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Abstract
Single-cell RNA sequencing (scRNA-seq) is widely used for analyzing gene expression in multi-cellular systems
and provides unprecedented access to cellular heterogeneity. scRNA-seq experiments aim to identify and
quantify all cell types present in a sample. Measured single-cell transcriptomes are grouped by similarity and
the resulting clusters are mapped to cell types based on cluster-specific gene expression patterns. While the
process of generating clusters has become largely automated, annotation remains a laborious ad-hoc effort that
requires expert biological knowledge. Here, we introduce CellMeSH - a new automated approach to identifying
cell types based on prior literature. CellMeSH combines a database of gene-cell type associations with a
probabilistic method for database querying. The database is constructed by automatically linking gene and cell
type information from millions of publications using existing indexed literature resources. Compared to
manually constructed databases, CellMeSH is more comprehensive and scales automatically. The probabilistic
query method enables reliable information retrieval even though the gene-cell type associations extracted from
the literature are necessarily noisy. CellMeSH achieves up to 60% top-1 accuracy and 90% top-3 accuracy in
annotating the cell types on a human dataset, and up to 58.8% top-1 accuracy and 88.2% top-3 accuracy on
three mouse datasets, which is consistently better than existing approaches.
Availability: Web server: https://uncurl.cs.washington.edu/db_query and API:
https://github.com/shunfumao/cellmesh
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Introduction
Single-cell RNA sequencing (scRNA-seq) is providing
an unprecedented resolution in understanding cellu-
lar heterogeneity at the single-cell level, and offering
novel biological insights into multi-cellular organisms
[1–18]. A key step required in order to enable the
aforementioned applications is cell-type identification
that annotates cells with biologically meaningful cell
types. However, cell-type annotation remains primar-
ily a manual process and automatic cell-type identifi-
cation is an important open problem [19].
One line of automatic cell-type identification meth-

ods [20–25] (Table 1) annotates clusters of cells ob-
tained via a standard scRNA-seq workflow. However,
the range of cell types that can be annotated as well
as the accuracy of these methods remain insufficient.
A typical scRNA-seq analysis workflow [26–29] begins
with the preparation of gene-cell expression matrix (a
gene-cell expression matrix is obtained from the raw-
reads after a sequence of steps such as read quality con-
trol [30], alignment [31, 32] and quantification [33, 34]).
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This matrix is used as a starting point on which clus-
tering [35–39], dimension reduction [40, 41], and dif-
ferential expression analysis [42] are further applied
giving rise to a set of genes that are expressed specific
to a cluster (which we refer to as, cluster differentially
expressed genes). To annotate clusters with cell types,
these existing methods [20–25] use the cluster differen-
tially expressed genes to query databases, that connect
genes to cell types. The databases are collected either
from a few specific studies [20, 21], from manual liter-
ature surveys [22–24], or from scRNA-seq experiments
which have their clustered cells pre-annotated accord-
ing to the cell-type markers manually compiled from
literature [25]. The database query mechanisms can re-
turn a list of unsorted cell types [21, 22, 25] or a list of
cell types sorted by their statistical significance with
the query genes, essentially based on Fisher’s exact test
[20, 23] or a Kolmogorov-Smirnov test [24]. The com-
mon issue for these cell-type identification methods is
that their databases are not comprehensive; more crit-
ically it is also laborious to update and expand them.
Another line of recent work [43–48] (Table 1) pre-

dicts cell types for single-cells (rather than clusters)
using the gene-cell expression matrix directly. How-
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ever, these methods require either existing annotated
gene expression profiles [43–46] or hand-curated cell-
type marker-gene files [47, 48] as prior knowledge. The
majority of these methods follow a machine learning
approach, by first training a model based on the prior
knowledge, and then utilizing the trained model either
to classify the input gene expression vector to a ref-
erence cell type [45–47], or to project the input gene
expression vector to an embedding vector and match
to the reference cell type that has the most similar
embedding [43]. Some of these methods follow a more
statistical approach, by annotating the input gene ex-
pression vector with the reference cell type that has
the highest correlation [44] or maximum a posteriori
estimation score [48] for the input. All of these meth-
ods are unable to annotate the cell types that are ei-
ther unseen in prior experiments (as used in [43–46])
or absent from the marker file which typically contains
only a small number of known cell types (as used in
[47, 48]).
The main goal of this paper is to address the

shortcomings of the existing cell-type identification
methods (Table 1) by exploiting the existing in-
dexed literature resources such as MEDLINE [49]
and Gene2pubmed [50]. We particularly focus on cell-
type annotation at the cluster level [20–25]. MED-
LINE and Gene2pubmed respectively specify impor-
tant Medical Subject Heading (MeSH) [51] concepts (a
set of hierarchically-organized biological terms, includ-
ing cell types) and NCBI genes [50] for a large class of
biomedical publications. A natural approach is then to
build a database that connects these genes with MeSH
cell types. Since the genes and cell types are indexed
for a large class of publications, the database forms
a rich resource in associating genes with cell types.
Furthermore, since the underlying resources (MED-
LINE and Gene2pubmed) expand as new papers come
up, the extracted database can also be automatically
updated. However, connecting these genes and MeSH
cell types simply based on the number of papers where
they co-occur results in (a) many spurious gene-cell re-
lationships, and (b) biases due to the widely varying
number of publications mentioning a gene or cell-type.
Existing query methods [23, 24] may not work well for
such a noisy database, because they all implicitly as-
sume that the database is noiseless and has only true
gene-cell associations. Therefore, utilizing these liter-
ature resources necessitates the design of novel query
methods.
Here, we propose CellMeSH (Cell-type annotation

with MeSH terms), a new method to annotate clus-
tered single-cell data, comprising of two key parts: a
database of gene-cell type mappings, and a novel query
method. Its accompanying web server and open-source

