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Abstract8

In high-dimensional regression problems, often a relatively small subset of the features9

are relevant for predicting the outcome, and methods that impose sparsity on the solution are10

popular. When multiple correlated outcomes are available (multitask), reduced rank regression11

is an effective way to borrow strength and capture latent structures that underlie the data.12

Our proposal is motivated by the UK Biobank population-based cohort study, where we are13

faced with large-scale, ultrahigh-dimensional features, and have access to a large number of14

outcomes (phenotypes): lifestyle measures, biomarkers, and disease outcomes. We are hence15

led to fit sparse reduced-rank regression models, using computational strategies that allow us16

to scale to problems of this size. We use an iterative algorithm that alternates between solving17

the sparse regression problem and solving the reduced rank decomposition. For the sparse18

regression component, we propose a scalable iterative algorithm based on adaptive screening19

that leverages the sparsity assumption and enables us to focus on solving much smaller sub-20

problems. The full solution is reconstructed and tested via an optimality condition to make21

sure it is a valid solution for the original problem. We further extend the method to cope22

with practical issues such as the inclusion of confounding variables and imputation of missing23

values among the phenotypes. Experiments on both synthetic data and the UK Biobank24

data demonstrate the effectiveness of the method and the algorithm. We present multiSnpnet25

package, available at http://github.com/junyangq/multiSnpnet that works on top of PLINK226

files, which we anticipate to be a valuable tool for generating polygenic risk scores from human27

genetic studies.28
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1 Introduction67

The past two decades have witnessed rapid growth in the amount of data available to us. Many areas68

such as genomics, neuroscience, economics and Internet services have been producing increasingly69

larger datasets that have high dimension, large sample size, or both. A variety of statistical methods70

and computational tools have been developed to accommodate this change so that we are able to71

extract valuable information and insight from these massive datasets (Hastie et al., 2009; Efron,72

Hastie, 2016; Dean, Ghemawat, 2008; Zaharia et al., 2010; Abadi et al., 2016).73

One major motivating application for this work is the study of data from population-scale cohorts74

like UK Biobank with genetic data from over one million genetic variants and phenotype data from75

thousands of phenotypes in over 500,000 individuals (Bycroft et al., 2018). These data present76

unprecedented opportunities to explore very comprehensive genetic relationships with phenotypes77

of interest. In particular, the subset of tasks we are interested in is the prediction of a person’s78

phenotype value, such as disease affection status, based on his or her genetic variants.79

Genome-wide association studies (GWAS) is a very powerful and widely used framework for80

identifying genetic variants that are associated with a given phenotype. See, for example, Visscher81

et al. (2017) and the references therein. It is based on the results of univariate marginal regression82

over all candidate variants and tries to find a subset of significant ones. While being computa-83

tionally efficient and easy to interpret, GWAS has fairly limited prediction performance because at84

most one predictor can present in the model. If prediction performance is our main concern, it is85

natural to consider the class of multivariate methods, i.e. that which considers multiple variants86

simultaneously. In the past, wide data were prevalent where only a limited number, like thousands,87

of samples were available. In this regime, some sophisticated multivariate methods could be appli-88

cable, though they have to more or less deal with dimension reduction or variable selection. In this89

setting, we handle hundreds of thousands samples and even more variables. In such cases, statistical90

methods and computational algorithms become equally important because only efficient algorithmic91

design will allow for the application of sophisticated statistical modeling. Recently, we introduced92

some algorithms addressing these challenges. In particular, Qian et al. (2019) proposed an iterative93

screening framework that is able to fit the exact lasso/elastic-net solution path in large-scale and94

ultrahigh-dimensional settings, and demonstrate competitive computational efficiency and superior95

prediction performance over previous methods.96

In this paper, we consider the scenarios where multivariate responses are available in addition97

to the multiple predictors, and propose a suite of statistical methods and efficient algorithms that98

allow us to further improve the statistical performance in this large n and large p regime. Some99

characteristics we want to leverage and challenges we want to solve include:100

Statistics There are thousands of phenotypes available in the UK Biobank. Many of them101

are highly correlated with each other and can have a lot of overlap in their driving factors. By102

treating them separately, we lose this information that could have been used to stabilize our model103

estimation. The benefit of building a joint model can be seen from the following simplified model.104

Suppose all the outcomes yk, k = 1, . . . , q are independent noisy observations of a shared factor105

u = Xβ such that yk = u + ek. It is easy to see that by taking an average across all the outcomes,106

we obtain a less noisy response ȳ, and this will give us more accurate parameter estimation and107

better prediction than the model built on any of the single outcome. The assumption of such latent108

structure is an important approach to capturing the correlation structure among the outcomes and109

can bring in a significant reduction in variance if the data indeed behave in a similar way. We will110
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formalize this belief and build a model on top of it. In addition, in the presence of high-dimensional111

features, we will follow the “bet on sparsity” principle (Hastie et al., 2009), and assume that only112

a subset of the predictors are relevant to the prediction.113

Therefore, the statistical model we will build features two major assumptions: low-rank in the114

signal and sparse effect. Furthermore, we will introduce integrated steps to systematically deal115

with confounders and missing values.116

Computation On a large-scale dataset, building a multivariate model can pose great computa-117

tional challenges. For example, loading the entire UK Biobank dataset into memory with double118

precision will take more than one terabyte of space, while typically most existing statistical com-119

puting tools assume that the data are already sitting in memory. Even if large memory is available,120

one can always encounter data or construct features so that it becomes insufficient. Hence, instead121

of expecting sufficient memory space, we would like to find a scalable solution that is less restricted122

by the size of physical memory.123

There is a dynamic data access mechanism provided by the operating system called memory124

mapping (Bovet, Cesati, 2005) that allows for easy access to larger-than-memory data on the disk.125

