
Privacy-preserving genotype imputation with fully

homomorphic encryption

Gamze Gürsoy1,2,#, Eduardo Chielle3,#, Charlotte M. Brannon1,2, Michail

Maniatakos∗3 and Mark Gerstein†1,2,4

1Program in Computational Biology and Bioinformatics, Yale University, New

Haven, CT 06520, USA

2Department of Molecular Biophysics and Biochemistry, Yale University, New

Haven, CT 06520, USA

3Department of Electrical and Computer Engineering, New York University Abu

Dhabi, Abu Dhabi, UAE

4Department of Computer Science, Yale University, New Haven, CT 06520, USA

#These authors contributed equally to this work.

April 8, 2020

∗michail.maniatakos@nyu.edu; Co-corresponding Author
†pi@gersteinlab.org; Co-corresponding Author

1

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.29.124412

Abstract

Genotype imputation is the statistical inference of unknown genotypes using known pop-

ulation haplotype structures observed in large genomic datasets, such as HapMap and 1000

genomes project. Genotype imputation can help further our understanding of the relationships

between genotypes and traits, and is extremely useful for analyses such as genome-wide asso-

ciation studies and expression quantitative loci inference. Increasing the number of genotyped

genomes will increase the statistical power for inferring genotype-phenotype relationships,

but the amount of data required and the compute-intense nature of the genotype imputation

problem overwhelms servers. Hence, many institutions are moving towards outsourcing cloud

services to scale up research in a cost effective manner. This raises privacy concerns, which

we propose to address via homomorphic encryption. Homomorphic encryption is a type of

encryption that allows data analysis on ciphertexts, and would thereby avoid the decryption

of private genotypes in the cloud. Here we develop an efficient, privacy-preserving genotype

imputation algorithm, p-Impute, using homomorphic encryption. Our results showed that the

performance of p-Impute is equivalent to the state-of-the-art plaintext solutions, achieving up

to 99% micro area under curve score, and requiring a scalable amount of memory and compu-

tational time.

Keywords: genome privacy, genotype imputation, homomorphic encryption

2

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.29.124412

1 Introduction

The decreasing cost of DNA sequencing technologies and the clinical importance of genomic

characterization of individuals have resulted in an exponential increase of available human genetic

data [1]. Such data collection has tremendous clinical value in terms of understanding and charac-

terizing rare diseases and genotype-phenotype associations [2, 3]. However, the large amounts of

data being collected and the complexity of genomic analyses overwhelm the capacity of servers.

Therefore, funding agencies and institutions have begun outsourcing cloud services. For example,

The National Human Research Institute Genomic Data Science Analysis, Visualization, and In-

formatics Lab-space (AnVIL) [4] provides a scalable cloud-based infrastructure for genomic data

access, sharing and computing across large genomic, and genomic-related data sets. These cloud-

based services raise privacy issues when used for sharing patients’ genomic data. With the increas-

ing use of genetic information in new avenues, such as forensics, the need for privacy-preserving

analysis methods is greater than ever.

Genotype imputation is the process of statistical inference of unknown genotypes in a genome

using the correlation between the single nucleotide polymorphisms (SNP) sites observed in population-

based haplotype structures. Genotype imputation has immense value in phenotype-genotype as-

sociation studies, especially when the number of study participants is large. It allows researchers

to perform cost-effective genotyping methods, such as genotyping arrays or low-coverage whole

genome sequencing, and obtain missing or low-quality genotypes through statistical inference. As

the input and output of genotype imputation methods are sets of participants’ genotypes, perform-

ing this analysis in the cloud could have serious privacy implications, such as exposure of the

sensitive data to malicious parties. On the other hand, the large amounts of data required to boost

statistical power makes local storage and analysis cost prohibitive. Therefore, it is essential to

develop privacy-preserving genotype imputation methods that allow users to utilize cloud-based

services while protecting privacy. Here we develop a privacy-preserving genotype imputation

3

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.29.124412

method called p-Impute based on homomorphic encryption (HE). p-Impute allows users to per-

form genotype imputation on encrypted genotype data and returns encrypted genotype outputs,

hence removing the privacy concerns related to outsourcing cloud services.

Homomorphic encryption (HE) is a form of encryption with the capability for computing on en-

crypted data without access to the secret key [5]. Homomorphic encryption schemes are classified

based on the different kinds of computation that they can successfully perform on encrypted data.

Partially homomorphic encryption (PHE) supports the evaluation of unbound arithmetic circuits

consisting of only one type of operation such as addition or multiplication only. Somewhat homo-

morphic encryption (SHE) supports the evaluation of two orthogonal types of operations, such as

addition and multiplication, for circuits with known depth (i.e with known number of operations

multiplication and/or addition in the algorithm). This limitation is due to the noise introduced

to the ciphertexts, where each additional operation increases the noise in the resulting ciphertext.

