitive test 28 

performance in the face of structural barriers to success. One way to begin to address 29 

this question is to identify sets of experiences that may be protective for children in 30 

poverty, given the wide range of experiences they have (DeJoseph et al., 2020; 31 

Gonzalez et al., 2019). Another way is to probe differences in brain function, to gain 32 

insight into the mechanisms underlying resilience. In this study, we examine the neural 33 

and environmental correlates of resilience in a sample of over 1,000 children across the 34 

United States likely to be living in poverty. 35 

 In one of the most influential theories of development, Waddington proposed that 36 

ontogenetic trajectories are variable across individuals and not inherently fixed at birth 37 

(Johnson & de Haan, 2015; Waddington, 1957). Instead, both biological and 38 

environmental influences interact across development to constrain the ultimate 39 

expression of cells in our bodies. This means that in some cases, environmental 40 

pressures, especially early in life, may cause two individuals with the same biological 41 

constraints to develop different phenotypes. In other cases, two individuals may take 42 

distinct developmental trajectories, but ultimately still develop the same phenotype 43 

(Edelman & Gally, 2001). Extending this metaphor to the current study, it is possible 44 

that two children who display the same level of performance on a cognitive test might 45 

achieve this through different developmental trajectories, if they grow up under different 46 
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external pressures. The optimal developmental trajectory for a child, therefore, may be 47 

influenced by the child’s environment. 48 

 Accumulating evidence suggests that the brain adapts to the affordances and 49 

constraints of an individual's environment, especially in early life. Indeed, a growing 50 

number of studies have complicated the notion of an “ideal” environment by suggesting 51 

that different environments promote the development of distinct, adaptive cognitive skills 52 

(Frankenhuis et al., 2019; Mittal et al., 2015; Young et al., 2018) The result of this 53 

adaptability may be that higher-level cognitive skills such as executive functions and 54 

reasoning, which build on lower-level skills that may be more environmentally sensitive, 55 

develop in context-sensitive ways. Children living in poverty can have vastly different 56 

experiences than those who are typically studied in developmental cognitive 57 

neuroscience, including varying levels of threat exposure and resource deprivation 58 

(Humphreys & Zeanah, 2015; McLaughlin et al., 2014). Understanding the ways in 59 

which their brains may have been tuned by their respective environments can provide 60 

insight into mechanisms of adaptation, and, ultimately, how best to support each child 61 

within the specific constraints of their lives. 62 

 Strikingly, while much research has characterized the trajectories of brain 63 

development that support cognitive test performance for upper-middle class children—64 

most of whom who tend to be living in urban places close to universities in the United 65 

States—only in the last decade has research begun to focus on children from lower 66 

socioeconomic status (SES) backgrounds. This new thrust of research has begun to 67 

uncover neural differences between higher- and lower-SES children in brain structure 68 

and function from an early age (e.g., Hair et al., 2015; Hanson et al., 2013; S. B. 69 

Johnson et al., 2016; Leonard et al., 2019; Mackey et al., 2015; Noble et al., 2015; 70 

Noble et al., 2006). However, even in this literature, children living below the poverty 71 

line tend to be under-represented. In addition, many studies compare higher and lower 72 

SES children, obscuring variability within the lower SES group. Thus, characterizing 73 

optimal brain development for children living below poverty could help shift our 74 

questions away from how these children differ from children above poverty, and toward 75 

understanding mechanisms supporting neurocognitive functioning in an understudied 76 
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population. Ultimately, this brings us toward a fuller understanding of brain development 77 

across the full spectrum of life experiences. 78 

In line with the hypothesis that children may achieve the same behavior or 79 

phenotype through different developmental routes, studies examining brain function 80 

during higher-level cognitive tasks often find qualitatively different brain-behavior 81 

relations as a function of children’s family income. Differences in brain activation appear 82 

particularly in lateral prefrontal cortex (PFC) and parietal regions—two regions that are 83 

involved in higher cognitive function, show protracted development (Casey et al., 2000), 84 

and are sensitive to environmental input (Farah, 2017; Mackey et al., 2013; Merz, 85 

Maskus, et al., 2019).  86 

Collectively, these and other studies suggest that children with lower versus 87 

higher family incomes may differentially engage higher-order brain areas such as lateral 88 

prefrontal and parietal regions to complete tasks that tax working memory, rule learning, 89 

and attention (Finn et al., 2017; Sheridan et al., 2012; see Merz, Wiltshire, & Noble, 90 

2019 for a review). These differences in brain function are typically thought to reflect 91 

differences in either the cognitive mechanisms by which children approach the task or 92 

efficiency of neural processing. However, differences in tasks and task demands make 93 

it difficult to generalize across studies showing divergent prefrontal and parietal 94 

activation as a function of SES. Interpretation of differences in brain function during 95 

performance of a specific task is constrained by task demands. For example, there may 96 

be unseen verbal demands that differentially affect some children’s approach to the task 97 

more than others’; additionally, the tasks are not representative of real-world 98 

experiences, limiting validity.  99 

 Another way to investigate SES differences in brain function is to measure slow-100 

wave fluctuations in neural activity over time while participants lie awake in an MRI 101 

scanner, in the absence of specific task demands. This approach, called resting-state 102 

fMRI, has revealed temporal coupling among anatomically distal brain regions that form 103 

large-scale brain networks (Uddin et al., 2019). In general, cognitive networks become 104 

more cohesive and segregated from one another across development (Grayson & Fair, 105 

2017; Power et al., 2010). Patterns of temporal coupling within and across resting-state 106 

networks reflect regions' prior history of co-activation, offering insight into individuals' 107 
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recent thought pattern (Guerra-Carrillo et al., 2014). Thus, resting-state fMRI can be 108 

leveraged to assess how everyday experience shapes brain networks. With regard to 109 

SES, there is evidence that children and adolescents living in disadvantaged 110 

neighborhoods show differences in resting-state connectivity patterns, some of which 111 

correlate with anxiety symptomatology (Marshall et al., 2018). Further, changes in family 112 

income in adolescence have been associated with changes in connectivity in frontal and 113 

parietal regions associated primarily with the default mode network (Weissman et al., 114 

2018). It is important to understand both how these differences arise and the ways in 115 

which they are behaviorally relevant.  116 

 Several large-scale brain networks have been linked to higher-level cognition 117 

(Barber et al., 2013; Hampson et al., 2010; Keller et al., 2015; Kelly et al., 2008). In 118 

particular, the lateral frontoparietal network (LFPN) is consistently activated in higher-119 

level cognitive tasks, such as those taxing executive functions or reasoning. Regions in 120 

the LFPN are more active during performance of cognitively demanding tasks than 121 

during rest periods (Vincent et al., 2008). In contrast, regions in the default mode 122 

network (DMN), including regions in the medial frontal and medial parietal areas, are 123 

consistently de-activated during focused task performance. These regions have been 124 

implicated in unconstrained, internally directed thought (Raichle et al., 2001), as well as 125 

during performance of tasks that require introspection, mentalizing about others, or 126 

other mentation outside of the here-and-now (Spreng, 2012). In fact, elevated DMN 127 

activation during performance of tasks that require focused attention has been 128 

associated with lower task accuracy and response times, and higher response 129 

variability (Kelly et al., 2008; Satterthwaite et al., 2013; D. H. Weissman et al., 2006). 130 

Thus, the LFPN and DMN have often been characterized as opponent networks. 131 

Indeed, a number of studies of young adults have linked weaker resting-state 132 

connectivity between the LFPN and DMN, and stronger connectivity among LFPN 133 

regions, to better cognitive performance (Barber et al., 2013; Hampson et al., 2010; 134 

Keller et al., 2015; Kelly et al., 2008). These findings suggest that, in order to complete 135 

a cognitively demanding task, individuals must focus narrowly on the task at hand while 136 

inhibiting internally-directed or self-referential thoughts (Raichle et al., 2001; Simpson et 137 

al., 2001a, 2001b; D. H. Weissman et al., 2006).  138 
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This conclusion has been bolstered by fMRI research in typically developing 139 

children, both in terms of age-related changes and individual differences. First, there is 140 

evidence that the LFPN and DMN functionally segregate during childhood. Specifically, 141 

key nodes in the LFPN and DMN have been shown to be positively correlated in middle 142 

childhood, anti-correlated in adolescence, and more strongly anti-correlated during 143 

young adulthood (Chai et al., 2014b). Further, as with adults, children ages 10-13 who 144 

showed less coupling than their same-age peers tended to have higher cognitive task 145 

scores (Sherman et al., 2014). Tighter coupling between key nodes in these networks at 146 

age 7 has even been shown to predict increased attentional problems over the 147 

subsequent four years (Whitfield-Gabrieli et al., 2020). The conclusion drawn from these 148 

studies is that it is adaptive for LFPN and DMN to become decoupled—or even 149 

negatively coupled—during performance of a cognitively challenging task, and that the 150 

development of this dissociation may promote stronger focus on externally directed 151 

tasks. 152 

 Despite this coherent body of findings regarding these networks and their 153 

interactions, several points bear mentioning. First, there is evidence that LFPN and 154 

DMN interact during performance of tasks that benefit from internally directed cognition, 155 

or mentation outside of the here-and-now (Buckner & Carroll, 2007; Christoff et al., 156 