In essence, it carries a chunk of data from disk to memory when needed and swap some old chunks126

of data out of memory when it is full. In principle, we could add a layer of memory mapping on127

top of all the procedures and then access the data as if they were in memory. However, there is128

one important practical component that should never be ignored: disk I/O. This is known to be129

expensive in the operating system and can greatly delay the computation if frequent disk I/Os are130

involved. For this reason, we do not pursue first-order gradient-based methods such as stochastic131

gradient descent (Bottou, 2010) or dual averaging (Xiao, 2010; Duchi et al., 2011) because it can132

take a large number of passes over the data for the objective function to converge to the optimum.133

To address this, we design the algorithm so that it needs as few full passes over the data as134

possible while solving the exact objective. In particular, by leveraging the sparsity assumption,135

we propose an adaptive screening approach that allows us to strategically select a small subset of136

variables into memory, do intensive computation on the subset, and then verify the validity of all137

the left-out variables. The last step is important because we want to guarantee that the solution138

obtained from the algorithm is a valid solution to the original full problem.139

1.1 Reduced-Rank Regression for Multiple Responses140

In the standard multivariate linear regression model, given a model matrix X = (x1, . . . ,xp) ∈ Rn×p
and a multivariate response matrix Y = (y1, . . . ,yq) ∈ Rn×q, we assume that

Y = XB + E,

where each row of E = (e1, . . . , eq) is assumed to be an independent sample from some multivariate141

Gaussian distribution E(i) iid∼ N (0,ΣE). When n ≥ q, it is easy to see that an maximum likelihood142

estimator (MLE) can be found by solving a least squares problem with multiple outcomes, i.e.143

B̂ ∈ argmin
B∈Rp×q

1
2‖Y−XB‖2F , (1)

where ‖A‖2F =
∑n
i=1
∑m
j=1 A2

ij is the squared Frobenius norm of a matrix A ∈ Rn×m. When n ≥ p144

and X has full rank, (1) has the closed-form solution B̂ = (X>X)−1X>Y. Notice that this is145
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equivalent to solving q single-response regression problems separately.146

147

However, in many scenarios, there can be some correlation structure in the signals that we
can capture to improve the statistical efficiency of the estimator. One approach to modeling the
correlation is to assume that there is a set of latent factors that act as the drivers for all the
outcomes. When we assume that the dependencies of the latent factors on the raw features and the
outcomes on the latent factors are both linear, it is equivalent to making a low-rank assumption
on the coefficient matrix. Reduced-rank regression (Anderson, 1951, hereafter RRR) assumes that
the coefficient matrix B has a fixed rank r ≤ min(p, q), or

B = UV>,

where U = (u1, . . . ,ur) ∈ Rp×r,V = (v1, . . . ,vq)> ∈ Rq×r.1 With the decomposed coefficient148

matrices, an alternative way to express the multivariate model is to assume that there exists a set149

of latent factors {z` ∈ Rn : 1 ≤ ` ≤ r} such that for each `,150

z` = Xu`,
yk = Zvk + ek.

Figure 1 gives a visualization of the dependency structure described above. It can also be seen as a a151

multilayer perceptron (MLP) with linear activation and one hidden layer, or multitask learning with152

bottleneck. We notice that under the decomposition, the parameters are not identifiable. In fact, if153

we apply any nonsingular linear transformation M ∈ Rr×r such that V′ = VM> and U′ = UM−1,154

it yields the same model but different parameters. As a result, we also have an infinite number of155

MLEs.156

Under the rank constraint, an explicit global solution can be obtained. Let MDN> be the singu-157

lar value decomposition (SVD) of (X>X)− 1
2 X>Y, a set of solution is given by Û = (X>X)−1X>YN,158

V̂ = N. Velu, Reinsel (2013) has a comprehensive discussion on the model under classical large n159

settings.160

x1 x2 x3 x4 · · · xp

· · ·z1 zr

y1 y2 · · · yq

Figure 1: Diagram of the reduced rank regression. The nodes in grey are latent variables. The arrows
represent the dependency structure. Known as multitask learning in the machine learning community.