Fully homomorphic encryption (FHE) supports two orthogonal operations, such as addition and

multiplication, and due to bootstrapping, has unbound computation. Bootstrapping is an expen-

sive operation that reduces the noise of ciphertexts. For both SHE and FHE, it is important to

optimize the circuit for depth, since the noise accumulated is related to the depth of the circuit.

Additionally, addition operations are fast and produce little noise, while multiplications are slow

and produce more noise. In summary, PHE is fast and unbound, but less expressive; SHE slow and

bounded, but more expressive; and FHE is expressive and unbound, but very slow. Furthermore,

in HE, control flow cannot depend on the data. For example, we cannot perform an i f clause on

encrypted data. Therefore, the program must run obliviously to its sensitive data, which leads to

further performance degradation [6]. Although HE has been used for the analysis of genomic and

biomedical clinical data before [7, 8, 9, 10], it requires a fast and scalable implementation to be

used for genotype imputation.

4

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.29.124412

In this study, we design p-Impute, a privacy-preserving statistical inference algorithm to per-

form genotype imputation using the BFV (Brakerski/Fan-Vercauteren) encryption scheme [11]

provided by Microsoft SEAL [12] library. We overcome the challenges related to performance

overhead through algorithm optimization, batching, and thread-level parallelism. We used 2,504

fully characterized genomes from 1000 genomes project [13] as training and predicted the geno-

types for the target SNPs of 870 individuals from Genotype Tissue Expression project (GTEx) [14]

as test. Moreover, we compared p-Impute results to the results from state-of-the-art non-encrypted

counterparts (IMPUTE2 [15] and Beagle [16]) and found an excellent agreement, where all three

algorithms resulted in 99% AUC on GTEx data.

2 Results

2.1 Scenario

Consider a scenario where Alice has a set of genotyped tag SNPs and would like to impute the

genotypes of her missing SNPs (target SNPs) using the tag SNPs. She would like to outsource the

imputation to Bob, as Bob has a genotype imputation model, but Alice does not trust Bob enough

to send him her SNPs. Instead, Bob offers an imputation method on the encrypted space. Alice

encrypts her tag SNP genotypes with her public key and sends to Bob. Bob runs his imputation

method and gets encrypted results and sends them to Alice. Alice uses her private key to decrypt

the results, which are her missing SNP genotypes (Figure 1). In a real-world scenario, Bob could

be the cloud-service provider, who will never have access to any SNP from any individual.

5

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.29.124412

Alice

Bob

imputation

 model

key

generation

encryption

decryption

training

public

evaluation

private

Figure 1: Threat Model. Illustration of how genotype imputation with homomorphic encryption
works in practice. After generating encryption, decryption and evaluation keys, Alice encrypts the
vcf file with her tag SNP genotypes with her encryption key and sends the encrypted genotypes
and the evaluation key to Bob. Bob uses the encrypted genotypes as input to his privacy-preserving
imputation model and outputs encrypted genotypes for Alice’s missing SNPs and sends them to
Alice. Alice can decrypt the output using her decryption key. Bob never receives any unencrypted
data and never sees the plaintext results from his model.

2.2 Dataset

We used fully characterized genomes from 2504 individuals provided by the 1000 Genomes

Project [13] as our training dataset. Chromosome 1 of the human genome was divided into sets of

tag and target SNPs by the iDASH Secure Genome Analysis Challenge’19 [17], which we used in

this study. In total, for Chromosome 1, we had 9745 tag SNPs and 500 target SNPs. For the test

dataset, we used the Chromosome 1 genotypes characterized by whole genome sequencing of 870

6

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.29.124412

individuals in the GTEx project [14]. The task is to predict the genotypes of 500 target SNPs by

using the genotypes of 9745 tag SNPs. We performed the same predictions by using only 1045 tag

SNP genotypes for inferring 500 target SNP genotypes in order to see the effect of the number of

tag SNPs on overall predictions. Both 9745 and 1045 tag SNPs were selected by iDASH Secure

Genome Analysis Challenge’19 using different genomic distance cut-off between SNPs, i.e 9745

tag SNPs are 1kb apart from each other, whereas 1045 tag SNPs are 10kb apart from each other.

2.3 Genotype imputation algorithm design

Traditional plaintext genotype imputation methods such as IMPUTE2 [15] and Beagle [16] first

phase the genome into haplotypes. They next determine the best haplotype block structure using

a genotype panel from different populations. Haplotype blocks are then used to determine the

relationship between tag and missing SNP genotypes in order to compute a probability for having

each genotype (0, 1, and 2) at the missing SNP position. Many of the imputation methods available

are based on Hidden Markov Models [15, 16, 18]. Complex statistical methods such as Hidden

Markov Models require operations such as exponentiation, activation, or feedback. Thus, their

implementation using HE-based principles for computation in the encrypted domain may not be

able to scale-up genotype imputation for hundreds of individuals due to the large performance

overheads.