2009; Kam et al., 2019; Spreng, 2012). Second, the vast majority of fMRI studies 157 

involve relatively high SES samples; thus, we do not know whether the reported brain-158 

behavior relations are universal. Here, we sought to test the relation between 159 

connectivity of these two networks and cognitive task performance in a new sample: 160 

children living in poverty.  161 

 Drawing from a large behavioral and brain imaging dataset including over 10,000 162 

children across the United States (ABCD Study; Casey et al., 2018), we asked whether 163 

the patterns of connectivity that are adaptive among higher-SES children also help to 164 

explain why some children living in poverty perform as well on cognitive tasks as their 165 

higher-income peers. Specifically, in a set of pre-registered analyses, we tested whether 166 

characteristics of LFPN and DMN connectivity were associated with cognitive test 167 

performance for over 1,000 children from this larger dataset who were estimated to be 168 

living in poverty. We sought to capture children’s performance on higher-level cognitive 169 
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tasks that did not task verbal skills, given well-established SES differences in verbal 170 

performance. Thus, we combined measures of children’s abstract reasoning (Matrix 171 

reasoning task), inhibitory control (Flanker task), and cognitive flexibility (Dimensional 172 

Change Card Sort task). 173 

Given prior evidence from higher-SES children and adults, we predicted that 174 

weaker LFPN-DMN between-network connectivity (decreased LFPN-DMN temporal 175 

coupling) and stronger within-network LFPN connectivity (LFPN-LFPN coupling) would 176 

be related to higher cognitive test performance even for children living in poverty. 177 

Alternatively, however, children in poverty might develop different brain-behavior links in 178 

order to contend with different barriers. In line with theories that children could achieve 179 

the same phenotype through alternate developmental trajectories, one might expect that 180 

higher cognitive test scores would be associated with different patterns of network 181 

connectivity among children in poverty. To preview our findings, our analyses revealed 182 

a different pattern in children in poverty than had been observed in prior studies of 183 

higher SES children. As a result, we conducted follow-up analyses involving the higher-184 

income children in this sample to test whether their data would replicate prior findings, 185 

and confirmed that it did. 186 

 In a second set of pre-registered analyses, we probed demographic variables to 187 

better understand features of children’s environments which might explain variability 188 

both in their cognitive test performance, and in the relation between LFPN-DMN 189 

connectivity and cognitive test performance. We looked at a set of 29 variables that 190 

span home, school, and neighborhood contexts to see whether they could predict 191 

variability in children in poverty’s test performance. We also included interactions 192 

between LFPN-DMN connectivity and each of these variables, to see if patterns of 193 

brain-behavior relations could be explained by any particular set of experiences. 194 

 This study examines brain development in a large sample of children living below 195 

the poverty line. These children had a total family income below $35,000 (below 196 

$25,000 for children in families of 4 or less), a departure from the sample composition of 197 

most prior studies. Moreover, the tight age range in this dataset—all children were 198 

between 9 and 10 years old—complements prior studies of SES differences in brain 199 

development that have considered children across a much wider age range. Ultimately, 200 
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examining relations between patterns of brain activity and cognitive test performance 201 

could help to elucidate the mechanisms through which high-performing children in 202 

poverty are able to contend with structural barriers in their environments.  203 

 204 

 205 

Results 206 

We identified 1,034 children between ages 9 and 10 with usable data on 207 

cognitive test performance, resting state fMRI, and demographic characteristics, who 208 

were likely to be living below the poverty line at the time the data were collected (2016-209 

2018). We identified an additional 5,805 children from the same study sites who had 210 

usable data on the same measures and were likely to be living above the poverty line. 211 

Participant information is displayed in Tables 1 and 2.  212 

Children’s scores on the three cognitive tests (Matrix reasoning, Flanker task, 213 

and Dimensional Change Card Sort task) were moderately correlated with each other, r 214 

= 0.23 – 0.43 in the whole sample, r = 0.25 – 0.39 for children living in poverty alone. 215 

We created summary cognitive test scores by summing children’s standardized scores 216 

on all three tests, as pre-registered. We first tested whether there was an association 217 

between income and cognitive test scores, using a linear mixed effects model with a 218 

random intercept for study site. For the purposes of comparison to prior studies, income 219 

was operationalized (for this analysis only) as a pseudo continuous variable, using the 220 

median income level in each income bracket. Results replicated prior studies (e.g., 221 

Duncan & Magnuson, 2012; Farah, 2018; Noble et al., 2015): on average, children 222 

whose families had higher incomes tended to perform better on cognitive tests, B = 223 

0.008, SE = 0.0004, p < 0.001, r = 0.24, a moderate effect size, though it accounts for 224 

only 6% of the variance in children’s cognitive test scores. As shown in Figure 1, 225 

however, there was large individual variability in cognitive test scores within each 226 

income bracket. It is this individual variability we sought to explore further. 227 

LFPN-DMN connectivity. LFPN-DMN connectivity was defined as the average 228 

correlation of pairs of each ROI in LFPN with each ROI in DMN (each z-transformed; 229 

see Methods). Working from our pre-registered analysis plan 230 

(https://aspredicted.org/blind.php?x=3d7ry9), we tested the relation between LFPN-231 
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DMN connectivity and nonverbal cognitive test performance in our sample of children in 232 

poverty. We used linear mixed effects models to test the association between cognitive 233 

test performance and LFPN-DMN connectivity, controlling for children’s age and 234 

scanner head motion, with a random intercept for study site (see Methods). Contrary to 235 

previously published results, we did not find a negative association between LFPN-DMN 236 

connectivity and test performance. In fact, the estimated direction of the effect was 237 

positive, though this was not statistically significant, B = 2.11, SE = 1.12, t (1028) = 238 

1.88; 2 (1) = 3.52, p = 0.060. This numerically positive association was still observed 239 

when using a robust linear mixed effects model, which detects and accounts for outliers 240 

or other sources of contamination in the data that may affect model validity, B = 1.78, 241 

SE = 1.09, t = 1.64. Thus, this unexpected pattern was not driven by outliers. This effect 242 

was most pronounced for Matrix Reasoning and least evident for Flanker, but the 243 

estimate was positive for all three tests (see Supplement S2). It was also observed for 244 

the NIH Toolbox Fluid Cognition composite score (see Supplement S2).  245 

 Given this unexpected result, we next explored whether the expected association 246 

between LFPN-DMN connectivity and test performance was present in higher-income 247 

children in the larger dataset. To this end, we analyzed the 5,805 children from the 248 

same study sites who were likely to be living above the poverty line. Consistent with 249 

prior studies (Satterthwaite et al., 2013; Sherman et al., 2014; Whitfield-Gabrieli et al., 250 

2020), these children showed a negative association between LFPN-DMN connectivity 251 

and cognitive test performance, B = -1.41, SE = 0.45, t (5794) = -3.14; 2 (1) = 9.85, p = 252 

0.002. A direct comparison between the samples confirmed that the association 253 

between LFPN-DMN connectivity and test performance differed as a function of whether 254 

or not children were living in poverty, 2 (1) = 8.99, p = 0.003 (Figure 2). For children 255 

living above poverty, having higher LFPN-DMN connectivity appeared to be risk factor 256 

for low cognitive test performance, while for children living below poverty, this tended to 257 

be more protective. Several follow-up tests confirmed the reliability of this dissociation 258 

(see Supplement S4-S7). These included a bootstrapping procedure, permutation 259 

testing, and tests to ensure that results were not driven by differences in head motion, 260 

age, or the specific cognitive measures selected.  261 
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LFPN-LFPN connectivity. LFPN-LFPN connectivity was defined as the average 262 

correlation of each ROI pair within LFPN (each z-transformed; see Methods). Following 263 

our pre-registration, using linear mixed effects models, we next tested whether children 264 

in poverty would show the positive correlation between LFPN within-network 265 

connectivity and cognitive test performance that has previously been documented in 266 

higher-SES children. The relation between LFPN-LFPN connectivity and test scores 267 

was not significant for children in poverty, B = 0.24, SE = 0.87, t (1028) = 0.28; 2 (1) = 268 

0.08, p = 0.783, or for the higher income children in the larger study, B = 0.34, SE = 269 

0.36, t (5797) = 0.94; 2 (1) = 0.89, p = 0.346. Thus, strength of resting state functional 270 

connectivity within the LFPN network was not a predictor of cognitive performance in 271 

this large sample of 9 to 10-year-olds.  272 

 Environmental variables. To further explore the dissociation observed for 273 

LFPN-DMN connectivity, we next asked whether features of children’s environments 274 

might explain why the brain-behavior link differed as a function of poverty status. Even 275 

among children living in poverty, different children are exposed to very different 276 

experiences in their homes, neighborhoods, and schools. Under what environmental 277 

constraints might it be optimal (with respect to cognitive test performance) for the LFPN 278 

to work more closely with the DMN? To answer this question, we considered 29 279 

demographic variables chosen to reflect features of children’s home, school, and 280 

neighborhood environments (Table 2; see Appendix). To test whether any of these 281 

variables could explain the observed group interaction, we performed Ridge regression. 282 

Specifically, we used nested cross-validation to predict cognitive test performance from 283 

an interaction between LFPN-DMN connectivity and these demographic variables, in 284 

addition to main effects of each of these variables. Briefly, Ridge regression is a 285 

regularization technique that penalizes variables that do not contribute to model fit, thus 286 

giving more weight to the most important variables. This approach allows for the 287 

inclusion of many variables in a model while reducing the chances of overfitting, and 288 

deals with issues of multicollinearity. We pre-registered this second step of analyses 289 

prior to examining the data further (https://aspredicted.org/blind.php?x=tg4tg9), given 290 

the substantial analytic flexibility possible with such a large set of variables.  291 
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 We trained our model in a training set of two-thirds (N = 670, after removing 292 

missing data) of the children in poverty, using 5-fold cross-validation. Next, we tested 293 

whether these demographic and neural model parameters could be used to predict 294 

cognitive test scores in the held-out test set: the remaining one-third (N = 329) of 295 

children in poverty. Indeed, we found that our model performed above chance (cross-296 

validated R2
CV > 0; see Supplement S8), explaining 4% of the variance in children’s 297 

cognitive test scores in this held-out sample. While 4 percent is small, it is on par with 298 

the effect of family income on test scores across the full sample (6%). Additionally, it is 299 

a pure indicator, unlike the R2 of models that have been fit to the data themselves and 300 

are thus likely to be inflated. Most importantly, this prediction is based on a 301 

socioeconomically restricted sample of children: those with a total family income below 302 