1We use v>k to represent the kth row of V for convenience.
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1.2 Sparse Models in High-Dimensional Problems161

In the setting of high-dimensional problems where p > n, the original low-rank coefficient matrix
B can be unidentifiable. Often sparsity is assumed in the coefficients to model the belief that
only a subset of the features are relevant to the outcomes. To find such a sparse estimate of the
coefficients, a widely used approach is to add an appropriate non-smooth penalty to the original
objective function to encourage the desired sparsity structure. Common choices include the lasso
penalty (Tibshirani, 1996), the elastic-net penalty (Zou, Hastie, 2005) or the group lasso penalty
(Yuan, Lin, 2006). There has been a great amount of work studying the consistency of estimation
and model selection under such settings. See Greenshtein, Ritov (2004); Meinshausen, Bühlmann
(2006); Zhao, Yu (2006); Bach (2008); Wainwright (2009); Bickel et al. (2009); Obozinski et al.
(2011); Bühlmann, Van De Geer (2011) and references therein. In particular, the group lasso, as
the name suggests, encourages group-level sparsity induced by the following penalty term:

Pg(β) =
J∑
j=1
‖βj‖2,

where βj ∈ Rpj is the subvector corresponding the jth group of variables and ‖βj‖2 =
√∑pj

`=1 β
2
j,`162

is the vector `2-norm. The `2-norm enforces that if the fitted model has ‖β̂j‖2 = 0, all the elements163

in β̂j will be 0, and otherwise with probability one all the elements will be nonzero. This yields a164

desired group-level selection in many applications. Throughout the paper, we will adopt the group165

lasso penalty, defining each predictor’s coefficients across all outcomes as a distinct group, in order166

to achieve homogeneous sparsity across multiple outcomes. In addition to variable selection for167

better prediction and interpretation, we will also see the computational advantages we leverage to168

develop an efficient algorithm.169

2 Sparse Reduced-Rank Regression170

Given a rank r, we are going to solve the following penalized rank-constrained optimization problem:171

minimize 1
2‖Y−XB‖2F + λ

p∑
j=1
‖Bj·‖2,

s.t. rank(B) ≤ r.

(2)

Alternatively, we can decompose the matrix explicitly as B = UV> where U ∈ Rp×r,V ∈ Rq×r. It172

can be shown that the problem above is equivalent to the Sparse Reduced Rank Regression (SRRR)173

proposed by Chen, Huang (2012):174

minimize 1
2‖Y−XUV>‖2F + λ

p∑
j=1
‖Uj·‖2,

s.t. V>V = I.

(3)

Alternating minimization was proposed by Chen, Huang (2012) to solve this non-convex optimiza-175

tion problem, where two algorithms were considered: subgradient descent and a variational method.176
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The subgradient method was shown to be faster when p � n and the variational method faster177

when n � p. However, in each iteration, the computational complexity of either method is at178

least quadratic in the number of variables p. It makes the problem almost intractable in ultrahigh-179

dimensional problems, which is common, for example, in modern genetic studies. Moreover, to180

obtain a model with good prediction performance, we are interested in solving the problem over181

multiple λ’s rather than a single one. For such purposes, we design a path algorithm with adaptive182

variable screening that will be both memory and computationally efficient.183

3 Fast Algorithms for Large-Scale and Ultrahigh-Dimensional184

Problems185

First, we present a naive version of the path solution, which will be the basis of our subsequent186

development. The path is defined on a decreasing sequence of λ values λmax = λ1 > λ2 > · · · >187

λL ≥ 0, where λmax is often defined by one that leads to the trivial (e.g. all zero) solution and the188

rest are often determined by an equally spaced array on the log scale. In particular, for Problem189

(2), we are able to figure out the exact lower bound of λmax for which the solution is trivial.190

Lemma 1. In problem (2), if r > 0, the maximum λ that results in a nontrivial solution B̂(λ) is

λmax = max
1≤j≤p

‖x>j Y‖2.

The proof is straightforward, which is a result of the Karush–Kuhn–Tucker (KKT) condition191

(See Boyd et al. (2004) for more details). We present the full argument in Appendix A.1. The192

naive path algorithm tries to solve the problem independently across different λ values.193

3.1 Alternating Minimization194

The algorithm is described in Algorithm 1. For each λ value, it applies alternating minimization195

to Problem (3) till convergence.196

In the V-step (4), we will be solving the orthogonal Procrustes problem given a fixed U(k).197

An explicit solution can be constructed from the singular value decomposition, as detailed in the198

following Lemma.199

Lemma 2. Suppose p ≥ r and Z ∈ Rp×r. Let Z = MDN> be its (skinny) singular value decom-
position, where M ∈ Rp×r,D = Rr×r and N ∈ Rr×r. An optimal solution to

maximize
V:V>V=I

Tr(Z>V)

is given by V̂ = MN>, and the objective function has optimal value ‖Z‖∗, the nuclear norm of Z.200

Proof. See in Appendix A.2.201

To analyze the computational complexity of the algorithm, we see a one-time computation of202

Y>X that costs O(npq). In each iteration, there is O(pqr) complexity for the matrix multiplication203

Y>XU(k) and O(qr2) for computing the SVD and the final solution. Therefore, the per-iteration204

computational complexity for the V-step is O(pqr + qr2), or O(pqr) when p� q.205
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Algorithm 1 Alternating Minimization
1: Define a sequence of λ values λ1 > · · · > λL ≥ 0.
2: for ` = 1 to L do
3: Let k = 0, and initialize U(0),V(0).
4: while k = 0 or ‖U(k)V(k)> −U(k−1)V(k−1)>‖ > ε do
5: V-step: Fix U(k), solve V: the orthogonal Procrustes problem

minimize
V:V>V=I

‖Y−XU(k)V>‖2F . (4)

Let Y>XU(k) = MDN> (skinny SVD) and solve V(k+1) = MN>.
6: U-step: Fix V(k+1), solve U: the group lasso problem

minimize
U

1
2‖YV(k+1) −XU‖2F + λ`

p∑
j=1
‖Uj·‖2. (5)