To avoid some of the overhead problems, we develop a plaintext method that does not depend on

phasing and can impute genotypes directly using the tag SNP genotypes (0,1 or 2). We describe our

algorithm in Figure 2. For each missing target SNP genotype of a query individual, we determine

N number of tag SNPs that are closest to it. We call this group of SNPs “pseudo-haplotype block”.

We define a similarity score between the query individual and each individual k in the training

7

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.29.124412

database for the pseudo-haplotype block as,

sim(k,query) =
k=K, j=N

∑
k=1, j=1

|gquery(j)−gk(j)| (1)

, where K is the total number of individuals in the training database, N is the total number of tag

SNPs in the pseudo-haplotype block, gquery(j) is the genotype of the jth tag SNP in the pseudo-

haplotype block of the query individual, and gk(j) is the genotype of the jth tag SNP in the pseudo-

haplotype block of the kth individual in the training database. After the calculation of the similarity

between all the individuals and the query individual, we sort sim(k,query) scores in increasing

order and take the top M individuals in the database as our training individuals. These individuals

are genetically similar to the query individual within a pseudo-haplotype block. We then calculate

a score for each genotype at the missing SNP location by calculating the joint probabilities of

genotypes between the missing and tag SNPs as following.

score(gquery(target) = 0) =
N

∑
j=1

p(g(target) = 0,g(j) = gquery(j)) (2)

score(gquery(target) = 1) =
N

∑
j=1

p(g(target) = 1,g(j) = gquery(j)) (3)

score(gquery(target) = 2) =
N

∑
j=1

p(g(target) = 2,g(j) = gquery(j)) (4)

We then normalize these scores to obtain probability of having a genotype at the missing SNP

location. The probability of having the genotype x such that x = {0,1,2} at the missing SNP

location becomes

p(gquery(target) = x) =
score(gquery(target) = x)

∑
2
i=0 score(gquery(target) = i)

(5)

8

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.29.124412

Tag SNP

Target SNP

target

closest N Tag SNPs

ta
rg

e
t

N
 T

a
g

 S
N

P
s

query individual

?

1

0

0

0

2

1

2

0

.

fully characterized database individuals

k=1,..., K

sim(k,query)

sim(query,k) rank

rank

sim(3,query)

sim(5,query)

sim(1,query)

1

2

3

.

sim(20,query) M

} take first M

individuals

target

N Tag SNPs

tagNtagitag1

0 2 0 12001

0 2 1 12001

1 2 0 02111

1 1 0 10021

0 2 1 20000

2

1

1

0

score (target = 0) = p (targeti = 0 , tagi = querytagi
)

i=1

N

Figure 2: p-Impute algorithm After determining the neighboring tag SNPs for the missing geno-
type, the similarity between the query individual and the each individual in the training database
is calculated. The training individuals are ranked based on the similarity to the query individual
and the top M individual are used to calculate the probability of each genotype being observed at
the missing SNP location based on the probability of joint occurrence between the missing SNP
location genotype and tag SNP genotypes in the training database.

2.4 Tuning the algorithm for HE

Training: Here we update the algorithm described in Section 2.3 such that training does not

require any private input, i.e. the genotypes of the query individual. We calculate the genotype

probabilities for each target SNP of a query individual using the correlation of a group of selected

tag SNPs between the query individual and database individuals. We select these tag SNPs by

their proximity to the target SNP. Thus, we first must define the number N of tag SNPs we want

to select. Since there are 3 possible values for the genotype (0, 1, or 2), there are 3N possible

combinations of tag SNPs. For each combination, we create a virtual individual containing those

tag SNPs and then we apply the method described in Section 2.3. Once we calculate the most

related database individuals (to the virtual query individual) using Eq. 1, we then use a subset of

database individuals (the most similar ones) to calculate the probabilities for each genotype using

9

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.29.124412

Eqs. 2-5. We do that for each target SNP. We basically create a set of lookup tables with the

genotype probabilities (one for each target SNP), where each possible combination of selected tag

SNP is an index of the table, and the probabilities of 0 and 1 are the values (the probability of 2

can be calculated from the other probabilities) (Figure 3).

Encryption: For each target SNP, we select from each query individual only the tag SNPs rele-

vant for that target SNP (i.e., the N closest ones). Let T be the number of target SNPs. Then, the

total number of tag SNPs per individual to be encrypted is given by N ·T , which is much less than

the number of tag SNPs available. Furthermore, each tag SNP contains a value in the set {0, 1,

2}, which we break into its bit representation {00, 01, 10} to allow encrypted comparison during

querying. Thus, we have 2NT plaintexts per query individual.