API are able to take an input of a set of genes (such as
the differentially expressed genes of a cluster of cells),
and output a list of candidate cell types sorted by their
relevance to the genes (Fig. 1). Unlike many of the
methods that assign cell types to cells using gene cell
expressions directly, CellMeSH does not need a sepa-
rate training dataset.
There are two key innovations in CellMeSH. First,

CellMeSH builds its database in a scalable way,
by automatically linking the genes (as indexed in
Gene2pubmed) and MeSH cell types (as indexed in
MEDLINE) from millions of publications. Such large-
scale gene-cell linking makes the database more com-
prehensive and easy to expand when new literature
comes online. Second, to address the challenges of pub-
lication bias and potentially error-prone gene-cell as-
sociations in building the database, we develop a novel
probabilistic database query method using maximum
likelihood estimation.
Through a variety of experiments on human and

mouse scRNA-seq datasets, we demonstrate that
CellMeSH has richer information in its database link-
ing genes and cell types, a robust query method, and
an overall better annotation performance than existing
methods.
Below, we first go through the key parts of CellMeSH

including the database and query method. We next
demonstrate the superior annotation performance of
CellMeSH for human and mouse scRNA-seq datasets.
We then describe the CellMeSH web server and its
open-source API. Lastly, we discuss our future work.

Results
CellMeSH database
To construct the CellMeSH database, we first filter
MEDLINE for references containing MeSH cell types
(Fig. 2). MEDLINE [49] is a bibliographic database
containing around 30 million references to biomedi-
cal and life science journal articles, including to most
articles in PubMed. Each MEDLINE reference asso-
ciates a subset of terms from Medical Subject Head-
ings (MeSH) [51] with each article. MeSH includes 570
terms related to cell types (nested under the MeSH cat-
egory “Cell” with tree number A11). Filtering MED-
LINE for MeSH cell types results in a reduced dataset
of 3.8M articles.
Next, we integrate gene information from Gene2pub-

med [50], a database that links standardized NCBI
genes [50] with PubMed articles. Gene2pubmed cur-
rently references 20, 164 human and 27, 322 mouse
genes. We construct 2 distinct databases, one for each
species - human and mouse. A gene and a cell type are
considered to co-occur if there is at least one article
that is associated with the cell type in MEDLINE and
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with the gene in Gene2pubmed. We construct a ma-
trix where each gene is a row and each cell type is a
column and the entry denotes the number of articles
in which the gene co-occurs with the cell type.
The CellMeSH database statistics are as follows.

For human, 3.8% of all possible (20,164×570) gene-
cell pairs have non-zero counts, and around 300,000
PubMed articles each contain at least one pair. For
mouse, 2.4% (27,322×570) gene-cell pairs have non-
zero counts, and around 209,000 PubMed articles each
containing at least one pair.

Probabilistic query method
There are two major issues with using a literature-
derived database. The first issue is publication bias.
Some genes or cell types are studied much more than
others and, consequently, there are more publications
and thus more associations containing those genes or
cell types. The second issue is noise in the gene-cell
type mapping. The CellMeSH database is inherently
noisy, as it links genes and cell types at an article level,
and the simple fact of an article mentioning a cell type
and a gene together does not imply that the gene serves
as a marker for the cell type. This leads to potentially
spurious associations between genes and cell types.
First, we highlight how to address the issue of pub-

lication bias by applying TF-IDF (Term Frequency-
Inverse Document Frequency) [52] which is a re-
weighting method commonly used in Natural Lan-
guage Processing [53, 54], and by applying column nor-
malization. Specifically let wC(g) denote the weight,
which is the number of co-occurrences of gene g in
the cell type C. Using TF-IDF transformation, the
new weight is given by wC(g) ← wC(g) × log NC

Kg

where NC is the total number of available cell types
in the database, and Kg is the total number of cell
types with non-zero weights for gene g, i.e. Kg =∑

C 1C:wC(g)>0. TF-IDF addresses the publication
bias of genes since the transformation appropriately
deweights commonly occuring genes (since, for these
genes, Kg is larger). After TF-IDF transformation,
the weight is further adjusted by column normaliza-
tion: wC(g) ← wC(g)∑

g′∈C wC(g′) . Column normalization
addresses the publication bias of cell types since the
transformation appropriately deweights the genes oc-
curring in common cell types.
We then query the weight-adjusted database using

a probabilistic method, which is designed to address
the issue of noise from spurious gene-cell associations.
Our query method takes input of wC(g) which is the
adjusted weight of gene g in cell type C. The method
also takes input of a query Q which is a list of genes.
The method outputs the database cell types sorted by
their significance to the query.