7: k = k + 1
8: end while
9: end for

In the U-step, we are solving a group lasso problem. Computing YV(k+1) takes O(nqr) time.206

The group-lasso problem can be solved by glmnet (Friedman et al., 2010) with the mgaussian207

family. With coordinate descent, its complexity is O(k̃pqn), where k̃ is the number of iterations208

until convergence and is expected to be small with a reasonable initialization, for example, provided209

by warm start. Thus, the per-iteration complexity for the U-step is O(nqr+k̃npq), which is O(k̃pqn)210

when p� r.211

Therefore, the overall computational complexity scales at least linearly with the number of212

features, and will have a large multiplier if the sample size is large as well. While subsampling213

can effectively reduce the computational cost, in high-dimensional settings, it is critical to have214

sufficient samples for the quality of estimation. Instead, we seek for computational techniques that215

can lower the actual number of features involved in expensive iterative computation without giving216

up any statistical efficiency. Thanks to the induced sparsity by the objective function, we are able217

to achieve it by variable screening.218

3.2 Variable Screening for Ultrahigh-Dimensional Problems219

In this section, we discuss strategic ways to find a good subset of variables to focus on in the220

computation that would allow us to reconstruct the full solution easily. In particular, we would like221

to iterate through the following steps for each λ:222

1. Screen a strong set S and treat all the left-out variables Sc as null variables that potentially223

have zero coefficients;224

2. Solve a significantly smaller problem on the subset of variables S;225

3. Check an optimality condition to guarantee the constructed full solution B̂ = (B̂S , B̂Sc) with226
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B̂Sc = 0 is indeed a valid solution to the original problem. If the condition is not satisfied,227

go back to the first step with an expanded set S.228

3.2.1 Screening Strategies229

We have seen Lemma 1 that determines the entry point of any nonzero coefficient on the solution230

path. Furthermore, there is evidence that the variables entering the model (as one decreases the λ231

value) tend to have large values by this criterion. Tibshirani et al. (2012) developed on this idea232

and proposed the strong rules as a sequential variable screening mechanism. The strong rules state233

that in a standard lasso problem with the model matrix X = (x1, . . . ,xp) ∈ Rn×p and a single234

response y ∈ Rn, assume β̂(λk−1) is the lasso solution at λk−1, then the jth predictor is discarded235

at λk if236

|x>j (y−Xβ̂(λk−1))| < λk − (λk−1 − λk). (6)

The key idea is that the inner product above is almost “non-expansive” in terms of λ. As a result,237

the KKT condition suggests that the variables to be discarded by (6) would have coefficient 0 at238

λk. However it is not a guarantee. The strong rules can fail, though failures occur rarely when239

p > n. In any case, the KKT condition is checked to ensure the exact solution is found. Although240

Tibshirani et al. (2012) focused mostly on the lasso-type problem, they also suggested extension to241

general objective functions and penalties. For general objective function f(β) with pj-norm penalty242

‖βj‖pj
for the jth group, the screening criterion will be based on the dual norm of its gradient243

‖∇jf(β)‖qj where 1/pj + 1/qj = 1.244

Inspired by the general strong rules, we propose three sequential screening strategies for the245

sparse reduced rank objective (3), named after their respective characteristics: Multi-Gaussian,246

Rank-Less and Fix-V. They are based either on the solution of a relaxed convex problem at the247

same λk or on the exact solution at the previous λk−1.248

• (Multi-Gaussian) Solve the full-rank convex problem at λk and use its active set as the candi-249

dates for the low-rank settings. The main advantage is that the screening is always stable due250

to the convexity. However this approach often overselects and brings extra burden to the com-251

putation. By assuming a higher rank than necessary, the effective number of responses would252

become more than that of a low-rank model. As a result, more variables would potentially253

be needed to serve for an enlarged set of responses.254

• (Rank-Less) Find variables that have large cj = ‖XT
j (Y −XU(λk−1)V(λk−1)>)‖2. This is255

analogous to the strong rules applied to the vanilla multi-response lasso ignoring the rank256

constraint.257

• (Fix-V) Find variables that have large c′j = ‖XT
j (YV(λk−1)−XU(λk−1))‖2. This is similar258

to the strong rules applied in the U-step with V assumed fixed. To see the rationale better,259

we take another perspective. The squared error in SRRR (3) can also be written as260

‖Y−XUV>‖2F = Tr(Y>Y)− 2Tr(Y>XUV>) + Tr(XUV>VU>X>)

Since V>V = I, the optimization problem becomes

minimize
U,V:V>V=I

1
2‖XU‖2F −Tr(Y>XUV>) + λ

p∑
j=1
‖Uj·‖2
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For any given U, we can solve V = MN>, where Y>XB = MDN> is its singular value
decomposition. Let f(U) = 1

2‖XU‖2F − ‖Y>XU‖∗. The problem is reduced to

minimize
U

f(U) + λ

p∑
j=1
‖Uj·‖2

The general strong rule tells us to screen based on the gradient; that is

∇Bf(B) = X>XU−X>YMN> = X>(XU−YV).