$35,000 (below $25,000 for children in families of 4 or less).  303 

 As shown in Table 3, individual, home, neighborhood, and school variables 304 

helped to predict cognitive test scores among children living in poverty. Critically, we 305 

found that several characteristics of children’s experiences interacted with LFPN-DMN 306 

connectivity to predict these test scores. Specifically, variables related to school type, 307 

neighborhood safety, child’s race/ethnicity, and parents’ highest level of education 308 

contributed to model fit (see Table 3). To better understand these results, we plotted the 309 

effects for the factors showing significant interaction effects (Figure 3). Visualizing the 310 

interaction for neighborhood safety revealed that children living in safer neighborhoods 311 

showed a negative relation between LFPN-DMN connectivity and test performance, 312 

whereas those who lived in particularly dangerous neighborhoods showed a positive 313 

relation. With regard to schooling, the relation between LFPN-DMN connectivity was 314 

more positive for children attending public schools than those attending other types of 315 

schools (predominantly charter, N = 79, and private, N = 40). Thus, the brain-behavior 316 

relation for those children in poverty living in safer neighborhoods, or attending non-317 

public schools, more closely resembled that of the higher-income sample. Similar 318 

results were obtained for levels of parental education and race, such that subsets of 319 

children whose parents were more highly educated and children who were white 320 

showed a more similar pattern of brain-behavior relations to children living above 321 

poverty. 322 
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 Finally, we conducted a confirmatory factor analysis to test whether the 323 

demographic variables could be split into individual and home, neighborhood, and 324 

school factors based on our a priori categorization. This categorization did not meet our 325 

pre-registered criteria for a good model fit (our CFI, 0.11, was considerably lower than 326 

0.9); as a result, we did not continue with this portion of the analysis. Thus, our data-327 

driven approach provided insights that would have been missed by simply categorizing 328 

variables based on our prior assumptions about classes of life experiences. 329 

 Exploratory network associations. Given the differential relation between 330 

network connectivity and test performance as a function of poverty status, we sought to 331 

ascertain whether this effect was specific to the LFPN-DMN, or whether there was a 332 

more general difference regarding connectivity between networks. Further, we sought to 333 

better understand the phenomenon at a conceptual level by assessing the plausibility of 334 

several accounts regarding what might constitute adaptive thought patterns for children 335 

contending with extremely challenging circumstances. Therefore, we ran several 336 

exploratory analyses involving two additional brain networks, selected for reasons 337 

discussed below. Due to the exploratory nature of these analyses, we focus on the 338 

general patterns of effects as potentially valuable for guiding future research. 339 

 The first additional network in which we tested for effects of poverty status was 340 

the cingulo-opercular network (CON), which is thought to play a role in coordinating the 341 

engagement of the LFPN and DMN networks (Menon & Uddin, 2010; Sridharan et al., 342 

2008). Therefore, we sought to test for differential effects of coordination between the 343 

CON and these networks as a function of poverty. We found that weaker LFPN-CON 344 

connectivity was associated with better test performance for both groups, with little 345 

evidence of an interaction (Figure 4A). Thus, a dissociation between these networks 346 

appears to be generally adaptive at this age. By contrast, DMN-CON connectivity had 347 

no main effect on cognitive test performance, but it showed a possible interaction with 348 

poverty status (Figure 4B). Specifically, weaker DMN-CON connectivity was 349 

directionally associated with better test performance for children in poverty, while 350 

stronger DMN-CON connectivity appeared more adaptive for children above poverty. 351 

Thus, the cognitively adaptive pattern for children in poverty—at least, at this age (9-352 

10)—is for DMN to be more tightly linked to LFPN and, perhaps, less tightly linked to 353 
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CON. However, it seems unlikely that a DMN-CON interaction is the key driver of the 354 

LFPN-DMN interaction we have uncovered, as the latter effect was stronger. 355 

Nonetheless, further research in this population relating these three brain networks to a 356 

broader set of cognitive measures is warranted.  357 

 The other network we investigated was the retrosplenial temporal network (RTN), 358 

which is critical for long-term declarative memory (Ghetti & Bunge, 2012; Vincent et al., 359 

2006). Regions in the RTN interact with the LFPN during performance of episodic 360 

memory tasks involving externally-presented stimuli (Badre & Wagner, 2007; 361 

Blumenfeld & Ranganath, 2007), but with the DMN during autobiographical memory 362 

retrieval (Andrews-Hanna et al., 2014; Buckner & Carroll, 2007; Kaboodvand et al., 363 

2018) and at rest (Chai et al., 2014a), that is, during internally directed thought. We 364 

reasoned that if cognitively resilient children in poverty rely more on their 365 

autobiographical memory than do others when facing cognitive challenges, LFPN-RTN 366 

connectivity might be positively related to test performance in this sample. Contrary to 367 

this prediction, however, we found that weaker LFPN-RTN connectivity and DMN-RTN 368 

connectivity were associated with better test performance in both the below- and above-369 

poverty samples (Figure 4C and 4D). Thus, these exploratory analyses involving the 370 

CON and RTN networks reveal specificity in the observed LFPN-DMN interaction effect.    371 

 372 

Discussion 373 

 374 

 Prior research in both adults and children suggests that, in order to perform well 375 

on cognitively demanding tasks, the LFPN must operate independently from the DMN 376 

(Chai et al., 2014b; Sherman et al., 2014; Whitfield-Gabrieli et al., 2020). Given that the 377 

LFPN and DMN have been linked to externally and internally focused attention, 378 

respectively, these findings are generally taken to suggest that it is optimal for 379 

individuals engaged in a cognitively demanding task involving externally presented 380 

stimuli to focus narrowly on the task at hand while inhibiting internally-directed or self-381 

referential thoughts (Raichle et al., 2001; Simpson et al., 2001a, 2001b; D. H. 382 

Weissman et al., 2006). However, the majority of the research that led to this conclusion 383 

has been conducted with non-representative samples of individuals from higher-income 384 
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backgrounds. Given the large heterogeneity of experiences and outcomes for children 385 

living in poverty, we focused on this relatively under-studied population. 386 

 In this study, we tested the relation between patterns of brain connectivity and 387 

nonverbal cognitive test performance for over 1,000 American children estimated to be 388 

living in poverty. Although children in poverty scored lower on average than their higher-389 

income peers from the same study sites, there was large variability. Indeed, many of the 390 

children in poverty scored on par with children whose family incomes were considerably 391 

higher. In contrast to research with higher SES samples, we did not find that higher 392 

cognitive test scores were associated with stronger anti-correlations between the LFPN 393 

and DMN within this group; in fact, these children showed a non-significant positive 394 

relation between cognitive performance and functional connectivity between these 395 

networks. By contrast, for the children in the sample living above poverty, we replicated 396 

the negative relation observed in prior studies (e.g., Sherman et al., 2014). Thus, for 397 

children living above poverty, having higher LFPN-DMN connectivity could be a risk 398 

factor for lower cognitive test performance, while for children living below poverty, it 399 

could be protective. 400 

 Further confirming the reliability of this dissociation, both a bootstrapping analysis 401 

and permutation testing showed that models trained on the data from the children living 402 

above poverty did a poor job of predicting test performance for the children below 403 

poverty. It is important to note that the fact that we see statistically trending but 404 

numerically small group differences in overall LFPN-DMN functional connectivity, as 405 

well as no evidence of group differences in LFPN-LFPN connectivity. As such, the most 406 

salient difference between children below and above poverty in our analyses was not 407 

overall brain connectivity, but rather the relation between connectivity and cognitive 408 

performance.  409 

 This pattern of results is also in line with prior structural and task-based brain 410 

imaging studies showing interactions between SES and neural variables in relation to 411 

test performance (Leonard et al., 2019; Merz, Wiltshire, et al., 2019). For example, 412 

several studies have found SES differences in lateral prefrontal and parietal activation 413 

during cognitive tasks, core nodes of the LFPN (e.g., Finn et al., 2017; Sheridan et al., 414 

2012). Together, these findings support the idea that which patterns of brain function 415 
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are adaptive with respect to cognitive test performance depends on the environments 416 

that children must contend with. 417 

 One interpretation of this unexpected interaction is that the relation between 418 

LFPN-DMN connectivity and test performance depends in part on the demands of 419 

children’s daily experiences. It may be optimal under some circumstances to engage in 420 

thought patterns that more frequently co-activate the LFPN and DMN (e.g., Christoff et 421 

al., 2009; Fornito et al., 2012; Prado & Weissman, 2011). For example, while the DMN 422 

is generally thought to be suppressed during goal-directed tasks, it is in fact active 423 

during a variety of goal-directed tasks that require internal mentation, or projection 424 

outside of the here-and-now (Buckner & Carroll, 2007; Spreng, 2012). We return to this 425 

point later in the Discussion.  426 

 In contrast to our findings with LFPN-DMN connectivity, we found no significant 427 

association between within-network LFPN connectivity and test performance—either in 428 

the children living below or above poverty. These results were unexpected, given prior 429 

studies reporting that connectivity within the LFPN is positively related to cognitive test 430 

performance in both adults and children (Langeslag et al., 2013; Li & Tian, 2014; 431 

Sherman et al., 2014; Song et al., 2008). For example, Sherman and colleagues found 432 

that for 10-year-olds, higher IQ was correlated with higher connectivity between the 433 

dorsolateral prefrontal cortex and the posterior parietal cortex, two hub regions of the 434 