Our probabilistic query method assumes the fol-
lowing generative model for the observed query data
(based on which the inference is performed): (1) a cell
type is first chosen (with a uniform prior probability)
(2) associated with the cell type is a probability distri-
bution on the genes given by p(g|C). A natural model
for p(g|C) is to take it to be proportional to the weight
wC(g). (3) However, the previous model ensures that
only genes with non-zero weight for the cell type will
be present in the query - this need not be the case in
our noisy dataset. To model this noise, we assume that
with probability 1 − α the gene is sampled randomly
from the list of all genes, and with probability α it is
sampled from the cell-type specific gene distribution
(in experiments, α is fixed as 0.5).
We also denote the total number of genes as Ng and

the total number of genes with non-zero weight in cell
type C as KC , i.e., KC =

∑
g 1g:wC(g)>0. Thus the

probability of picking a gene from a cell type can be
written as follows:

P (g|C) =

{
α · wC(g) if g ∈ Q ∩ C
(1− α) 1

Ng−KC
if g ∈ Q ∩ C̄ (1)

We denote by P (Q|C), the probability that the list
of query genes is obtained from a particular cell type
C. We utilize P (g|C) as the probability that we see
gene g in the query given the cell type is C. Assum-
ing that each gene is sampled independently, we have
P (Q|C) =

∏
g∈C P (g|C). We can then utilize maxi-

mum likelihood estimation to predict the cell type Ĉ∗
that maximizes our chance of seeing the query:

Ĉ∗ = argmaxC logP (Q|C)

= argmaxC
∑
g

logP (g|C) (2)

Cell-type annotation performance
We quantified the cell-type identification performance
of CellMeSH for four scRNA-seq datasets with known
cell types: the human Peripheral Blood Mononuclear
Cells (PBMC) dataset [4], two Tabula Muris (TM)
datasets [55], and the Mouse Cell Atlas (MCA) dataset
[16].
In our evaluation, we used clusters and reference an-

notations obtained in the original papers. For each
cluster, we extracted the top n = 50 differentially ex-
pressed genes by 1-vs-rest gene expression ratio. These
genes are assumed to be marker genes of the reference
cell type and are used as a query input for CellMeSH.
We then queried CellMeSH with marker genes for
each cluster and visualized results using heatmaps that
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show how well the top-three retrieved candidate MeSH
cell types agree with the reference cell type, according
to the mappings between the reference cell types and
their correct MeSH cell types, which have been manu-
ally made (Additional file 2).

Peripheral Blood Mononuclear Cells dataset
The Peripheral Blood Mononuclear Cells (PBMC)
dataset is a subset of the data from [4], consisting
of 94655 cells and 10 annotated cell types. Cells were
originally flow-sorted based on known markers for the
corresponding cell type.
Fig. 3 (a) shows the annotation heatmap for the

PBMC dataset. The cell types along the y-axis rep-
resent the reference query cell types ({r}) and those
along the x-axis represent a subset of all the candi-
date MeSH cell types ({c}). For a particular query
r, the heatmap entry (x = c, y = r) is highlighted
with a black border, if the candidate c matches r. A
heatmap entry is colored red, if the candidate c has
rank-1 among the retrieved results for the query r, yel-
low, if it has rank-2 and blue, if it has rank-3. Lighter
hues of red, yellow or blue imply that c does not match
the expected cell type.
Overall, annotations are accurate as shown by the

strong signal along the diagonal. Even where there ap-
pears to be no signal on the diagonal, we see that
CellMeSH returns reasonable results. For example,
the query Regulatory T Cell is not colored at the
correct candidate “T-Lymphocytes, Regulatory” be-
cause “T-Lymphocytes, Regulatory” is not among the
top 3 retrieved results. Fig. 3 (b) indicates that “T-
Lymphocytes, Regulatory” is actually rank-6. How-
ever, the top 3 results are still promising because they
are closely related to “T-Lymphocytes, Regulatory”
in the category hierarchy of the MeSH tree. Specif-
ically, “T-Lymphocytes” is a supercategory of “CD4-
Positive T-Lymphocytes”, which is in turn a super-
category of “T-Lymphocytes, Regulatory”. In addi-
tion, “T-Lymphocytes” is also a supercategory of “T-
Lymphocyte Subsets”, which is in turn a supercategory
of “T-Lymphocytes, Regulatory”.

Tabula Muris datasets
For a second example, we turned to the Tabula Muris
(TM) dataset [55]. This dataset contains cells that
were captured from 20 different tissues in 3-month-
old mice and that were clustered into 99 annotated
cell types. Compared to the PBMC dataset with
only 10 annotated cell types, this dataset is therefore
more challenging. The TM dataset contains two sub-
datasets, with cells captured by using a microfluidic-
droplet method (denoted as the TM-Droplet dataset,
containing 55656 cells) or by cell sorting (denoted as

the TM-FACS dataset, containing 44949 cells). Here
we focus on the TM-Droplet dataset (Fig. 4) but the
results for TM-FACS are similar (Additional file 3 Fig.
7).
Annotation results for the entire TM-Droplet dataset

are summarized in the heatmap shown in Fig. 4 (a) (see
Additional file 3 Fig. 6 for detailed cell type names).
The diagonal bordered-boxes, indicating the expected
annotations, are mostly filled with red, yellow or blue
colors used to highlight the top 3 retrievals, which
clearly demonstrates the effective annotation ability
of CellMeSH. To see this more clearly, in Fig. 4 (b)
we focus on the annotation heatmap for only the im-
mune cell types, where all query cells get their correct
annotations within top 3 candidates.
There are bordered-boxes forming vertical trajecto-