Therefore, the general strong rules endorse the use of this screening rule.261

We do some experiments to compare the effectiveness of the rules. We simulate the model matrix262

under an independent design and an equi-correlated design with correlation ρ = 0.5. The true263

solution path is computed using Algorithm 1 with several random initializations and the convex264

relaxation-based initialization (as in the Multi-Gaussian rule). Let S(λ) be the true active set at265

λ. For each method ` above, we can find, based on either the exact solution at λk−1 or the full-266

rank solution at λk, the threshold it needs so that by the screening criterion, the selected subset267

Ŝ(λk)(`) contains the true subset at λk, i.e. Ŝ(λk|λk−1)(`) ⊇ S(λk). This demonstrates how deep268

each method has to search down the variable list to include all necessary variables, and thus how269

accurate the screening mechanism is — the larger the subset size, the worse the method is.270
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Figure 2: Size of screened set under different strategies. Left: independent design. Right: equi-correlated
design with ρ = 0.5. Signal-to-noise ratio (SNR) = 1, and we use the true rank = 3.

We see from both plots that the curve of the Fix-V method is able to track that of the exact271

subset fairly well, while the Rank-Less and Multi-Gaussian methods both choose a much larger272

subset in order to cover the subset of active variables in the exact solution. In the rest of the paper,273

we will adopt the Fix-V method to do variable screening.274

3.2.2 Optimality Condition275

Although the Fix-V method turns out to be most effective in choosing the subset of variables, in276

practice we have no access to the true subset and have to take an estimate. Instead of trying to find277
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a sophisticated threshold, we will do batch screening at a fixed size (this size can change adaptively278

though). Given a size K, we will take the K variables that rank the top under this criterion. Clearly279

we can make mistakes by having left out some important variables in the screening stage. In order280

to make sure that our solution is exact rather than approximate in terms of the original problem,281

we need to check the optimality condition and take in more variables when necessary.282

Suppose we find a solution ÛS , V̂S on a subset of variables XS by alternating minimization. We283

will verify the assembled solution Û = (ÛS ,0), V̂ = V̂S is a limit point of the original optimization284

problem. The argument is supported by the following lemma.285

Lemma 3. In the U-step (12), given V and λ, if we have an exact solution ÛS for the sub-problem286

with XS, then Û = (ÛS ,0) is a solution to the full problem if and only if for all j ∈ Sc,287

‖x>j (YV−XSÛS)‖2 ≤ λ. (7)

Proof. Since this is a convex problem, Û is a solution if and only if 0 ∈ ∂f(Û) where f is the288

objective function in (12) and ∂f is its subdifferential. For the vector `2-norm, we know that the289

subdifferential of ‖x‖2 is {s ∈ Rp : ‖s‖2 ≤ 1} if x = 0 and {x/‖x‖2} if x 6= 0. Notice that290

XSÛS = XÛ by the definition of Û. Since we have an exact solution on S, we know 0 ∈ ∂f(Û)j·291

for all j ∈ S. On the other hand, for j ∈ Sc, 0 ∈ ∂f(Û) if and only if 0 ∈ {x>j (XÛ−YV) + λsj :292

‖sj‖2 ≤ 1}, which is further equivalent to ‖x>j (YV−XSÛS)‖2 = ‖x>j (YV−XÛ)‖2 ≤ λ293

Therefore, once we obtain a solution ÛS , V̂S for the sub-problem and get condition (7) verified,294

we know in the V-step, by the lemma above, Û = (ÛS ,0) is the solution given V̂ = V̂S . In the295

U-step, since XÛ = XSÛS , Û is the solution to the full problem. We see that (Û, V̂) is a limiting296

point of the alternating minimization algorithm for the original problem. However if the condition297

fails, we expand the screened set or bring in the violated variables, and do the fit again. We should298

note that when we say an exact solution to the original problem, we do not claim it to be a local299

minimum or global minimum, unless under some regularity conditions as will be briefly discussed300

later. It is a limiting point of the vanilla alternating minimization algorithm, i.e. Algorithm 1.301

In other words, if we start from the constructed solution (with zero coefficients for the leftout302

variables), the algorithm should converge in one iteration and return the same solution.303

We have seen the main ingredients of the iterative algorithm: screening, solving and checking.304

Next we discuss some useful practical considerations and extensions.305

3.3 Computational Considerations306

3.3.1 Initialization and Warm Start307

Recall that in the training stage our goal is to fit an SRRR solution path across different λ values.308

It is easy to see that with a careful choice of parameterization, the path is continuous in λ. To309

leverage this property, we adopt a warm start strategy. Specifically, we initialize the coefficients of310

the existing variables at λk+1 using the solution at λk and zero-initialize the newly added variables.311

With warm start, much less iterations will be needed to converge to the new minimum.312

However, this by no means guarantees that we are all on a good path. It’s likely that we313

are trapped into a neighborhood of local optimum and end up with much higher function value314

than the global minimum. One way to alleviate this, if affordable, is to solve the corresponding315

full-rank problem first, and initialize the coefficients with low-rank approximation of the full-rank316
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solution. We can compare the limiting function values with the warm-start initialization and see317

which converges to a better point. Although we didn’t use in the actual implementation and318

experiments, one could also do random exploration — randomly initialize some of the coefficients,319

run the algorithm multiple times and find one that achieves the lowest function value. That said,320

we lose the advantage of warm start though. The good news is, in the experiments we have done,321

we didn’t observe very clear suboptimal behavior by the warm start and full-rank strategies.322