Our solution requires addition, multiplication, and comparison on encrypted data. The BFV

encryption scheme supports homomorphic addition, subtraction, and multiplication, while com-

parison can be implemented using homomorphic logic gates, which in turn, can be implemented

using additions, subtractions, and multiplications. The implementation of BFV available in SEAL

does not support bootstrapping. However, it is not required since we know a priori the number

of homomorphic operations executed by our solution. The BFV scheme also supports batching,

which allows us to pack many plaintexts in one ciphertext and operate on all plaintexts at the same

time, in a single-instruction multiple-data (SIMD) fashion. The number of slots available in a ci-

phertext is given by the degree of its polynomial modulus, a number in the thousands (see Sections

2.6 and 4 for details on polynomial modulus). We maximize the usage of those slots by packing

multiple query individuals into a ciphertext. We pack only independent information in the same

ciphertext, i.e., each ciphertext contains only one bit of information related to each target SNP per

individual. For example, if we have 500 target SNPs and 214 slots, we can pack 32 individuals in

the same ciphertext. And since each target SNP requires N tag SNPs and the tag SNPs are bro-

10

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.29.124412

ken into two bits each, we need 2N ciphertexts to represent those 32 individuals. The number of

individuals packed in a ciphertext is given by b slots
T c.

Query: Since the result of our training is a set of lookup tables, our querying consist of indexing

these tables. Searching on a table where the query is encrypted is known as the Private Information

Retrieval problem [19]. In the encrypted domain, the complexity of the search is linear to the

number of elements in the table (O(n)), while exponential in the number of tag SNPs (3N is the

number of elements in the look-up table, N is the number of tag SNPs selected for each target

SNP). Despite having one lookup table per target SNP, we can search on all of them in parallel

due to batching. Furthermore, all target SNPs of several query individuals are searched in parallel,

since they are packed in the same ciphertext in accordance with the encryption methodology.

The first step is to prepare the training data for the querying. We scale the probabilities by a

multiplying factor and convert them to integer, and then pack them together for batching. We

represent both probabilities (of genotypes 0 and 1) in a single plaintext. We do that by using shift

left and add (e.g. P1,0 = (P(1) << s) +P(0), where s is the shifting constant). Thus, we get

all probabilities in a single search, improving performance and reducing memory usage. In our

implementation, we use s = 7.

In order to perform comparisons in the encrypted domain, we need to convert the data to binary

representation, so we can emulate gate operations on top of homomorphic addition, subtraction,

and multiplication. That is why we break the genotypes of the tag SNPs into their binary con-

stituents (i.e 0 becomes 00, 1 becomes 01, and 2 becomes 11). We can implement equality using

the 2N XNOR gates (x XNOR y = 1+ 2xy− (x+ y)) between the query individual and the table

index, and then apply 2N−1 AND gates (x AND y = xy) to get a binary output. The result of the

equality is multiplied by the combined probabilities. If the equality results in the encryption of 1,

the result of the multiplication is the probabilities. Otherwise, it is the encryption of zero. Each

11

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.29.124412

comparison of the query to a table index will either result in the probabilities for that index or zero.

Since it is a lookup table of all possible selected tag SNPs, there is always one and only one match.

Therefore, the addition of all partial results is the value of the indexed query. In addition, since

AND gate and multiplication are the same operation, we embedded the multiplication between the

result of the equality and the value of the table index inside the equality to reduce the depth of the

circuit, since deeper circuits produce more noise. In addition, we add thread-level parallelism to

the query, where we simply divide the workload (searches) among different threads.

Decryption: To get the probabilities and resulting target SNP genotypes, we decrypt the cipher-

texts, unpack the data, decouple the probabilities (shift right and mask), convert them back to

floating-point and scale back using the multiplying factor we used in encryption. Then, we cal-

culate the probability for genotype 2 (P(2) = 1−P(1)−P(0)). The target SNP genotype is the

genotype with the highest probability.

The overall procedure for a single target SNP is depicted in Figure 3.

12

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.29.124412

p(1)p(0)

tagNtagitag1

0 0 0 00000

1 1 1 11111

2 2 2 22222

? 0000 00 00

.

virtual

individual 1

top M genetically

close individuals

.

.

.

? 2101 01 00

.

virtual

individual i

top M genetically

close individuals

.

.

.