ries in Fig. 4 (a). This is because we manually map
several true cell types to the same MeSH cell term due
to the limited resolution of the MeSH cell types. For
e.g., Luminal Epithelial Cell of Mammary Gland, Kid-
ney Collecting Duct Epithelial Cell, Bladder Urothelial
Cell are mapped to “Epithelial Cells”.
There are uncolored bordered boxes in Fig. 4 (a),

implying the correct candidate may not exist due to
a limit in the coverage of the MeSH cell types, or,
more likely, that it is not within the top 3 retrieved re-
sults due to the noise in CellMeSH database. Still, the
CellMeSH query results provide useful insights into the
true cell types, as illustrated in Fig. 4 (c). For instance,
the query Promonocyte does not have an exact same
MeSH term; the closest term we could manually match
is “Monocyte-Macrophage Precursor Cells” (see Addi-
tional file 2). However among the top 5 retrieved re-
sults, “Monocytes” and “Bone Marrow Cells” are both
closely relevant because a Promonocyte is a cell arising
from a Monoblast (in Bone Marrow [56]) and develop-
ing into a Monocyte [57]. For the query Granulocyte,
the correct MeSH term “Granulocytes” is rank-5 in
the retrieved results probably due to relatively fewer
citations in the database. However the top 2 results
“Neutrophils” and “Myeloid Cells” are respectively the
subcategory and supercategory of “Granulocytes” in
the MeSH tree. “Monocytes” and “Macrophages” are
also related as Neutrophils can secrete products that
stimulate Monocytes and Macrophages [58]. Similarly,
for the query Alveolar Macrophage, the correct MeSH
candidate “Macrophages, Alveolar” actually ranks in
the top 5. The top rank result “Macrophages” is also
close as it is a supercategory of “Macrophages, Alveo-
lar”. See Additional file 4 for more examples regarding
to the uncolored bordered-boxes in Fig. 4 (a).

Mouse Cell Atlas dataset
The Mouse Cell Atlas (MCA) dataset [16] consists of
scRNA-seq data from 6- to 10-week-old mice, sampled
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from a large variety of tissues. It contains over 200,000
cells after batch effect filtering, and 840 annotated cell
types.
Compared to the Tabula Muris dataset, the anno-

tated MCA cell types are much more fine-grained
because they each contain additional gene and tis-
sue information (e.g. r1 =Alveolar Macrophage_Ear2
high (Lung), r2 =Alveolar Macrophage_Pclaf high
(Lung)). For our analysis, we collapsed these cell types
into 204 cell types based on the cell-type names (e.g.
the collapsed r =Alveolar Macrophage and its marker
genes are obtained from r1, r2). The MCA heatmap
result is generally similar to the PBMC and TM
heatmaps, with mostly accurate annotations (Addi-
tional file 3 Fig. 8). We also confirmed that using the
collapsed 204 cell types shows an overall similar per-
formance as using the original 840 cell types (see Ad-
ditional file 3 Fig. 5).

Performance of top-k accuracy
We compared CellMeSH to several existing methods
[20, 22–25, 43] (Table 1) by using top-k (k = 1, 3) ac-
curacy for the three mouse datasets (TM-Droplet, TM-
FACS and MCA). We use the mouse datasets instead
of the human PBMC dataset, because they contain
many more queries (51, 76 and 191 queries[1] respec-
tively) than the PBMC dataset (only 10 queries), and
therefore can show more reliable quantitative trends.
We queried CellMeSH with previously extracted

marker genes for each cluster, and calculated the top-k
accuracy (percentage of queries that retrieve the ex-
pected candidate cell type in the top k results) for
each dataset. We similarly queried existing methods
and obtained top-k results for each dataset. The query
results of existing methods could derive from a differ-
ent ontology and therefore contain different cell type
names from the MeSH terms. In order to calculate the
accuracy of these methods, we thus manually created
mappings between the given query cell types and the
candidate cell types from other ontologies, as summa-
rized in Additional file 2.

Overall top-k accuracy gain
In Fig. 5 (a)(b), we first compare CellMeSH with two
other web servers: Enrichr [20] and scQuery [43] as
they share the most similar input and output formats
(Table 1). We are unable to compare to the web servers
of PanglaoDB [25], CellMarker [22] and CellFinder [21]
in an automatic way. Instead, we downloaded the ex-
isting CellMarker [22] database and queried it using

[1]Some queries (e.g. Cell in Cell Cycle) are excluded
as there are no matching candidates in any databases
(e.g. CellMeSH, CellMarker, PanglaoDB etc).