3.3.2 Early Stopping323

Although we pre-specify a sequence of λ values λ1 > λ2 > · · · > λL where we want to fit the SRRR324

models, we do not have to fit them all given our goal is to find the best predictive model. Once the325

model starts to overfit as we move down the λ list, we can stop our process since the later models326

will have no practical use and are expensive to train. Therefore, in the actual computation, we327

monitor the validation error along the solution path and call it a stop if it shows a clear upward328

trend. One other point we would like to make in this regard is that the validation metric can329

be defined either as an average MSE over all phenotypes or a subset of phenotypes we are most330

interested in. This is because practically the best λ value can be different for different phenotypes331

in the joint model.332

3.4 Extensions333

3.4.1 Standardization334

We often want to standardize the predictors if they are not on the same scale because the penalty335

term is not invariant to change of units of the variables. However we emphasize that some thought336

has to be put into this before standardizing the predictors. If the predictors are already on the337

same scale, standardizing them could bring unintended advantages to variables with smaller variance338

themselves. It is more reasonable not to standardize in such cases.339

In terms of the outcomes, since they can be at different scales, it is important to standardize340

them in the training stage so that no one dominates in the objective function. At prediction (both341

training and test time), we scale back to the original levels using their respective variances from342

the training set. In fact, the real impact an outcome has to the overall objective is determined by343

the proportion of unexplained variance. It would be good to weight the responses properly based344

on this if such information is available or can be estimated, e.g. via heritability estimation for345

phenotypes in genetic studies.346

3.4.2 Weighting347

Sometimes we have strong reasons or evidence to prioritize some of the predictors than the oth-348

ers. We can easily extend the standard objective (3) and reflect this belief in a weighted penalty349

λ
∑p
j=1 wj‖Uj·‖2 where the weight wj controls inversely the relative importance of the jth variable.350

For example, wj = 0 implies jth variable will always be included in the model, while a large wj will351

almost exclude the variable from the model.352

In the response space, we can also impose a weighting mechanism to priortize the training of353

certain responses. For a given set of nonnegative weights wk, 1 ≤ k ≤ q, the SRRR objective (3)354

can be modified to (1/2)
∑q
k=1 wk‖Y·k −XUV>k·‖22 + λ

∑p
j=1 ‖Uj·‖2 with the same constraint, or355
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equivalently,356

minimize 1
2‖YW 1

2 −XUV>‖2F + λ

p∑
j=1
‖Uj·‖2,

s.t. V>W−1V = I,

(8)

where the weight matrix W = diag(w1, . . . , wq). To solve the problem with our alternating min-357

imization scheme, we can see that in the V-step, instead of solving the standard orthogonal Pro-358

crustes problem with an elegant analytic solution derived from the SVD, we have to deal with a359

so-called weighted orthogonal Procrustes problem (WOPP). Finding the solution of the WOPP is360

far more complicated. See, for instance, Mooijaart, Commandeur (1990), Chu, Trendafilov (1998)361

and Viklands (2006). An iterative procedure is often needed to compute the solution. For better362

computational efficiency, we instead solve the problem with the original orthonormal constraint:363

minimize 1
2‖YW 1

2 −XUV>‖2F + λ

p∑
j=1
‖Uj·‖2,

s.t. V>V = I.

(9)

That is, we amplify the magnitude of some responses so that the objective value is more sensitive364

to the loss incurred on these responses. When making prediction, we will need to scale them back365

to the original units.366

3.4.3 Adjustment Covariates367

In some applications such as genome-wide association studies (GWAS), there may be confounding368

variables Z ∈ Rn×m that we want to adjust for in the model. For example, population stratification,369

defined as the existence of a systematic ancestry difference in the sample data, is one of the common370

factors in GWAS that can lead to spurious discoveries. This can be controlled for by including some371

leading principal components of the SNP matrix as variables in the regression (Price et al., 2006).372

In the presence of such variables, we solve the following problem instead. With a slight abuse of373

notation, in this section, we use W to denote the coefficient matrix for the covariates instead of a374

weight matrix:375

minimize 1
2‖Y− ZW−XUV>‖2F + λ

p∑
j=1
‖Uj‖2,

s.t. V>V = I.

(10)

The main components don’t change except two adjustments. When determining the starting λ376

value, we use Lemma 4.377

Lemma 4. In problem (10), if r > 0, the maximum λ that results in a nontrivial solution B̂(λ) is

λmax = max
1≤j≤p

‖x>j R̂‖2,

where R̂ = Y− ZŴ and Ŵ is the multiple outcome regression coefficient matrix.378
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The proof is almost the same as before. The other nuance we should be careful about is when
fitting the model, we should leave those covariates unpenalized because they serve for the adjustment
purpose and should not be experiencing the selection stage. In particular, in the U-step (group
lasso) given V, direct computation would reduce to solving the problem

minimize
U,W

1
2‖YV− ZWV−XU‖2F + λ

p∑
j=1
‖Uj‖2,

which is not as convenient as standard group lasso problem. Instead, we find that W can always be
solved explicitly in terms of other variables. In fact, the minimizer Ŵ = (Z>Z)−1Z>(Y−XUV>).
Plug in and we find that the problem to be solved can be written as

minimize
U

1
2‖(I−HZ)YV− (I−HZ)XU‖2F + λ

p∑
j=1
‖Uj‖2,

where HZ = Z(Z>Z)−1Z> is the projection matrix on the column space of Z. This becomes a379