LFPN. One reason for the non-significant effect in our study may be that we examined 435 

connectivity within the LFPN as a whole, rather than looking at particular regions or 436 

subnetworks within LFPN. Thus, the entire network might not be developed enough by 437 

ages 9 to 10 to see this relation on a global scale.  438 

To better characterize the positive relation between LFPN-DMN and test 439 

performance among the children living in poverty, we examined a number of 440 

demographic variables. While poverty status tends to be associated with a higher 441 

likelihood of particular experiences, such as racial or ethnic discrimination, more 442 

crowding in the home and financial strain, unsafe neighborhoods, and underfunded 443 

public schools, there is large variation in the experiences of children who live in poverty 444 

(DeJoseph et al., 2020). Moreover, experiences that are on average associated with 445 

worse cognitive outcomes (such as being deprived of caregiver support in early life) 446 
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can, under some circumstances, produce better cognitive outcomes (Nweze et al., 447 

2020), suggesting there may be different routes to achieving high cognitive performance 448 

in these cases. Thus, we predicted that differences in environmental influences among 449 

children in poverty would explain whether strong LFPN-DMN connectivity was adaptive 450 

or maladaptive for cognitive test performance.  451 

Our analyses suggested that demographic variables could not be well fit to a pre-452 

determined factor structure based on variables relating to the individual, home, 453 

neighborhood, and school; therefore, we took a data-driven approach to examine the 454 

effects of environmental variables. Because many of these variables are correlated with 455 

each other, we adopted an analytic approach—Ridge regression—that allows for 456 

collinearity. The results of this analysis suggested that, even within the population of 457 

children in poverty alone—children who are often conceptualized as a homogenous 458 

group—variation in their environments was predictive of their cognitive test 459 

performance. We note, however, that this was far from deterministic; a model trained on 460 

two-thirds of the children in poverty explained 4% of the variance in the held-out third, 461 

suggesting these variables accounted for a small amount of variance overall. 462 

 The most predictive variables in the model were main effects of children’s 463 

race/ethnicity, their parents’ highest level of education, and neighborhood-level 464 

characteristics such as the percent of people in their census tract who were 465 

unemployed, had not completed their high school degree by age 25, and were living in 466 

poverty. All of these variables reflect structural barriers that families may face, including 467 

access to resources and institutions, such as high-quality schools, jobs, and healthcare, 468 

stable housing in safe neighborhoods, and experiences of racism within these systems 469 

(Alexander, 2012; Chetty et al., 2018; Desmond & Kimbro, 2015; Kraus et al., 2019; 470 

Shedd, 2015). Thus, the strongest predictors of low-income children's cognitive 471 

performance reflect structural constraints on children’s lives. However, our data also 472 

suggest that being raised by parents with strong ethnic identification may provide a 473 

psychological buffer against these and other threats, in line with other research 474 

(Cardoso & Thompson, 2010; Chen et al., 2015; Costigan et al., 2010; Simons et al., 475 

2002; Varner et al., 2018). 476 
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 Notably, we found—in addition to these main effects of demographic variables—477 

several interactions between these variables and LFPN-DMN connectivity that predicted 478 

cognitive performance. While Ridge regression precludes us from drawing strong 479 

conclusions about the importance of specific variables, we highlight those that 480 

contributed significantly to model fit. For example, children in poverty who attended 481 

public schools, lived in subjectively more dangerous neighborhoods, and were Black 482 

(the next best represented racial group after white race in our sample below poverty) 483 

were more likely to show a positive relation between LFPN-DMN connectivity and test 484 

performance. 485 

 We considered several possible accounts of the current findings. One possibility 486 

is that in order to contend with structural barriers, children experiencing tremendous 487 

adversity in the form of poverty need to monitor their environments (vigilance), as well 488 

as their own behavior or performance (self-monitoring), to a greater degree than do 489 

other children. This hypothesis stems from research showing that individuals living in 490 

poverty are more likely to experience threat in the physical domain (safety; Friedson & 491 

Sharkey, 2015) or in the social domain (racism; Nuru-Jeter et al., 2009; Shedd, 2015); 492 

they are also likely to receive less direct feedback or instruction in crowded or 493 

underfunded public schools (Orfield & Lee, 2005; Reardon & Owens, 2014) and at 494 

home (McLoyd, 1998). Additionally or alternatively, children in poverty may benefit from 495 

thinking more about the past or the future—that is, drawing more on autobiographical 496 

memory and future-oriented thinking and planning (Buckner and Carroll, 2007)—or the 497 

type of productive mind-wandering that fuels creative insights (Christoff et al., 2009; 498 

Dixon et al., 2014; Seli et al., 2015). These hypotheses could be explored in the future 499 

by assessing whether children in poverty with stronger LFPN-DMN connectivity also 500 

show heightened self-monitoring, vigilance, autobiographical memory, and/or creative 501 

problem-solving.  502 

 Based on the available dataset, we explored the plausibility of these hypotheses 503 

by focusing on brain networks that have been associated with monitoring or declarative 504 

memory. Specifically, we explored associations of test performance with DMN/LFPN 505 

and (1) the cingulo-opercular (so-called “salience”) network (CON), to probe whether 506 

differences in monitoring and vigilance are likely to play a role; and (2) retrosplenial 507 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.05.29.124297doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.124297
http://creativecommons.org/licenses/by-nc-nd/4.0/


RUNNING HEAD: Adaptive patterns of brain connectivity 

 19 

temporal network (RTN), to assess the plausibility of an account involving 508 

autobiographical memory or planning.  509 

 While relations with RTN and test performance did not distinguish the children 510 

above and below poverty, we observed a potential interaction between DMN-CON 511 

connectivity and poverty status in its association with test performance. Weaker DMN-512 

CON appeared to be directionally associated with better test performance for children in 513 

poverty, and worse for children above poverty. Although it seems unlikely that this 514 

trend-level group interaction involving the CON is the key driver of the LFPN-DMN 515 

interaction we have uncovered, it does lend credence to the possibility that monitoring 516 

oneself and one's social environment may be one mechanism through which children in 517 

poverty ultimately score highly on cognitive tests. It is also in line with work suggesting 518 

that CON plays a critical role in switching between LFPN and DMN activation (Sridharan 519 

et al., 2008), that connectivity between the three networks changes across age (Uddin 520 

et al., 2010), and that some social cognitive processes rely on all three networks 521 

(Schurz et al., 2020).  522 

 While our study benefited from the ABCD dataset’s rich objective measures of a 523 

child's environment, there are other potential environmental and individual level 524 

variables that should be considered in future research (Bates et al., 2018; Merz, 525 

Wiltshire, et al., 2019; Pollak & Wolfe, 2020). Future research could also benefit from a 526 

more sensitive measure of poverty. Because the publicly available dataset did not 527 

specify which of the 19 study sites corresponded to which American city, as this was 528 

treated as protected information, we determined a cut-off for our poverty threshold 529 

based on cost-of-living across study sites. Because cities across the United States vary 530 

substantially in cost-of-living, we selected a stringent cutoff for the poverty line. Thus, 531 

there are almost certainly families in the above-poverty group that belong in the below-532 

poverty group. If anything, therefore, the use of a more sensitive measure would likely 533 

magnify the group difference that we report. In addition, it is important to note that 534 

children’s performance on cognitive tests can fluctuate from day to day for a variety of 535 

reasons (Dirk & Schmiedek, 2016; Könen et al., 2015), including motivation (Somerville 536 

& Casey, 2010), which is a likely source of noise in our models.  537 
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 Further, while we focused on three tests of non-verbal cognitive test 538 

performance, future studies should examine a broader range of cognitive systems, as 539 

these may be differentially affected by the environment (Rosen, Meltzoff, et al., 2019). 540 

For example, experiences of threat and deprivation have distinct effects on medial and 541 

lateral prefrontal cortex development, respectively (McLaughlin et al., 2019); these 542 

effects may be mediated in part by lower-level visual and attentional processes (Rosen, 543 

Amso, et al., 2019). Clearly, there is a need for research which investigates the precise 544 

mechanisms through which the environment affects specific neural and cognitive 545 

systems, particularly given that much of this environmental variation is still within a 546 

species-typical range of experiences (Humphreys & Salo, 2020). Overall, these results 547 

suggest that different patterns of brain activation for children living in poverty do not 548 

necessarily imply a deficit (Ellwood-Lowe et al., 2016). However, an important next step 549 

will be to follow these children longitudinally to see how LFPN-DMN connectivity and its 550 

relation with cognitive test performance changes across adolescence. 551 

 Another important area of research is to look beyond the canonical cognitive 552 

tasks used in the present study to identify assessments or testing contexts for which 553 

children living in poverty might be particularly adapted to excel (Frankenhuis et al., 554 

2020). Doing so might reveal that some children who underperformed on the cognitive 555 

measures in the current study have strengths in other domains as a result of adaptation 556 

to their environments.  557 

 This study opens several questions about the neural underpinnings of these 558 

findings that should be further examined. Given individual variability in network 559 

topography (Seitzman et al., 2019), future studies should examine whether this 560 

variability contributes to our findings. In addition, LFPN and DMN are both summary 561 

network measures; there could be qualitative differences in node-to-node connectivity, 562 

or smaller interactions between sub-networks, that we are not capturing in the current 563 

study (Buckner & DiNicola, 2019; Dixon et al., 2018; Fornito et al., 2012; Lopez et al., 564 

2020). Moreover, it would be helpful to look at children’s task-based activation and 565 

functional connectivity to examine whether children in poverty are more likely to activate 566 