the hypergeometric test. We also include the random
retrieval results as a lower bound.
All of the methods are significantly better than ran-

dom guessing, and CellMeSH provides the most accu-
rate results for all three mouse datasets. Specifically,
in the TM-Droplet dataset, CellMeSH achieved top-1
accuracy of 58.8%, meaning that in 58.8% of queries,
the first retrieved candidate cell type is correct. The
top-1 accuracy is 15.7% higher than that of the sec-
ond best method, Enrichr. This is to be expected be-
cause the Enrichr cell types essentially come from the
Mouse Gene Atlas (MGA) database [59], which con-
tains only 96 cell types. Besides, some of the MGA cell
types (such as “Heart”, “Kidney”, and “Stomach” etc)
actually refer to organs. We find that CellMeSH has
higher coverage and resolution than the other meth-
ods including Enrichr. For example, for query Clas-
sical Monocyte, while CellMeSH returns “Monocytes”
as the first candidate, there is no monocyte term cov-
ered in MGA and Enrichr returns its first result as
“Macrophage Bone Marrow 6hr LPS”. For query Duct
Epithelial Cell, while CellMeSH returns “Epithelial
Cells” as the first result, Enrichr returns the organ
terms “Bladder”, “Liver” and “Stomach” as its top 3
results (see Additional file 5 for details). The top-3 ac-
curacy of CellMeSH further increases to 88.2% (this
implies that 88.2% of queries get at least one of the
top 3 results correct), which is 31.3% higher than that
of Enrichr.
CellMeSH also consistently outperforms other meth-

ods on the other two datasets. Its top-1 (or top-3) ac-
curacy is 3.9% (or 11.9%) higher in the TM-FACS
dataset, and 6.4% (or 22.7%) higher in the MCA
dataset, than the second best method, Enrichr.

Top-k accuracy gain from probabilistic method
Both the CellMeSH database and the probabilistic
query method contribute to the overall top-k ac-
curacy gains of CellMeSH. To isolate the contribu-
tion of the probabilistic query method to the overall
CellMeSH performance, we compared it to the more es-
tablished hypergeometric test [23] and GSVA [24] that
are suggested in [60], by querying the same CellMeSH
database for the three mouse datasets.
As shown in Fig. 5 (c)(d), the probabilistic method

performs uniformly better than other methods. Com-
pared to the best performance of GSVA and the hy-
pergeometric test, the probabilistic query method has
a top-1 accuracy gain of 13.7%, 6.6% and 7.3% in
the TM-Droplet, TM-FACS and MCA datasets respec-
tively. The numbers for top-3 accuracy gain are 19.6%,
3.9% and 8.8%.
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Top-k accuracy gain from CellMeSH database
To isolate the contribution of the CellMeSH database,
here, we compare the performance of alternative
databases obtained as follows. We prepared gene-cell
co-occurrence matrices by aggregating the cell-type
marker-genes files from PanglaoDB [25] and Cell-
Marker [22], both of which are manually compiled
from the literature. We then compared the CellMeSH
database to these two databases.
We query the CellMeSH and CellMarker databases

using the probabilistic query method, since these
databases are count-valued matrices, which can be
handled effectively by the probabilistic query method,
as illustrated in Fig. 5 (c)(d) and in Additional file 3
Fig. 4. For PanglaoDB, the query method is the hy-
pergeometric test, since the database is essentially a
binary matrix.
As Fig. 5 (e)(f) illustrates, using the CellMeSH

database achieves a higher accuracy than using the
PanglaoDB and CellMarker databases. Compared to
the best performance out of PanglaoDB and Cell-
Marker databases, the CellMeSH database has top-
1 accuracy gain of 21.6%, 3.9% and 0.6% in the
TM-Droplet, TM-FACS and MCA datasets respec-
tively. The numbers for top-3 accuracy gain increase
to 21.6%, 10.5% and 5.7%.

Impact of gene number
Our evaluations so far have been using the fixed top
n = 50 differentially expressed genes as the marker
genes for each query cell type. In addition, here the
performance tends to peak around n = 50 for most
of the methods (see Additional file 3 Fig. 1 to 3); A
smaller number of genes may not provide sufficient in-
formation, and a larger number of genes may bring
more noise, both of which could result in degraded an-
notation performance. If we select the optimal num-
ber of genes for each method (e.g. different settings
of the database and the query method), the CellMeSH
database together with the probabilistic query method
still consistently outperforms all other methods for all
of the datasets (see Additional file 5).

CellMeSH web server and API
CellMeSH has a stand-alone web server[2], which is
able to take in a list of marker genes and returns a
ranked list of predicted MeSH cell types, together with
the supporting genes and PubMed articles for further
reference (Fig. 1). The web server also provides options
to use other databases (e.g. CellMarker) and query
methods (e.g. GSVA, hypergeometric test).
We have open-sourced the CellMeSH database and

the probabilistic query method[3] as Python API to
[2]https://uncurl.cs.washington.edu/db_query
[3]https://github.com/shunfumao/cellmesh

assist the community efforts on automating the cell
type identification. We have integrated it into our re-
cently developed web server UNCURL-App [28] for
interactive scRNA-seq data analysis, which combines
data preprocessing, dimensionality reduction, cluster-
ing, differential expression, cell-type annotation and
interactive re-clustering into an online graphical user
interface.

Discussion
We have developed CellMeSH, a method with accom-
panying web server and API to identify cell types di-
rectly from literature, in order to make the scRNA-
seq analysis more convenient. Experiments on both
human and mouse scRNA-seq datasets demonstrate
CellMeSH’s superior cell-type identification perfor-
mance.
Nevertheless, there are still several limitations with

CellMeSH. Particularly, the cell-type annotations pro-
vided by MeSH terms are somewhat coarse, and might
not be enough to represent a comprehensive listing of
all fine-grained (sub) cell types present in model or-
ganisms such as human or mouse. Moreover, for other
species, even other model organisms, gene-cell infor-
mation could be limited due to a lack of indexed pub-
lications.
One way the CellMeSH database can be extended is

through natural language processing on full text ar-
ticles (including supplementary files). Ideally such an
approach would enable the identification of new cell
types in papers using unsupervised or semi-supervised
named entity recognition [61, 62].
There are also terms within the MeSH ontology that

may be useful but are not under the “Cell” heading,
such as tissues, organs, and diseases. Designing the
query methods utilizing these information is an in-
teresting future direction. For instance, we can re-
fine our search scope if we know the tissue informa-
tion of the query; or if such information is missing
we could provide them from an extended Cell/Tissue-
MeSH database.