standard group lasso problem and can be solved by using, for example, the glmnet package with380

the mgaussian family.381

3.4.4 Missing Values382

In practice, there can be missing values in either the predictor matrix or the outcome matrix. If
we only discard samples that have any missing value, we could lose a lot of information. For the
predictor matrix, we could do imputation as simple as mean imputation or something sophisticated
by leveraging the correlation structure. For missingness in the outcome, there is a natural way to
integrate an imputation step seamlessly with the current procedure, analogous to the softImpute
idea in Mazumder et al. (2010). We first define a projection operator for a subset of two dimensional
indices Ω ⊆ {1, . . . , n} × {1, . . . , p}. Let PΩ : Rn×p → Rn×p be such that

PΩ(Y)i,j =
{

Yi,j , (i, j) ∈ Ω,
0, (i, j) 6∈ Ω.

Let Ω be the set of indices where the response values are observed; in other words, Ωc is the set of383

missing locations. Instead of (3), now we solve the following problem.384

minimize 1
2‖PΩ(Y)− PΩ(XUV>)‖2F + λ

p∑
j=1
‖Uj‖2,

s.t. V>V = I.

(11)

We can easily see that an equivalent formulation of the problem is385

minimize
U,V,Y′

1
2‖Y

′ −XUV>‖2F + λ

p∑
j=1
‖Uj·‖2,

s.t. V>V = I, PΩ(Y′) = PΩ(Y).
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This inspires a natural projection step to deal with the additional constraint. It can be well386

integrated with the current alternating minimization scheme. In fact, after each alternation between387

the U-step and the V-step, we can impute the missing values from the current predictions XUV>,388

and then continue into the next U-V alternation with the completed matrix.389

3.4.5 Lazy Reduced Rank Regression390

There is an alternative way to find a low-rank coefficient profile for the multivariate regression.391

Instead of pursing to solve the non-convex problem (3) directly, we can follow a two-stage procedure:392

1. Solve a full-rank multi-gaussian sparse regression, i.e.,

minimizeB
1
2‖Y−XB‖2F + λ

p∑
j=1
‖Bj·‖2.

2. Conduct SVD of the resulting coefficient matrix B̂ and use its rank r approximation as our393

final estimator.394

The advantage of this approach is that it is stable. The first stage is a convex problem and can be395

handled efficiently by, for example, glmnet. A variety of adaptive screening rules are also applicable396

in this situation to assist dimension reduction. The second stage is fairly standard and efficient397

as long as there are not too many active variables. However, the disadvantage is clear too. The398

low-rank approximation is conducted in an unsupervised manner, so could lead to some degrade in399

the prediction performance.400

That said, as before, we should still evaluate the out-of-sample performance as the penalty401

parameter λ varies and pick the best on the solution path as our final estimated model. In many402

cases, we compute the full-rank model under the exact mode anyways, so the set of lazy models403

can be thought of as an efficient byproduct for our choice.404

3.5 Full Algorithm405

We incorporate the options above and present the full algorithm in Algorithm 2.406
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Algorithm 2 Large-scale and Ultrahigh-dimensional Sparse Reduced Rank Regression
1: Standardize or weight the responses. Define a sequence of λ values λ1 > · · · > λL. Initialize

U(λ0) = 0,V(λ0) = 0 and YΩc .
2: for ` = 1 to L do
3: Initialize t = 0, U(λ`) = U(λ`−1),V(λ`) = V(λ`−1),W(λ`) = W(λ`−1), and A(λ`) be the

active set at λ`−1.
4: while t = 0 or KKT Check at t− 1 failed do
5: [Variable Screening] Find M variables SM ⊆ Ω \ A(λ`) with largest values in ‖x>j (Y−

ZW(λ`)−XA(λ`)UA(λ`)(λ`)V(λ`)>‖, and let

A(λ`) = A(λ`) ∪ SM .

6: [Alternating Minimization] Let k = 0 and U(0) = UA(λ`)(λ`),V(0) = V(λ`),W(0) =
W(λ`) and Y(0) = Y.

7: while k = 0 or ‖U(k)V(k)> −U(k−1)V(k−1)>‖ > ε do
8: V-step: Fix U(k), solve V: the orthogonal Procrustes problem

minimize
V:V>V=I

‖Y(k) − ZW(k) −XA(λ`)U(k)V>‖2F .

Let (Y(k) − ZW(k))>XA(λ`)U(k) = MDN> (skinny SVD) and solve V(k+1) = MN>.
9: U-step: Fix V(k+1), solve U and W: the group lasso problem

U(k+1) = argmin
U

1
2‖(I−HZ)Y(k)V(k+1) − (I−HZ)XA(λ`)U‖2F + λ`

p∑
j=1
‖Uj·‖2, (12)

and W(k+1) = (Z>Z)−1Z>(Y(k) −XA(λ`)U(k+1)V(k+1)).
10: Y-step: Impute the missing values

Y(k+1)
Ω = Y(k)

Ω , Y(k+1)
Ωc = (ZW(k+1) + XA(λ`)U(k+1)(V(k+1))>)Ωc

11: k = k + 1
12: end while
13: Let UA(λ`)(λ`) = U(k),UA(λ`)(λ`) = 0,V(λ`) = V(k),W(λ`) = W(k) and Y = Y(k).
14: [KKT Check] Check the criterion for all j ∈ Ω \ A(λ`),

‖x>j (Y− ZW(λ`)−XA(λ`)UA(λ`)(λ`)V(λ`)>)‖ ≤ λ`.