DMN during neutral, externally driven cognitive tasks outside of their daily 567 
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environments. Finally, given that these metrics only explain a small amount of variance, 568 

it is important to look at the contribution of other neural indices.  569 

Given that the structures that govern success have been largely created around 570 

the needs of middle- and upper-middle class families, understanding the strengths of 571 

families in poverty—and how children may thrive in spite of these structural barriers—is 572 

critical. Altogether, these results highlight the substantial variability of experiences of 573 

children living in poverty, who are often conceptualized as a single, homogenous group 574 

and compared to higher-SES children. Moreover, they suggest that our field’s 575 

assumptions about generalizability of brain-behavior relations are not necessarily 576 

correct. Looking beyond convenience samples of children will ultimately lend more 577 

insight into the neural underpinnings of cognition, and may show that there is not a 578 

general guiding principle about what is optimal in the ways we have thus far assumed. 579 

Not only would this advance benefit developmental cognitive neuroscience as a field, 580 

but it may ultimately allow us to better serve disadvantaged youth. 581 

 582 

 583 

Methods 584 

 585 

Analysis plans were pre-registered prior to data access 586 

(https://aspredicted.org/blind.php?x=3d7ry9, https://aspredicted.org/blind.php?x=tg4tg9) 587 

and analysis scripts are openly available on the Open Science Framework 588 

(https://osf.io/hs7cg/?view_only=d2acb721549d4f22b5eeea4ce51195c7). The original 589 

data are available with permissions on the NIMH Data Archive 590 

(https://nda.nih.gov/abcd). All deviations from the initial analysis plan are fully described 591 

in the Supplement S9. 592 

 Participants. Participants were selected from the larger, ongoing Adolescent 593 

Brain Cognitive Development (ABCD) study, which was designed to recruit a cohort of 594 

children who closely represented the United States population (http://abcdstudy.org; see 595 

Garavan et al., 2018). This study was approved by the Institutional Review Board at 596 

each study site, with centralized IRB approval from the University of California, San 597 

Diego. Informed consent and assent was obtained from all parents and children, 598 
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respectively. We planned to restrict our primary analyses to children who fell below the 599 

poverty line on the supplemental poverty measure, which takes into account regional 600 

differences in cost-of-living (Fox, 2017). For example, while the federal poverty level in 601 

2018 was $25,465 for a family of four, the supplemental poverty level in Menlo Park, 602 

CA—one of the ABCD study sites—was estimated to be over $37,000 around the same 603 

time period. However, upon reviewing the data after our pre-registration, we found that 604 

study site in the ABCD data was de-identified for privacy reasons, and as a result we 605 

could not use study site-specific poverty cut-offs. Instead, we estimated each child’s 606 

poverty status based on their combined family income bracket, the number of people in 607 

their home, and the average supplemental poverty level for the study sites included in 608 

the sample.  609 

Based on these factors, we considered children to be in poverty if they were part 610 

of a family of 4 with a total income of less than $25,000, or a family of 5 or more with a 611 

total income of less than $35,000. We made this determination by comparing children’s 612 

combined household income to the Supplemental Poverty Level for 2015-2017 613 

averaged across study sites (Fox, 2017). We excluded children who did not provide 614 

information about family income and complete data on all three cognitive tests, and/or if 615 

their MRI data did not meet ABCD’s usability criteria (see below). In addition, due to a 616 

scanner error, we excluded post-hoc all children who were scanned on Philips 617 

scanners. This left us with 1034 children identified as likely to be living below poverty 618 

(6839 across the whole sample). Table 1 provides a breakdown of sample 619 

demographics.  620 

 Cognitive test performance. Children’s performance was measured on three 621 

non-verbal cognitive tests. Specifically, children completed two tests from the NIH 622 

Toolbox (http://www.nihtoolbox.org): Flanker, a measure of inhibitory control (Eriksen & 623 

Eriksen, 1974), and Dimensional Change Card Sort (DCCS), a measure of shifting 624 

(Zelazo et al., 2013); and the Matrix Reasoning Task from the Wechsler Intelligence 625 

Test for Children-V (WISC-V), a measure of abstract reasoning (Wechsler, 2014). More 626 

details on each of these tests and their administration in the current study is described 627 

elsewhere (Luciana et al., 2018). These tests were chosen because they all tax higher-628 

level cognitive skills while having relatively low verbal task demands. We created a 629 
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composite measure of performance across these three domains by creating z-scores of 630 

the raw scores on each of these tests and summing them, as pre-registered; the tests 631 

were moderately correlated, 0.23 < r < 0.43, in the whole sample. 632 

 MRI Scan Procedure. Scans were typically completed on the same day as the 633 

cognitive battery, but could also be completed at a second testing session. After 634 

completing motion compliance training in a simulated scanning environment, 635 

participants first completed a structural T1-weighted scan. Next, they completed three to 636 

four five-minute resting state scans, in which they were instructed to lay with their eyes 637 

open while viewing a crosshair on the screen. The first two resting state scans were 638 

completed immediately following the T1-weighted scan; children then completed two 639 

other structural scans, followed by one or two more resting state scans, depending on 640 

the protocol at each specific study site. All scans were collected on one of three 3T 641 

scanner platforms with an adult-size head coil. Structural and functional images 642 

underwent automated quality control procedures (including detecting excessive 643 

movement and poor signal-to-noise ratios) and visual inspection and rating (for 644 

structural scans) of images for artifacts or other irregularities (described in Hagler et al., 645 

2019); participants were excluded if they did not meet quality control criteria, including 646 

at least 12.5 minutes of data with low head motion (framewise displacement < 0.2 mm). 647 

 Scan parameters. Scan parameters were optimized to be compatible across 648 

scanner platforms, allowing for maximal comparability across the 19 study sites. All T1-649 

weighted scans were collected in the axial position, with 1mm3 voxel resolution, 256 x 650 

256 matrix, 8 degree flip angle, and 2x parallel imaging. Other scan parameters varied 651 

by scanner platform (Siemens: 176 slices, 256 x 256 FOV, 2500 ms TR, 2.88 ms TE, 652 

1060 ms TI; Philips: 225 slices, 256 x 240 FOV, 6.31 ms TR, 2.9 ms TE, 1060 ms TI; 653 

GE: 208 slices, 256 x 256 FOV, 2500 ms TR, 2 ms TE, 1060 ms TI). All fMRI scans 654 

were collected in the axial position, with 2.4mm3 voxel resolution, 60 slices, 90 x 90 655 

matrix, 216 x 216 FOV, 800ms TR, 30 ms TE, 52 degree flip angle, and 6 factor 656 

MultiBand Acceleration. Motion was monitored during scan acquisition using real-time 657 

procedures to adjust scanning procedures as necessary (see Casey et al., 2018); this 658 

prospective motion correction procedure significantly reduces scan artifacts due to head 659 

motion (Hagler et al., 2019). 660 
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 Resting state fMRI processing. Data processing was carried out using the 661 

ABCD pipeline and carried out by the ABCD Data Analysis and Informatics Core; more 662 

details are reported by Hagler et al. (2019). Briefly, T1-weighted images were corrected 663 

for gradient nonlinearity distortion and intensity inhomogeneity, and rigidly registered to 664 

a custom atlas. They were run through FreeSurfer’s automated brain segmentation to 665 

derive white matter, ventricle, and whole brain ROIs. Resting state images were first 666 

corrected for head motion, displacement estimated from field map scans, B0 distortions, 667 

and gradient nonlinearity distortions, and registered to the structural images using 668 

mutual information. Initial scan volumes were removed, and each voxel was normalized 669 

and demeaned. Signal from estimated motion time courses (including six motion 670 

parameters, their derivatives, and their squares), quadratic trends, and mean time 671 

courses of white matter, gray matter, and whole brain, plus first derivatives, were 672 

regressed out, and frames with greater than 0.2mm displacement were excluded. While 673 

the removal of whole brain signal (global signal reduction) is controversial in the context 674 

of interpreting anti-correlations (Chai et al., 2012; Murphy & Fox, 2017), we note that we 675 

are able to replicate prior studies showing that a more negative link between our 676 

networks of interest is related to test performance in our higher-income sample (see 677 

Results), lending credence to the inclusion of this step in the analysis pipeline for our 678 

purposes. 679 

 The data underwent temporal bandpass filtering (0.009 – 0.08 Hz). Next, 680 

standard ROI-based analyses were adapted to allow for analysis in surface space 681 

(Hagler et al., 2019). Specifically, time courses were projected onto FreeSurfer’s cortical 682 

surface, upon which 13 functionally-defined networks (Gordon et al., 2016) were 683 

mapped and time courses for FreeSurfer’s standard cortical and subcortical ROIs 684 

extracted (Desikan et al., 2006; Fischl et al., 2002). Correlations for each pair of ROIs 685 

both within and across each of the 13 networks were calculated. These were z-686 

transformed and averaged to calculate within-network connectivity for each network (the 687 

average correlation of each ROI pair within the network) and between-network 688 

connectivity across all networks (the average correlation of pairs of each ROI in one 689 

network with each ROI in another network). Here, we examined only within-network 690 

connectivity for LFPN and between-network LFPN-DMN connectivity. 691 
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 Altogether, the process for curbing potential contamination from head motion was 692 

three-fold. First there was real-time head motion monitoring and correction, as 693 

described above, and a thorough and systematic check of scan quality in collaboration 694 

with ABCD’s Data Analysis and Informatics Center. Second, signal from motion time 695 

courses was regressed out during preprocessing, and frames with greater than 0.2mm 696 

of framewise displacement were excluded from calculations altogether, as were time 697 

periods with less than five contiguous low-motion frames. Third, a final censoring 698 

procedure was employed to identify potential lingering effects of motion by excluding 699 

any frames with outliers in spatial variation across the brain (Hagler et al., 2019). In 700 

combination, these procedures reduce motion artifacts to the extent possible (Power et 701 

al., 2014). 702 

 Analysis. Analyses were performed using R version 3.6.0 (R Core Team, 2017). 703 

We performed two separate linear mixed effects models using the lme4 package (D. 704 