Methods
Experiment I/O
For each dataset (PBMC, TM Droplet, TM-FACS and
MCA), we have prepared the set of queries denoted as
D = {(ri, Qi)}, i = 1, . . . , ND, where the i-th query
has reference cell type ri and the query genes are Qi

(e.g. Qi contains top n = 50 differentially expressed
genes). There are ND queries for dataset D.
We queried different methods including external

web server systems and combinations of different
query methods and databases (Fig. 5). Generally,
for a particular query (ri, Qi), we can represent the
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query results as a list of ranked candidate cell types
Ci = {ci,1, ci,2, . . . , ci,M} where M is the total num-
ber of candidate cell types. Depending on the sys-
tems (Enrichr, scQuery) or the databases (CellMarker,
PanglaoDB) used, Ci differs in terms of candidate cell
names and length M . As the candidate cell type (e.g.
ci,j = “Macrophages, Alveolar”) and true label (e.g.
ri = Alveolar Macrophage) may not come from the
same ontology and thus have different expressions,
their mappings are manually verified, as provided in
Additional file 2.

Heatmap
To obtain the heatmap, we first prepare the heatmap
matrix from query results where y-axis represents the
reference (true) cell types {r} and x-axis as the union
of the correct candidate cell types {c} (each c is a cor-
rect candidate for at least one r). The matrix has its
value at a particular entry (x = c, y = r) equal to j
where j (1-based) refers to the rank of c in the retrieved
results for r. In the heatmap, we highlight the (c, r) en-
tries using bordered-boxes if c is the correct candidate
for r, according to our manual mappings (Additional
file 2). We also fill the (c, r) entries by red, yellow or
blue color if c has rank-1, rank-2 or rank-3 among the
retrieved results for query r. To understand these: for
a particular query r, a red bordered-box indicates c,
the top 1 retrieval, is the correct result (e.g. “correct
hit”); An uncolored bordered-box indicates the correct
result of r is not among the top 3 retrieved results (e.g.
“miss hit”). We tune red, yellow or blue color lighter
to further imply c is not an expected result of r (e.g.
“false positive hit”). We reorder the rows and columns
of the heatmap so that the bordered-boxes could form
a diagonal trajectory of expected annotation results.

Top-k accuracy
The top-k accuracy (e.g. k = 1, 3) of the dataset D is
defined as:

Accuracy(k,D) =
1

ND

ND∑
i=1

1{
k∑

j=1

1{ci,j = ri} > 0} (3)

This indicates the ratio of the queries where at least
one of the top k retrieved candidate cell types matches
the true labels. The justification to use the top-k accu-
racy is that in practice users will be interested in only
a small number of retrieved cell types.
The judgement of whether a candidate cell matches

the reference cell is slightly less strict in top-k accuracy
than in annotation heatmap, where each query corre-
sponds to only one correct candidate cell type. In top-k

accuracy, each query cell may have more than one cor-
rect candidate cell types (see Additional file 2). This is
because some top retrieved results, though not strictly
matching the true label, can still be considered as cor-
rect. For example, for the query Granulocyte in Fig.
4 (c), we consider both “Granulocytes” and “Myeloid
Cells” as correct retrieved results, in top-k accuracy.
We apply this to all of the other methods (e.g. En-
richr, scQuery, CellMarker, and PanglaoDB), actually
in a more generous way. For example, for the query
Cardiac Muscle Cell, Enrichr returns “Heart” as the
top candidate cell, and we also consider it to be cor-
rect.

Hypergeometric test
Hypergeometric test is a simple and effective statisti-
cal test that has been widely used in various gene set
enrichment analysis [63, 64], to query a set of genes to
a noise-free binary database.
In order to use a hypergeometric test to query a

weighted database with a set of genes, the database
first needs to be binarized [60]. We binarize the
noisy CellMeSH database by setting the raw gene-
cell count values in the database to 0 if the count
is below a threshold (e.g. 4) and to 1 otherwise. We
selected threshold 4 because the corresponding binary
CellMeSH database, compared to the binary databases
obtained by using other thresholds, achieved the best
top-1 accuracy when we queried the database with
335 queries that were prepared from the CellMarker
records (Additional file 3 Fig. 9). For the noise-free
CellMarker database, the database is binarized using
threshold 0. For the PanglaoDB database, it is already
binary.
For each query q and each candidate c, we calculate

an enrichment score. Let n be the number of genes in
q. Let K be the number of genes co-occurring with c
in the binary database. Let N be the total number of
genes. Let k be the number of overlapping genes be-
tween q and c. Then, the probability of k genes occur-
ing in both query q and candidate c can be expressed

as: P (q, c) =
(Kk )(N−K

n−k )
(Nn)

. A smaller probability value

indicates higher significance for the candidate c to be
related to the query q.