? 2222 22 22

.

virtual

individual 3N

top M genetically

close individuals

index

00000000

11000012

22222222

p(1)p(0)index

0.88

0.02

0.13

1

i

3N

0.07

0.90

0.70

virtual

individual i

p(1)p(0)index

00 01 01 00 00 00 00 01 11

11 11 11 11 11 11 11 11

p(1)p(0)index

0010

1101

0111

1

i

3N

0001

1110

1010

00 00 00 00 00 00 00 00

encrypted

query

genome

encrypted query

target SNP

genotype probabilities

Private Information

Retrieval

Figure 3: p-Impute algorithm in the encrypted domain 3N virtual individuals are generated by
using the all possible combination of genotypes of N tag SNPs. For each virtual individual we
find the M genetically similar individuals from the training database. We then generate a look-
up table, where each index is the sequence of the tag SNP genotypes of a virtual individual and
the probability of genotypes 0 and 1 for the target SNPs are the columns. These probabilities
are calculated using the scoring system described in Figure 2. After converting the look-up table
with transformation to the indices and probabilities, we perform Private Information Retrieval to
the look-up table with encrypted query tag SNP genotypes and return encrypted query target SNP
genotype probabilities.

2.5 Performance

Our algorithm has two parameters: the number of neighboring SNPs (N), and number of genet-

ically similar individuals (M). We performed tests with different values of N and M and evaluated

them in terms of accuracy, memory and run time. We then compared the accuracy of the most

optimum parameters against the accuracy of the state-of-the-art plaintext methods IMPUTE2 [15]

and Beagle [16]. Note that M is only used during training and it does not affect the efficiency of

13

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.29.124412

our algorithm.

Accuracy, memory and running time: For a comprehensive evaluation of the accuracy of the

imputation model, we used a metric that reflects both correct predictions (true positive rate) and

false mis-classifications (false positive rate) for each of the three genotypes, as was suggested by

the iDASH Secure Genome Analysis Challenge. Since this is a prediction problem with three

classes, we used Micro-AUC score, which has been used for comparing the accuracy of various

multi-class classification/prediction models [20]. We first fixed N at 2 to find the best number

of individuals M. We found that our model has the highest Micro-AUC when M is 60 individu-

als (Figure 4a). We then fixed the M at 60 and increased N from 2 to 8 and measured not only

Micro-AUC but also total roundtrip (encryption+query+decryption) time and memory usage in

Figure 4b-d (see Supplementary Figure 1 for time and memory breakdown for encryption, query

and decryption separately). We found that Micro-AUC increases only by 0.001 while the time

and memory overhead increases exponentially when we increase N from 7 to 8. For all three per-

formance measures, N equals to 7 seems to be the most optimum parameters in our tests. Since

parameter M was only used during training, we also showed that the run time and memory per-

formance of query does not depend on M (Figure 4). All tests are done using an 8 core 2.10 GHz

Intel Xeon processor, using the 9745 tag and 500 target SNPs of Human Chromosome 1.

14

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.29.124412

20 40 60 80 100 120 140 160 180 200

number of individuals (M)

0.982

0.9825

0.983

0.9835

0.984

0.9845

m
ic

ro
-A

U
C

number of SNPs (N) = 2

4 5 6 7 8

number of SNPs (N)

0.984

0.986

0.988

0.99

0.992

0.994

m
ic

ro
-A

U
C

number of Individuals (M) = 60

4 5 6 7 8

number of SNPs (N)

0

0.5

1

1.5

2

2.5

3

3.5

4

ti
m

e
 (

m
s
)

10
6

number of individuals (M) = 60

4 5 6 7

8

0

2

4

6

8

10

12

m
e

m
o

ry
 (

k
b

y
te

)

10
8

number of Individuals (M) = 60

number of SNPs (N)

20 40 60 80 100

number of individuals (M)

0

5

10

15

ti
m

e
 (

m
s
)

10
10

number of SNPs (N)

20 40 60 80 100

number of individuals (M)

0

1

2

3

4

5

m
e

m
o

ry
 (

k
b

)

10
8

number of SNPs (N) = 7
number of SNPs (N) = 7

a) b)

c) d)

e) f)

Figure 4: Fine-tuning N and M: All of the calculations in this figure have been done using the
9745 tag and 500 target SNPs of Human Chromosome 1 (a) The change in Micro-AUC with the
increasing number of M, while N is fixed at 2. Micro-AUC reaches a maximum at 60 individuals.
(b) The change in Micro-AUC with the increasing number of N, while M is fixed at 60. Micro-
AUC increases with the increasing number of neighboring SNPs (N). (c) The increase in total
roundtrip time (encryption+query+decryption) with the increasing number of neighboring SNPs
when we fix number of individuals at 60. (d) The increase in memory usage with the increasing
number of neighboring SNPs when we fix number of individuals at 60. (e) The total roundtrip
time (encryption+query+decryption) with changing M when we fix the number of SNPs at 7. Since
M is only used during training, as can be seen from the plots, it does not affect the runtime. (f) The
total memory usage with changing M when we fix the number of SNPs at 7. Since M is only used
during training, as can be seen from the plots, it does not affect the memory.