Bates et al., 2015) to test the relation between cognitive test scores and (1) LFPN-DMN 705 

connectivity, and (2) LFPN within-network connectivity. In our initial pre-registration, we 706 

did not consider the nested structure of the data or potential confounds. To determine 707 

whether to include these in our model in a data-driven fashion, we tested whether each 708 

of the following variables contributed significantly to model fit: (1) nesting within study 709 

site, (2) nesting within families, (3) child age, and (4) mean levels of motion in resting 710 

state scan. All except (2) contributed to model fit at a level of p < 0.01 and were thus 711 

retained in final models. We note that our reported results are similar when we perform 712 

simple linear regression with no covariates, exactly as pre-registered. In addition, 713 

results are similar when including all of the covariates in the ABCD study’s default LMM 714 

package (https://deap.nimhda.org/) – specifically, when adding fixed effects of 715 

race/ethnicity, sex, and parent marital status to the same model above. To determine 716 

the significance of our neural connectivity metrics, we tested whether these contributed 717 

to model fit. In all cases, we compared models without the inclusion of the variable of 718 

interest to models with this variable included, and calculated whether the variable of 719 

interest contributed significantly to model fit, using the anova function for likelihood ratio 720 

test model comparison. 721 
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 In our second set of analyses, we sought to explore the unexpected results from 722 

our first set of analyses by asking whether certain environmental variables determine 723 

whether LFPN-DMN connectivity is positively or negatively associated with cognitive 724 

test performance across individuals. To do this, we gathered 31 environmental variables 725 

of interest, spanning home, neighborhood, and school contexts. Upon examining the 726 

data, we learned that three of these were not collected at the baseline visit and thus 727 

could not be included. Moreover, we made the decision to include ethnicity separate 728 

from race, as it was collected, to retain maximal information. The final 29 environmental 729 

variables are listed in Table 2. In preparation for our subsequent analyses, we mean-730 

centered and standardized these variables in the larger dataset to allow for potential 731 

comparisons across the high- and low-income children. Levels of each factor variables 732 

were broken down into separate dummy-coded variables for inclusion in factor and 733 

ridge analyses. When data were missing, they were interpolated using the mice 734 

package in R (van Buuren & Groothuis-Oudshoorn, 2011). 735 

 We first performed a confirmatory factor analysis using the lavaan package in R 736 

(Rosseel, 2012) to see whether individual and home, neighborhood, and school 737 

variables can be separated into distinct factors. If this achieved adequate fit 738 

(significantly better fit than a single factor model and CFI>9), we planned to perform a 739 

linear mixed effects model to test the association of cognitive test performance with an 740 

interaction between LFPN-DMN connectivity and each factor score. 741 

 We next performed a ridge regression using the glmnet package in R (Friedman 742 

et al., 2010). This analysis technique penalizes variables in a model that have little 743 

predictive power, shrinking their coefficient closer to zero, thus allowing for the inclusion 744 

of many potential predictors while reducing model complexity. These models also 745 

include a bias term, reducing the chances of overfitting to peculiarities of the data, a 746 

common pitfall of ordinary least squares regression. Finally, ridge regression also deals 747 

well with multi-collinearity in independent variables; in contrast to alternatives such as 748 

Lasso, if two variables are highly correlated and both predictive of the dependent 749 

variable, coefficients of both will be weighted more heavily in ridge. 750 

 We fit ridge regressions predicting cognitive test score residuals, which partialled 751 

out the covariates included in our basic linear mixed effects models (random intercept 752 
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for study site, fixed effects for age and motion), from an interaction between LFPN-DMN 753 

connectivity and each environmental variable of interest. This analysis used nested 754 

cross-validation. Specifically, we first split the data into a training (2/3) and testing (1/3) 755 

set. We created test score residuals in the training and testing sets separately to avoid 756 

data leakage (Scheinost et al., 2019), after rescaling the testing data by the training 757 

data. We then tuned parameters of the ridge regression on the training set using 5-fold 758 

cross-validation. Ultimately, we used the best-performing model to predict cognitive test 759 

scores in the held-out testing set and assessed model fit using R2 cross-validated. An 760 

R2
CV above 0 indicates that the model performed above chance; otherwise, it will be 761 

below 0. We evaluated the significance of specific variables in our model by plugging in 762 

the lambda parameter from the best-performing model to the linearRidge function in the 763 

ridge package in R (Cule & Moritz, 2019), on the whole sample of children in poverty. 764 

 Robustness analyses. We did several additional analyses to test the 765 

robustness of our results. First, we repeated our primary analyses as robust linear 766 

mixed effects models, using the robustlmm package in R (Koller, 2016). These models 767 

detect outliers or other sources of contamination in the data that may affect model 768 

validity, and perform a de-weighting procedure based on the extent of contamination 769 

introduced. Next, we performed a bootstrapping procedure intended to probe how 770 

frequently the parameter estimate observed in the children in poverty alone would be 771 

expected to be observed in a larger population of children living above poverty 772 

(Supplement S4). We also performed a permutation procedure to examine the extent to 773 

which the model parameters from the higher-income children alone could explain the 774 

data in the children in poverty (Supplement S5). Finally, given that children living in 775 

poverty had significantly more motion than children living above poverty, we repeated 776 

our primary analyses with only those children who met an extremely stringent motion 777 

threshold of 0.2mm (Supplement S6). 778 

 Additional R packages used for data cleaning, analysis, and visualization include: 779 

dplyr (Wickham et al., 2019); ggplot2 (Wickham, 2016); car (J. Fox & Weisberg, 2011); 780 

corrplot (Wei & Simko, 2017); MuMIn (Bartoń, 2019); tidyr (Wickham & Henry, 2019); 781 

summarytools (Comtois, 2019); finalfit (Harrison et al., 2019); fastDummies (Kaplan, 782 

2019); caret (from Jed Wing et al., 2019); scales (Wickham, 2018); foreign (R Core 783 
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Team, 2018); MASS (Venables & Ripley, 2002); sjPlot (Lüdecke, 2019); tableone 784 

(Yoshida, 2019); gtools (Warnes et al., 2018). 785 

 786 

Data availability 787 

 788 

 All raw and processed data used for these analyses are available with 789 

institutional permission on the NIMH Data Archive (https://nda.nih.gov/abcd). 790 

 791 

Code availability 792 

 793 

 All analysis scripts used for the current study are publicly available on the Open 794 

Science Framework 795 

(https://osf.io/hs7cg/?view_only=d2acb721549d4f22b5eeea4ce51195c7). 796 

  797 
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1291 

Figure 1. Illustration of the variability of cognitive test performance within every level of 1292 

family income in the sample (N = 6839). Colors indicate whether children were classified as 1293 

living in poverty, based on a combination of their family income and number of people in 1294 

the home. Replicating prior studies, higher income is associated with higher cognitive test 1295 

performance (R = 0.24); however, it is important to acknowledge this substantial variability 1296 

within and overlap between children at each level of family income. 1297 

 1298 
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 1299 
Figure 2. Relations between resting state network metrics and cognitive test score residuals, for 1300 
children living above poverty (dark blue) and below poverty (light blue). Models include fixed 1301 
effects for age and motion and a random effect for study site. 95% confidence intervals for a 1302 
linear model calculated and displayed using the geom_smooth function in ggplot. Panel A: 1303 
Children living above poverty show an expected, negative, relation between LFPN-DMN 1304 
connectivity and test performance, B = -1.41, SE = 0.45; p = 0.002, while children living below 1305 
poverty show the opposite pattern, B = 2.11, SE = 1.12; p = 0.060, interaction: X2 (1) = 8.99, p = 1306 
0.003. Panel B: Children across the sample show a non-significant positive relation between 1307 
LFPN-LFPN within-network connectivity and test performance, above poverty: B = 0.34, SE = 1308 
0.36; p = 0.346; below poverty: B = 0.24, SE = 0.87; p = 0.783; interaction: X2 (1) = 0.0005, p = 1309 
0.982. Networks functionally defined using the Gordon parcellation scheme; on left, LFPN is 1310 
shown in yellow and DMN shown in red, figures adapted from (Gordon et al., 2016). 1311 
 1312 
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 1313 

 1314 
Figure 3. Interactions between demographic variables and LFPN-DMN connectivity in 1315 
predicting cognitive test scores, for children below poverty. The majority of non-public schools 1316 
were charter and private schools. In addition, only white and Black/African American race are 1317 
displayed as these were the most represented in the current sample, though there were also 1318 
suggestive interactive effects for children of mixed race and Hispanic ethnicity. 89% level 1319 
confidence intervals for predicted effects calculated and displayed using the sjPlot package in R 1320 
(Lüdecke, 2019). 1321 