GSVA
Gene Set Variation Analysis (GSVA) [24] was de-
veloped for microarray and bulk RNA-seq analysis,
in order to query a database of gene-sets (essen-
tially a noise-free binary database, with rows as genes
and columns as pre-defined gene-sets that are related
to certain biological activity) with an ordered-list of
genes. Instead, in our application, the database can be
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thought of as an ordered list of genes (for each cell-
type) and the query is simply a gene-set. We therefore
can adapt GSVA for our problem, and we explain the
details in the following paragraphs.
Specifically, the original GSVA takes as input, the

gene-sample expression matrix and normalizes by us-
ing a Gaussian or Poisson kernel estimation [24], to
evaluate the relative ordering of genes inside each
query sample in the context of the sample population
distribution. Each gene then gets its rank in each query
sample.
GSVA calculates an enrichment score similar to

the Kolmogorov-Smirnov (KS) statistic [65] between
each query sample and each candidate gene-set from
database, by walking along the ranked genes in the
query sample. Specifically, GSVA keeps a running
statistic, which it increases if the gene is in the candi-
date gene-set, and decreases if the gene is not in the
candidate gene-set, and retains the maximum devia-
tion of the running statistic as the enrichment score.
In our implementation, since the roles of the query

and database are flipped, we normalize the weighted
database by TF-IDF, to evaluate the relative ordering
of genes inside each candidate cell type. Each gene then
gets its rank in each candidate cell type (unlike in the
original GSVA, where each gene gets a rank for each
query sample).
We calculate the enrichment score between each can-

didate cell from database and each query set from in-
put, by walking along the ranked genes in the can-
didate cell type. Similarly, the adapted GSVA keeps a
running statistic, which it increases if the gene is in the
query, and decreases if the gene is not in the query, and
retains the maximum deviation of the running statistic
as the enrichment score.
In our setting, we found that using TF-IDF nor-

malization instead of Gaussion or Poisson kernel nor-
malization (as suggested in GSVA) improved perfor-
mance (Additional file 3 Fig. 10 (a)). Furthermore, the
adapted GSVA algorithm where the roles of query and
database are flipped also provides an improvement for
our setting (Additional file 3 Fig. 10 (b)).

CellMarker database
We constructed the CellMarker database (containing
two gene-cell co-occurrence matrice for mouse and hu-
man respectively) by aggregating the cell-type marker-
genes files downloaded from the CellMarker website[4].
These files contain species of mouse and human. For
mouse, there are 1255 records covering 673 PubMed
articles, and most of the records each correspond to a
cell type in Cell Ontology [66] term with its marker

[4]http://biocc.hrbmu.edu.cn/CellMarker/download.jsp

genes. We have skipped the records that have no
marker genes or have non-traditional cell-type names
(e.g. “Lee et al.Cell.A:1”). The resulting mouse gene-
cell co-occurrence matrix has 7208 genes and 313 cell
terms, where the matrix value for a particular gene-
cell pair represents the number of records (i.e. publi-
cations) they co-occur. Similarly for human, there are
2869 records covering 1763 PubMed articles. The re-
sulting human gene-cell co-occurrence matrix has 8973
genes and 364 cell terms. The CellMarker database is
mostly sparse, with < 1% positive counts, and maxi-
mum counts below 10.

PanglaoDB database
We constructed the PanglaoDB database (containing
one gene-cell binary matrix for both mouse and hu-
man) by associating the cell-type marker-genes down-
loaded from the PanglaoDB website[5]. The resulting
PanglaoDB database, a binary gene-cell matrix, has
4679 genes (for both mouse and human) and 178 cell
types. There are 8230 (1%) non-zero entries.
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Table 1 Existing Works for Cell-type Identification. They can differ in multiple aspects: the Type (if the work provides a
webserver, a general method, or a user-side software), the Target (if the work can be used to annotate cell types for clusters or for
cells directly), the Query Input (if a gene set or gene expressions will be used to represent the query cell), the Query Method (if
the results are retrieved by enumeration, statistical tests, or machine learning inferences), the Database (from what sources the
gene-cell knowledge come from) and the Query Output (how the retrieved cell types can be provided).

Name Type Target Query Input Query Method Database Query Output
CellMeSH webserver cluster gene set maximum likeli-

hood estimation
indexed literature (MEDLINE
[49] MeSH [51] cells and
Gene2pubmed [50] genes)

ranked list of cell
types

CellFinder
(2013) [21]

webserver cluster gene set enumeration mainly from existing ontolo-
gies, augmented by text min-
ing of literature with manual
verification

list of cell types

CellMarker
(2018) [22]

webserver cluster gene set (ac-
tually a single
gene)

enumeration manual literature survey list of pairs of tis-
sue and cell type

PanglaoDB
(2019) [25]

webserver cluster gene set enumeration scRNA-seq experiments (cell
clusters were pre-annotated
according to hand-curated
cell-type markers)

list of labeled cell
clusters, and a
barplot for fre-
quencies of the
labels

Enrichr (2013)
[20]

webserver cluster gene set modified Fisher ex-
act test

Mouse and Human Gene At-
lases [59], CCLE [67] and
NCI-60 [68]

ranked list of cell
types

Hypergeometric
test[23]

method cluster gene set Fisher’s exact test need manual compile of cell
and marker genes

ranked list of cell
types based on raw
enrichment scores

GSVA (2013)
[24]