Comparison to IMPUTE2 and Beagle: We further compared our prediction to the results ob-

tained from running commonly used genotype imputation softwares IMPUTE2 [15] and Bea-

gle [16]. We trained our method, IMPUTE2 and Beagle using the genomes from all 2504 in-

dividuals of 1000 genomes project [13] and tested on genomes from 870 individuals of GTEx

15

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.29.124412

project [14] by plotting the Receiver Operating Curves (ROC) and calculating the Micro-AUC.

We found that the performance of p-Impute is in excellent agreement with the performance of the

state-of-the-art plaintext methods (Figure 5). All three algorithms result in a micro-AUC score of

0.99. We also performed the above accuracy test when we have only 1045 tag SNP genotypes

to predict the 500 target SNP genotypes of 870 GTEx individuals and found that both p-Impute

and IMPUTE2 achieve a Micro-AUC score of 0.97 and Beagle achieves a Micro-AUC score of

0.99. An advantage of our model over Beagle and IMPUTE2 is that we can obtain fast imputation

without the need of phasing the genomes, which can be time and compute intensive. Our algo-

rithm in plaintext can be implemented using a hash table, which has complexity O(1) per query,

i.e providing near instant answer.

p-Impute Beagle IMPUTE-2

9745 tag SNPs

1045 tag SNPs

Figure 5: ROCs and Micro-AUC for p-Impute (N = 7;M = 60), Beagle and IMPUTE2 using
GTEx data from Chromosome 1 of 870 individuals. The Micro-AUC has been calculated for
predicting genotypes of 500 target SNPs using both 9745 and 1045 tag SNP genotypes.

16

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.29.124412

2.6 Security

The security of our implementation depends only on the security of the BFV encryption scheme,

which is based on the Ring Learning With Errors (RLWE) problem [21]. We select encryption

parameters that provide enough noise budget for the computation and give us 128 bits of security,

which is considered secure by the Homomorphic Encryption Security Standard [22]. The plaintext

modulus is set to 65537 in order to enable batching. The degree of the polynomial modulus n

and the coefficient modulus size log2(q) varies according to the number of select tag SNPs N. For

N <= 4, we use n = 214 and log2(q) = 438 bits, while for N > 4, we use n = 215 and log2(q) = 881

bits. See Methods for more details on polynomial modulus.

2.7 Code availability

A C++ implementation of our algorithm, the training data as well as the python scripts necessary

for performance calculation can be found at https://github.com/gersteinlab/idash19he.

3 Discussion

Privacy of individuals’ genomic data has recently emerged as one of the major foci of data

privacy studies, as unrestricted availability of personal genetic information gives rise to many con-

cerns. For example, knowledge of genetic predisposition to diseases may bias insurance compa-

nies or create unlawful discrimination by employers. Recently it has been also shown that not

only DNA sequencing of individuals but also high throughput molecular phenotype datasets, such

as functional genomic and metabolomics measurements or even microbiome measurements, in-

crease the number of quasi-identifiers for participating individuals that can be used by adversaries

for re-identification purposes. The rise in popularity of genetic and ancestry testing companies,

which collect and distribute large amounts of genomics and health data, will only increase privacy

17

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.29.124412

concerns over sharing personal biological data.

Human genetics studies mainly focus on identifying genetic variants that affect human traits

and diseases. This identification is possible by collecting and analyzing genetics data from large

cohorts of individuals with different phenotypes. Genome-wide association studies and studies

focusing on identification of various quantitative trait loci (e.g GTEx, psychENCODE) aim to

genotype thousands of individuals for a better characterization of human diseases. There are two

cost associated bottlenecks for large-scale genomics studies. The first is regarding the feasibility of

comprehensively genotyping entire genomes. Although the cost of genome sequencing is rapidly

decreasing, it is still not feasible to perform high coverage whole genome sequencing (WGS) on

thousands of genomes. To overcome this, researchers developed genotype imputation tools that

can predict the missing genotypes using available population genetics data. Although genotype

imputation is an extremely powerful technique, it could cause the second bottleneck as it is com-

putationally not feasible to store and impute thousands of genomes in local servers and computers.

Therefore, institutions and funding agencies are increasingly outsourcing cloud services for com-

plex genomics analysis such as genotype imputation.

Outsourcing to third party computing environments such as cloud services for storage and analy-

sis of thousands of individuals’ genetic data raises serious privacy concerns. There is an increasing

need for fast and scalable privacy-preserving genomic analysis tools. We need tools and software

that enable keeping the genetic data encrypted in third party computing environment. This can

be achieved by a special type of encryption, called Homomorphic Encryption (HE). HE allows

manipulation of encrypted data, hence removing the privacy risk associated with the decryption of

sensitive data for computation purposes. However, there is a significant computational overhead

incurred in HE calculations compared to computations on plaintext. This cost depends on the class

of computation needed on the encrypted variables. When arbitrary computation is required (which

18

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.29.124412

is the case for most of genomic calculations), Fully Homomorphic Encryption (FHE) needs to be

employed, but at tremendous overheads (several orders of magnitude slowdown). Therefore, it is

important to design fast and scalable algorithms that can be implemented using FHE.