  1322 
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 1323 
Figure 4. Exploratory analyses with cingulo-opercular network (CON, panels A-B) and 1324 
retrosplenial temporal network (RTN, panels C-D). Panel A: weaker LFPN-CON connectivity 1325 
was associated with better test performance for both groups, with little evidence of an 1326 
interaction (main effect: B = -1.14, SE = 0.45, t (6824) = -2.53; X2 (1) = 11.76, p = 0.001; 1327 
interaction: B = -1.42, SE = 1.03, t (6824) = -1.37; X2 (1) = 1.87, p = 0.171). Panel B: DMN-CON 1328 
connectivity was not consistently associated with test performance, though it was directionally 1329 
positive for children above poverty and negative for children below poverty (main effect: B = 1330 
0.47, SE = 0.38, t (6823) = 1.24; X2 (1) = 0.27, p = 0.601; interaction: B = -1.66, SE = 0.88, t 1331 
(6823) = -1.88; X2 (1) = 3.53, p = 0.060). Panels C and D: weaker LFPN-RTN connectivity and 1332 
weaker DMN-RTN connectivity were both associated with better test performance, with little 1333 
evidence of an interaction (Panel C: LFPN-RTN main effect: B = -0.90, SE = 0.36, t (6829) = -1334 
2.54; X2 (1) = 7.13, p = 0.008; LFPN-RTN interaction: B = 0.23, SE = 0.84, t (6829) = 0.27; X2 1335 
(1) = 0.08, p = 0.784; Panel D: DMN-RTN main effect: B = -0.99, SE = 0.32, t (6826) = -3.14; X2 1336 
(1) = 16.24, p < 0.001; DMN-RTN interaction: B = -0.95, SE = 0.75, t (6826) = -1.27; X2 (1) = 1337 
1.61, p = 0.205). As in Figure 2, plots show relations between resting state network metrics and 1338 
cognitive test score residuals, for children living above poverty (dark blue) and below poverty 1339 
(light blue). Models include fixed effects for age and motion and a random effect for study site. 1340 
95% confidence intervals for a linear model calculated and displayed using the geom_smooth 1341 
function in ggplot.   1342 
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Table 1. Participant characteristics. Demographic information in plain text; brain and cognitive 1343 
variables italicized.  1344 

  

Above 
poverty 

(n  = 5805) 

Below 
poverty 

(n = 1034) p-test 

Age in months (mean (SD)) 119.44 (7.54) 118.89 (7.50) 0.032 

Sex at birth (%)   0.055 

Other/did not disclose 0 (0.0) 1 (0.1)  
Female 2913 (50.2) 511 (49.4)  
Male 2892 (49.8) 522 (50.5)  

Primary caregiver in study (%)   <0.001 

Biological mother 4904 (84.5) 920 (89.0)  
Biological father 645 (11.1) 54 (5.2)  
Adoptive parent 137 (2.4) 18 (1.7)  
Custodial parent 43 (0.7) 23 (2.2)  
Other 76 (1.3) 19 (1.8)  

Site (de-identified) (%)   <0.001 

site02 429 (7.4) 19 (1.8)  
site03 285 (4.9) 130 (12.6)  
site04 369 (6.4) 122 (11.8)  
site05 203 (3.5) 42 (4.1)  
site06 395 (6.8) 16 (1.5)  
site07 170 (2.9) 42 (4.1)  
site08 177 (3.0) 14 (1.4)  
site09 250 (4.3) 24 (2.3)  
site10 297 (5.1) 101 (9.8)  
site11 224 (3.9) 67 (6.5)  
site12 298 (5.1) 73 (7.1)  
site13 361 (6.2) 61 (5.9)  
site14 434 (7.5) 15 (1.5)  
site15 127 (2.2) 85 (8.2)  
site16 820 (14.1) 70 (6.8)  
site18 208 (3.6) 19 (1.8)  
site20 422 (7.3) 76 (7.4)  
site21 314 (5.4) 54 (5.2)  
site22 22 (0.4) 4 (0.4)  

RSfMRI mean framewise displacement (mean (SD)) 0.19 (0.15) 0.23 (0.18) <0.001 

LFPN-DMN connectivity (mean (SD)) 0.058 (0.06) 0.061 (0.06) 0.061 

LFPN-LFPN connectivity (mean (SD)) 0.21 (0.07) 0.21 (0.08) 0.286 

Matrix reasoning raw score (mean (SD)) 18.67 (3.51) 16.35 (3.89) <0.001 

Flanker raw score (mean (SD)) 95.34 (8.03) 91.92 (10.24) <0.001 

Card sort raw score (mean (SD)) 94.09 (8.58) 89.83 (9.79) <0.001 

 1345 
  1346 
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Table 2. Wider environmental information. Variables included in the ridge regression predicting 1347 
cognitive test scores. All except income were used in primary models; additional tests confirmed 1348 
that income did not add predictive power above and beyond these variables. 1349 

 
Above poverty 

(n  = 5805) 
Below poverty 

(n = 1034) p-test 

Combined family income (%)   <0.001 

Less than $5,000 0 (0.0) 187 (18.1)  

$5,000 through 11,999 0 (0.0) 219 (21.2)  

$12,000 through $15,999 0 (0.0) 154 (14.9)  

$16,000 through $24,999 0 (0.0) 280 (27.1)  

$25,000 through $34,999 215 (3.7) 194 (18.8)  

$35,000 through $49,999 579 (10.0) 0 (0.0)  

$50,000 through $74,999 972 (16.7) 0 (0.0)  

$75,000 through $99,999 1050 (18.1) 0 (0.0)  

$100,000 through $199,999 2157 (37.2) 0 (0.0)  

$200,000 and greater 832 (14.3) 0 (0.0)  

Parents' highest level of education (n, %)   <0.001 

3rd grade 1 (0.0) 0 (0.0)  

4th grade 0 (0.0) 1 (0.1)  

5th grade 0 (0.0) 1 (0.1)  

6th grade 4 (0.1) 13 (1.3)  

7th grade 1 (0.0) 2 (0.2)  

8th grade 1 (0.0) 8 (0.8)  

9th grade 6 (0.1) 24 (2.3)  

10th grade 10 (0.2) 26 (2.5)  

11th grade 12 (0.2) 34 (3.3)  

12th grade 13 (0.2) 47 (4.5)  

High school graduate 167 (2.9) 169 (16.3)  

GED or equivalent 66 (1.1) 91 (8.8)  

Some college 590 (10.2) 297 (28.7)  

Associate degree: occupational 374 (6.4) 135 (13.1)  

Associate degree: academic 297 (5.1) 63 (6.1)  

Bachelor's degree 1818 (31.3) 86 (8.3)  

Master's degree 1677 (28.9) 32 (3.1)  

Professional school degree 364 (6.3) 4 (0.4)  

Doctoral degree 403 (6.9) 1 (0.1)  

People living in home (mean (SD)) 4.76 (1.64) 4.97 (2.89) 0.001 

Any siblings (yes, %) 1905 (32.8) 269 (26.0) <0.001 
Hours/week spent at another household  
(mean (SD)) 5.34 (19.45) 5.45 (21.63) 0.869 

Financial stress (0-7; mean (SD)) 0.28 (0.85) 1.32 (1.61) <0.001 

Race (%)   <0.001 
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Native American/Alaska Native 17 (0.3) 14 (1.4)  

Asian 126 (2.2) 8 (0.8)  

Black/African American 495 (8.5) 377 (36.5)  

Pacific Islander 8 (0.1) 1 (0.1)  

Other 159 (2.7) 74 (7.2)  

White 4263 (73.4) 386 (37.3)  

Mixed 696 (12.0) 141 (13.6)  

Refuse to answer 41 (0.7) 33 (3.2)  

Hispanic/Latino ethnicity (no, %) 4776 (83.1) 682 (67.3) <0.001 

Parent marital status (%)   <0.001 

Married 4621 (79.7) 302 (29.6)  

Widowed 33 (0.6) 22 (2.2)  

Separated/divorced 600 (10.4) 232 (22.7)  

Never married 319 (5.5) 369 (36.1)  

Living with partner 223 (3.8) 96 (9.4)  

Generational status (%)   <0.001 

Parent born outside U.S. 708 (12.2) 201 (19.5)  

Grandparent born outside U.S. 933 (16.1) 90 (8.7)  

Child born outside U.S. 118 (2.0) 32 (3.1)  

Parents and grandparents born in U.S. 4043 (69.7) 709 (68.7)  

School setting (%)   <0.001 

Not in school 19 (0.3) 6 (0.6)  

Regular public school 4836 (83.3) 891 (86.2)  

Regular private school 346 (6.0) 40 (3.9)  

Charter school 412 (7.1) 79 (7.6)  

Vocational/tech school 2 (0.0) 1 (0.1)  

Cyber school 7 (0.1) 2 (0.2)  

Home school 112 (1.9) 2 (0.2)  

School for behavioral/emotional problems 7 (0.1) 3 (0.3)  

Other 63 (1.1) 10 (1.0)  
Youth-reported supportive school environment 
(6-24; mean (SD)) 19.95 (2.63) 19.96 (3.22) 0.949 
Youth-reported school involvement  
(4-16; mean (SD)) 13.11 (2.25) 13.22 (2.44) 0.162 
Youth-reported school disengagement  
(2-8; mean (SD)) 3.66 (1.39) 3.79 (1.57) 0.006 
Census: % of people over age 25 with at least a 
high school diploma (mean (SD)) 91.13 (8.76) 81.30 (12.11) <0.001 

Census: income disparity (mean (SD)) 1.81 (1.17) 3.13 (1.34) <0.001 
Census: % of occupied units without complete 
plumbing (mean (SD)) 0.28 (0.64) 0.44 (0.83) <0.001 
Census: % of families below the poverty level 
(mean (SD)) 8.35 (8.68) 20.93 (14.61) <0.001 
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Census: % of labor force aged >=16 y 
unemployed (mean (SD)) 7.69 (4.52) 13.15 (7.49) <0.001 

Census: uniform crime reports (mean (SD)) 43774.47 (69634.30) 43204.49 (57108.32) 0.81 