method cluster gene expres-
sion

Kolmogorov
Smirnov random
walk statistic

need manual compile of cell
and marker genes

ranked list of cell
types based on raw
enrichment scores

scQuery
(2018) [43]

webserver cell (or
optionally
cluster)

gene ex-
pression (or
optionally gene
set)

nearest neighbor of
neural embedding

scRNA-seq experiments from
GEO and ArrayExpress

ranked list of cell
types

scMatch
(2019) [44]

software
(Python)

cell gene expres-
sion

correlation (Spear-
man or Pearson)

annotated gene expression
data

ranked list of cell
types based on raw
scores

ACTINN
(2019) [45]

software
(Python)

cell gene expres-
sion

neural network annotated gene expression
data

ranked list of cell
types based on raw
scores

SingleCellNet
(2019) [46]

software
(R)

cell gene expres-
sion

random forest clas-
sification [69]

annotated gene expression
data

labeled single cells

Garnett (2019)
[47]

software
(R)

cell gene expres-
sion

supervised classifi-
cation

need manual compile of cell
and marker genes

labeled single cells

cellassign
(2019) [48]

software
(R)

cell gene expres-
sion (critical
to use only
marker genes)

maximum a poste-
riori estimation us-
ing EM algorithm
[70]

cell and marker genes from
bulk RNA-seq experiments or
literature

ranked list of cell
types
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Figure 1 CellMeSH Overview. CellMeSH mainly addresses the annotation of cell types, which is usually the last step of scRNA-seq
analysis. It provides web server and API to take input of the differentially expressed genes of clustered cells, and produce output including
ranked candidate cell types, overlapping genes and related literature resources. It relies on a novel database by linking the Gene2pubmed
genes and MEDLINE MeSH cell types. The database is queried by a novel probabilistic method based on maximum likelihood estimation.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.29.124743doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.124743


Mao et al. Page 14 of 17

Figure 2 CellMeSH Database Construction. The construction is species-specific. Here we illustrate the construction for the
human database. We start with the 30 million MEDLINE references, and keep the ones containing MeSH cell types (there are 3.8 million
such references). We further filter away the references not having human genes in Gene2pubmed, after which 300 thousand MEDLINE
references remain. Each remaining MEDLINE reference p contains several MeSH cell types {c} and several genes {g}, and we append p to
each (g, c) pair in the final CellMeSH database.
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Figure 3 Annotation Results for Human PBMC Dataset. (a) is the annotation heatmap where y-axis represents the query cells {r}
and x-axis represents the candidate cells {c}. A border-box for entry (x = c, y = r) indicates c is the correct candidate for query r. The
red, yellow or blue color indicates c has rank 1, rank 2, or rank 3 among retrieved results for r; the colors are shown lighter if c is not the
correct candidate. For example, for the query cell B Cell, the red border-box at “B-Lymphocytes” indicates “B-Lymphocytes” is rank 1 in
the retrieved results, and it is also the correct result. (b) shows the top 10 results for the query Regulatory T Cell, which has an
uncolored border-box in the heatmap. This is because its correct candidate cell “T-Lymphocytes, Regulatory” is not among the top 3
(instead it is rank 6) in the retrieved results. In fact the top 3 results are closely related to the correct candidate as they are
supercategories of the correct candidate in the MeSH tree hierarchy.This shows that even in cases where our retrieved cell type is not
exactly matching the correct cell type, CellMeSH returns reasonable results.
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Figure 4 Annotation Results for Tabula Muris Droplet Dataset. (a) is the annotation heatmap for queries of all cells. The y-axis
represents the query cells {r} and x-axis represents the candidate cells {c}. A border-box for entry (x = c, y = r) indicates c is the correct
candidate for query r. The red, yellow or blue color indicates c has rank 1, rank 2, or rank 3 among retrieved results for r; the colors are
shown lighter if c is not the correct candidate. (b) is the annotation heatmap for queries of immune cells, all of which have their correct
candidate cells within top 3 retrieved results. (c) shows the top 5 results of several query cells corresponding to the uncolored
border-boxes in the heatmap. For instance, the query Granulocyte has its correct candidate “Granulocytes” ranked 5-th among the
retrieved results. The top 2 results “Neutrophils” and “Myeloid Cells” are accurate to a certain extent because they are the subcategory
and supercategory of “Granulocytes” in the MeSH tree. This again shows that in cases where the top retrieved results do not contain the
candidate that matches the query exactly, CellMeSH returns reasonable results.
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Figure 5 Comparison of CellMeSH to other methods. Each bar plot has y-axis as the top-k (k=1 or 3) accuracy (%) and is grouped
by different mouse datasets, and for each group, we show the top-k accuracy of different methods. Top-k accuracy refers to the
percentage of queries where one of the candidate cells among the top k retrieved cells is accurate. (a)(b) CellMeSH is compared to other
systems. For the existing database of CellMarker, we query it using the existing query method of hypergeometric test. (c)(d)
Probabilistic query method is compared to other query methods. We fix CellMeSH database to be queried by all query methods. (e)(f)
CellMeSH database is compared to other databases. Note that CellMeSH and CellMarker are both non-binary gene-cell matrices and
therefore we use probabilistic method to query,whereas PanglaoDB is a binary gene-cell matrix and we use hypergeometric test to query.
CellMeSH demonstrates a consistent better top-1 and top-3 accuracy than other methods for all datasets.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.29.124743doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.124743

	Abstract