In this study, we developed a scalable privacy-preserving genotype imputation method using

FHE scheme. We showed that our imputation results are in excellent agreement with its plaintext

counterparts when tested on 870 genomes. Since Chromosome 1 is one of the largest chromosomes

in the genomes and each chromosome can be imputed independently and in parallel, we showed

that we can achieve genome-wide imputation in under 1.5 days in the encrypted domain for 870

individuals.

4 Methods

4.1 Homomorphic Encryption

HE allows the possibility of the computing on encrypted data directly without decryption. There

are variety of mathematical models for HE, that support different kinds and number of operations.

Some of these models support one operation such as the Paillier encryption scheme [23] of partial

homomorphic encryption. The scheme supporting more than one operation allow theoretically all

possible computation of recursive functions, and is called Fully Homomorphic Encryption (FHE)

scheme.

The security of fully homomorphic encryption is provided by the hardness of the RLWE prob-

lem. The hardness of the RLWE problem is due to adding a small amount of error to a point in

a lattice, which makes it difficult to determine which point that error was added to. This creates

noise, hence the ciphertexts in homomorphic encryption schemes are noisy, which grows during

homomorphic additions and multiplications. This growth eventually makes it impossible to de-

19

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.29.124412

crypt the resulting ciphertext in FHE. For that, Gentry proposed a bootstrapping technique which

can evaluate its own decryption function [24]. Bootstrapping re-creates a ciphertext by running the

decryption function on it homomorphically with encrypted secret key, which reduces the noise.

Although bootstrapping is extremely helpful in deep arithmetic circuits, if the number of opera-

tions needed in an algorithm is known and small, bootstrapping may not be needed. Some of the

leveled FHE constructions do not use bootstrapping procedure. A leveled FHE scheme can eval-

uate L-level arithmetic circuits with O(λ ·L3) per-gate computation. Security is based on RLWE

for an approximation factor exponential in L.

Data in these encryption schemes is represented by polynomials both when it is encrypted (the

ciphertext) and when it is unencrypted (the plaintext). A special polynomial called the polynomial

modulus is defined, and only the remainder of polynomials is considered when they have been

divided by this polynomial modulus.

4.2 Brakerski/Fan-Vercauteren (BFV) encryption system

The BFV encryption system [11] is a lattice-based cryptographic scheme that depends on the

hardness of the RLWE problem. With BFV, one can perform both addition/subtraction and multi-

plication within the encrypted domain. Divisions and exponentiation of a number by an encrypted

one and non-polynomial operations are not supported. The computations can only be performed on

integers. Eq. 6 depicts the concept of homomorphism, where c1 and c2 are ciphertexts, E and D are

encryption and decryption functions, respectively, and ⊗ and ? are homomorphically equivalent

operators, i.e., ⊗ over ciphertexts is equivalent to the encryption of ? over plaintexts.

c1⊗ c2 = E(D(c1)?D(c2)) (6)

20

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.29.124412

Bootstrapping is supported by BFV, but due to its inefficiency, it is not commonly implemented

by FHE libraries such as Microsoft SEAL, making it in practice a Somewhat Homomorphic En-

cryption scheme. This limitation leads to the need of knowing the depth of the arithmetic circuit

for properly selecting the encryption parameters.

The specific form of this polynomial modulus in the BFV scheme is xd + 1. where d = 2n for

some n.

21

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.29.124412

References

[1] Sboner, Mu, Greenbaum, Auerbach, and Gerstein. The real cost of sequencing: higher than

you think! Genome Biol., 12:125, 2011.

[2] Manolio. Genomewide association studies and assessment of the risk of disease. The New

England Journal of Medicine, 363:166–176, 2010.

[3] Rockman and Kruglyak. Genetics of global gene expression. Nature Reviews. Genetics.,

7:862–872, 2006.

[4] National Human Genome Research Institute. https://www.genome.gov/

Funded-Programs-Projects/Computational-Genomics-and-Data-Science-Program/

Genomic-Analysis-Visualization-Informatics-Lab-space-AnVIL.

[5] Armknecht, Boyd, Carr, Jäschke Gjøsteen, Reuter, and Strand. A guide to fully homomorphic

encryption. Cryptology ePrint Archive, Report 2015/1192, 2015. https://eprint.iacr.

org/2015/1192.

[6] Micciancio. Oblivious data structures: applications to cryptography. In STOC ’97: Proceed-

ings of the twenty-ninth annual ACM symposium on Theory of computing, 1997.