Census: adult violent crime reports (mean (SD)) 2660.87 (6271.58) 2642.93 (5030.45) 0.933 
Census: estimated lead risk  
(1-10; mean (SD)) 4.40 (2.98) 6.77 (2.89) <0.001 
Parent-reported neighborhood safety  
(1-5; mean (SD)) 4.05 (0.85) 3.34 (1.11) <0.001 
Parent self-reported aggressive behavior  
(0-30; mean (SD)) 3.14 (3.27) 4.47 (4.58) <0.001 
Parent self-reported intrusive behavior  
(0-12; mean (SD)) 1.01 (1.43) 1.08 (1.43) 0.198 
Parent self-reported withdrawn behavior  
(0-18; mean (SD)) 1.35 (1.85) 2.46 (2.83) <0.001 
Parent ethnic identification  
(1-5; mean (SD)) 2.71 (0.86) 2.58 (0.94) <0.001 
Youth-reported family conflict  
(0-9; mean (SD)) 1.93 (1.92) 2.45 (2.04) <0.001 
Youth-reported parental monitoring  
(1-5; mean (SD)) 4.43 (0.46) 4.31 (0.59) <0.001 
Youth-reported parental acceptance  
(1-3; mean (SD)) 2.80 (0.29) 2.76 (0.33) <0.001 
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Table 3. Estimated coefficients from Ridge regression predicting children’s cognitive test 1352 
scores, when controlling for fixed effects of age and motion and random effects of study site, for 1353 
all children below the poverty line. Interactions with and main effect of LFPN-DMN connectivity 1354 
italicized. 1355 
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(Intercept) 0.12 NA NA NA NA 

Black race -0.10 -1.46 0.28 5.29 0.000 

Parents' highest level of education (years) 0.05 1.53 0.32 4.76 0.000 

Census: % of people over age 25 with >= high school diploma  0.03 1.06 0.29 3.69 0.000 

White race 0.06 0.98 0.29 3.42 0.001 

Asian race 0.37 1.06 0.33 3.23 0.001 

Census: % of labor force aged >=16 y unemployed  -0.02 -0.77 0.28 2.75 0.006 

Census: % of families below the poverty level  -0.02 -0.70 0.26 2.71 0.007 

Parent ethnic identification  0.03 0.87 0.33 2.68 0.007 

Youth-reported school disengagement  -0.02 -0.81 0.31 2.61 0.009 

Census: income disparity  -0.02 -0.67 0.26 2.57 0.010 

LFPN-DMN x Public school 0.27 0.53 0.22 2.41 0.016 

LFPN-DMN x Parent-reported neighborhood safety -0.19 -0.67 0.29 2.35 0.019 

Census: estimated lead risk -0.02 -0.60 0.28 2.17 0.030 

LFPN-DMN x Mixed race 0.74 0.65 0.31 2.07 0.038 

Third generation American -0.04 -0.52 0.25 2.04 0.042 

LFPN-DMN x Parents' highest level of education 0.15 0.52 0.27 1.90 0.057 

LFPN-DMN 0.18 0.34 0.20 1.72 0.085 

LFPN-DMN x Black race -0.28 -0.43 0.25 1.70 0.089 

LFPN-DMN x non-Hispanic 0.20 0.38 0.22 1.67 0.094 

Mixed race 0.05 0.52 0.31 1.66 0.096 

LFPN-DMN x White race 0.31 0.46 0.28 1.61 0.107 

LFPN-DMN x Not in school -3.15 -0.48 0.31 1.54 0.123 

LFPN-DMN x Census: % of occupied units without complete 
plumbing  

0.16 0.49 0.32 1.54 0.124 

Parent never married -0.03 -0.44 0.29 1.53 0.125 

First generation American 0.03 0.38 0.27 1.40 0.160 

LFPN-DMN x Hours/week spent at another household -0.14 -0.46 0.33 1.39 0.165 

Second generation American 0.04 0.40 0.31 1.29 0.197 

LFPN-DMN x Parent self-reported intrusive behavior  0.15 0.39 0.31 1.27 0.206 

Parent-reported neighborhood safety 0.01 0.37 0.31 1.18 0.238 

LFPN-DMN x First-generation American 0.26 0.32 0.27 1.17 0.243 

LFPN-DMN x Parent ethnic identification 0.12 0.37 0.32 1.15 0.250 

Native American/Alaska Native 0.10 0.36 0.32 1.12 0.261 
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Parent married 0.02 0.33 0.30 1.11 0.266 

LFPN-DMN x Census: % of people over age 25 with >= a high 
school diploma 

0.08 0.29 0.26 1.11 0.269 

LFPN-DMN x Youth born outside U.S. 0.83 0.36 0.33 1.09 0.274 

LFPN-DMN x Private school -0.70 -0.35 0.32 1.09 0.278 

Other race -0.04 -0.33 0.31 1.07 0.286 

LFPN-DMN x Parent separated/divorced 0.25 0.31 0.29 1.06 0.288 

LFPN-DMN x Youth-reported school involvement 0.10 0.30 0.29 1.05 0.294 

LFPN-DMN x Second-generation American -0.44 -0.32 0.31 1.02 0.308 

Youth-reported parental acceptance -0.01 -0.30 0.31 0.97 0.333 

Any siblings -0.02 -0.30 0.33 0.90 0.366 

Other school setting 0.08 0.29 0.32 0.89 0.372 

LFPN-DMN x People living in home -0.06 -0.27 0.31 0.87 0.387 

LFPN-DMN x Third-generation American 0.10 0.19 0.23 0.86 0.392 

LFPN-DMN x Youth-reported school disengagement -0.09 -0.26 0.31 0.85 0.397 

Parent widowed -0.06 -0.27 0.33 0.81 0.418 

Not in school -0.11 -0.25 0.31 0.80 0.425 

Home school -0.16 -0.22 0.30 0.73 0.463 

LFPN-DMN x Financial stress -0.05 -0.22 0.31 0.73 0.468 

Parent separated/divorced 0.02 0.22 0.31 0.72 0.471 

Census: adult violent crime reports  0.01 0.20 0.27 0.72 0.472 

LFPN-DMN x home school -2.82 -0.21 0.30 0.71 0.478 

Youth-reported supportive school environment  -0.01 -0.21 0.30 0.70 0.483 

LFPN-DMN x Asian race 0.44 0.21 0.31 0.70 0.487 

LFPN-DMN x Census: income disparity  0.05 0.16 0.23 0.70 0.487 

Census: uniform crime reports  0.01 0.19 0.28 0.68 0.498 

LFPN-DMN x Youth-reported parental monitoring -0.06 -0.21 0.31 0.67 0.503 

LFPN-DMN x Any siblings 0.15 0.20 0.30 0.65 0.517 

Hours/week spent at another household  -0.01 -0.21 0.34 0.63 0.526 

LFPN-DMN x Native American/Alaska Native 0.51 0.19 0.32 0.59 0.553 

LFPN-DMN x Youth-reported family conflict  0.06 0.18 0.31 0.58 0.565 

LFPN-DMN x School for behavioral/emotional problems -2.37 -0.20 0.35 0.57 0.566 

LFPN-DMN x Youth-reported supportive school environment  0.05 0.17 0.30 0.56 0.578 

LFPN-DMN x Parent married 0.11 0.16 0.28 0.55 0.580 

LFPN-DMN x Census: adult violent crime reports  -0.06 -0.15 0.27 0.55 0.581 

School for behavioral/emotional problems 0.10 0.18 0.35 0.51 0.612 

LFPN-DMN x Census: estimated lead risk  0.04 0.13 0.25 0.50 0.616 

Youth-reported school involvement 0.00 -0.14 0.30 0.49 0.625 

People living in home 0.00 -0.15 0.31 0.48 0.633 

Private school -0.02 -0.15 0.32 0.48 0.634 

Child born outside U.S. -0.03 -0.15 0.33 0.46 0.648 
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LFPN-DMN x Census: uniform crime reports  -0.05 -0.13 0.28 0.45 0.650 

LFPN-DMN x Other race -0.17 -0.13 0.31 0.44 0.661 

Youth-reported parental monitoring 0.00 -0.13 0.32 0.42 0.671 

Parent self-reported aggressive behavior  0.00 0.12 0.29 0.42 0.673 

Youth-reported family conflict 0.00 -0.12 0.32 0.39 0.695 

LFPN-DMN x Charter school -0.16 -0.11 0.31 0.37 0.710 

Financial stress 0.00 0.11 0.33 0.35 0.726 

LFPN-DMN x Head motion 0.03 0.09 0.30 0.30 0.763 

LFPN-DMN x Parent never married 0.05 0.07 0.27 0.26 0.795 

LFPN-DMN x Parent self-reported withdrawn behavior  0.02 0.08 0.30 0.25 0.802 

Head motion 0.00 0.07 0.33 0.21 0.835 

LFPN-DMN x Parent self-reported aggressive behavior  0.02 0.06 0.29 0.19 0.847 

Hispanic ethnicity 0.00 0.05 0.24 0.19 0.849 

Non-hispanic ethnicity 0.00 -0.05 0.24 0.19 0.849 

Parent self-reported intrusive behavior  0.00 0.06 0.31 0.19 0.852 

Age 0.00 0.06 0.33 0.17 0.865 

Public school 0.00 0.05 0.29 0.17 0.868 

LFPN-DMN x Parent widowed -0.18 -0.05 0.33 0.17 0.869 

LFPN-DMN x Census: % of families below the poverty level  0.01 0.04 0.23 0.16 0.870 

Census: % of occupied units without complete plumbing  0.00 0.05 0.33 0.16 0.873 

LFPN-DMN x Youth-reported parental acceptance 0.01 0.04 0.30 0.13 0.900 

Parent living with partner 0.00 0.03 0.32 0.11 0.914 

LFPN-DMN x Parent living with partner -0.04 -0.03 0.31 0.10 0.919 

LFPN-DMN x Hispanic ethnicity -0.02 -0.03 0.26 0.10 0.920 

LFPN-DMN x Age 0.01 0.02 0.32 0.07 0.946 

LFPN-DMN x Other school setting 0.03 0.01 0.32 0.03 0.976 

LFPN-DMN x Census: % of labor force aged >=16 y 
unemployed 

0.00 -0.01 0.25 0.02 0.981 

Charter school 0.00 -0.01 0.30 0.02 0.982 

Parent self-reported withdrawn behavior  0.00 0.00 0.30 0.00 0.997 
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