[7] Kim and Lauter. Private genome analysis through homomorphic encryption. BMC Med

Inform Decis Mak, S3, 2015.

[8] Övünç Kocabaş and Tolga Soyata. Medical data analytics in the cloud using homomorphic

encryption. In Handbook of Research on Cloud Infrastructures for Big Data Analytics, pages

471–488. IGI Global, 2014.

[9] Joppe W Bos, Kristin Lauter, and Michael Naehrig. Private predictive analysis on encrypted

medical data. Journal of biomedical informatics, 50:234–243, 2014.

22

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://www.genome.gov/Funded-Programs-Projects/Computational-Genomics-and-Data-Science-Program/Genomic-Analysis-Visualization-Informatics-Lab-space-AnVIL
https://www.genome.gov/Funded-Programs-Projects/Computational-Genomics-and-Data-Science-Program/Genomic-Analysis-Visualization-Informatics-Lab-space-AnVIL
https://www.genome.gov/Funded-Programs-Projects/Computational-Genomics-and-Data-Science-Program/Genomic-Analysis-Visualization-Informatics-Lab-space-AnVIL
https://eprint.iacr.org/2015/1192
https://eprint.iacr.org/2015/1192
https://doi.org/10.1101/2020.05.29.124412

[10] Paul J. McLaren, Jean Louis Raisaro, Manel Aouri, Margalida Rotger, Erman Ayday, István

Bartha, M. Bernardes Delgado, Yannick Vallet, Huldrych F. Günthard, Matthias Cavassini,

Hansjakob Furrer, Thanh Doco-Lecompte, Catia Marzolini, Patrick Schmid, Caroline Di

Benedetto, Laurent A. Decosterd, Jacques Fellay, Jean-Pierre Hubaux, and Amalio Telenti.

Privacy-preserving genomic testing in the clinic: a model using hiv treatment. In Genetics in

Medicine, 2016.

[11] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption.

Cryptology ePrint Archive, Report 2012/144, 2012.

[12] Microsoft SEAL (release 3.3.2). https://github.com/Microsoft/SEAL, 2019. Microsoft

Research, Redmond, WA.

[13] The 1000 Genomes Project Consortium. A global reference for human genetic variation.

Nature, 526:68–74, 2015.

[14] The GTEx Consortium. The genotype-tissue expression (gtex) project. Nature Genetics,

45:580–585, 2013.

[15] Matthew Stephens Jonathan Marchini Bryan Howie, Christian Fuchsberger and Gonçalo R.

Abecasis. Fast and accurate genotype imputation in genome-wide association studies through

pre-phasing. Nature Genet., 44:955–959, 2012.

[16] Brian L. Browning and Sharon R. Browning. A unified approach to genotype imputation and

haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum

Genet., 84:210–223, 2009.

[17] idash’19 genome security and privacy challenge. http://www.humangenomeprivacy.org/

2019/index.html. Accessed: 2020-03-26.

23

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://github.com/Microsoft/SEAL
http://www.humangenomeprivacy.org/2019/index.html
http://www.humangenomeprivacy.org/2019/index.html
https://doi.org/10.1101/2020.05.29.124412

[18] Jun Ding Paul Scheet Yun Li, Cristen J. Willer and Gonçalo R. Abecasis. Mach: Using

sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epi-

demiol., 34:816–834, 2010.

[19] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information re-

trieval. J. ACM, 45(6):965–981, November 1998.

[20] Andrew P. Bradley. The use of the area under the roc curve in the evaluation of machine

learning algorithms. Pattern Recogn., 30(7):1145–1159, July 1997.

[21] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with

errors over rings. Cryptology ePrint Archive, Report 2012/230, 2012. https://eprint.

iacr.org/2012/230.

[22] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov,

Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam, Daniele Micciancio,

Dustin Moody, Travis Morrison, Amit Sahai, and Vinod Vaikuntanathan. Homomorphic en-

cryption security standard. Technical report, HomomorphicEncryption.org, Toronto, Canada,

November 2018.

[23] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In

Jacques Stern, editor, Advances in Cryptology — EUROCRYPT ’99, pages 223–238, Berlin,

Heidelberg, 1999. Springer Berlin Heidelberg.

[24] Craig Gentry. Computing arbitrary functions of encrypted data. Communications of the ACM,

53(3):97–105, 2010.

24

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.124412doi: bioRxiv preprint

https://eprint.iacr.org/2012/230
https://eprint.iacr.org/2012/230
https://doi.org/10.1101/2020.05.29.124412

	Introduction
	Results
	Scenario
	Dataset
	Genotype imputation algorithm design
	Tuning the algorithm for HE
	Performance
	Security
	Code availability

	Discussion
	Methods
	Homomorphic Encryption
	Brakerski/Fan-Vercauteren (BFV) encryption system