15: t = t+ 1
16: end while
17: end for
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4 Convergence Analysis407

In this section, we present some convergence properties of the alternating minimization algorithm
(Algorithm 1) on sparse reduced rank regression. Let

g(U,V) = 1
2‖Y−XUV>‖2F + λ

p∑
j=1
‖Uj‖2.

Theorem 1. For any k ≥ 1, the function values are monotonically decreasing:

g(Uk,Vk) ≥ g(Uk+1,Vk) ≥ g(Uk+1,Vk+1).

Furthermore, we have the following finite convergence rate:

min
1≤k≤K

g(Uk,Vk)− g(Uk+1,Vk+1) ≤ 1
K

(g(U1,V1)− g∞),

where g∞ = limk→∞ g(Uk,Vk). It implies that the iteration will terminate in O(1/ε) iterations.408

The proof is straightforward and we won’t detail here. It presents the fact that alternating409

minimization is a descent algorithm. In fact, this property holds for all alternating minimization410

or more general blockwise coordinate descent algorithms. However it does not say how good the411

limiting point is. In the next result, we show a local convergence result that under some regularity412

conditions, if the initialization is closer enough to a global minimum, it will converge to a global413

minimum at linear rate. It is based on similar results on proximal gradient descent by Dubois et al.414

(2019). To define a local neighborhood, it would be easier if we eliminate V by always setting it to415

a minimizer given U. That is, the objective function becomes Fλ(U) = 1
2‖XU‖22 − ‖Y>XU‖∗ +416

λ
∑p
j=1 ‖Uj·‖2. We define a sublevel set Sc(λ) = {U ∈ Rp×r : Fλ(U) ≤ c}.417

Theorem 2. Assume X>X is invertible and σ2
max ≥ σ2

min > 0 be its smallest and largest eigen-
values. Let sj be the jth singular value of (X>X)− 1

2 X>Y. There exists λ̄ > 0 such that for all
0 ≤ λ < λ̄ and 0 ≤ µ < σ2

min(1 − s2
r+1/s

2
r), there is a sublevel set S(λ, µ) where the level depends

on λ and µ such that if Uk ∈ S(λ, µ), we have

∆(Uk+1,Vk+1) ≤
(

1−min
(

1
2 ,

µ

σ2
max

))
∆(Uk,Vk),

where ∆(U,V) = g(U,V)− g(U∗,V∗) and (U∗,V∗) is a global minimum.418

From a high level, the proof is based on the fact that under the conditions, the function is strongly419

convex near the global minima. If we starting from this region, we achieve good convergence rate420

with alternating minimization algorithm. The full proof is given in Appendix A.3.421

It is easy to see that the theorem above implicitly assumes the classical setting where n ≥ p422

since otherwise X>X would not be invertible. However, it is still applicable to our algorithm. The423

algorithm does not attempt to solve alternating minimization at the full scale, but only does it424

after variable screening. With screening, it is very likely that we will again be working under the425

classical setting. Moreover, with warm start, there is higher chance that the initialization lies in the426

local region as defined above. Therefore, this theorem can provide useful guidance on the practical427

computational performance of the algorithm.428
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5 Simulation Studies429

We conduct some experiments to gain more insight into the method and compare with the single-430

response lasso method. Due to space limit, we demonstrate the results in one experiment setting431

and include results for other settings such as correlated features, deviation from the true low-rank432

structure etc., in Appendix C. We experiment with three different sizes and three different signal-433

to-noise ratio (SNR): (n, p, k) = (200, 100, 20), (200, 500, 20), (200, 500, 50), where k is the number434

of variables with true nonzero coefficients, and the target SNR = 0.5, 1, or 3. The number of435

responses q = 20 and the true rank r = 3. We generate the X ∈ Rn×p with independent samples436

from some multivariate Gaussian N (0,ΣX) where ΣX = Ip in this section. More results under437

correlated designs are presented in the appendix. The response is generated from the true model438

Y = XUV>+E, where each entry in the support of U ∈ Rp×r (sparsity k) is independently drawn439

from a standard Gaussian distribution, and V ∈ Rq×r takes the left singular matrix of a Gaussian440

ensemble. Hence B = UV> is the true coefficient matrix. The noise matrix is generated from441

N (0, σ2
eIq), where σ2

e is chosen such that the signal-to-noise ratio442

SNR = Tr(B>ΣXB)
σ2
e ·Tr(ΣE) (13)

is set to a given level. The performance is evaluated by the test R2, defined as follows:

R2 = 1− ‖Y−XB̂‖2F
‖Y− Ȳ‖2F

.
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Figure 3: R2 each run is evaluated on a test set of size 5000. “oracle” is the result where we know the
true active variables and solve on this subset of variables. “glmnet” fits the responses separately. “SRRR-r”
indicates the SRRR results with assumed rank r.

The main insight we obtain from the experiments is that the method is more robust to over-443

estimating than underestimating the rank. A significant degrade in performance can be identified444

even if we are only off the rank by 1 from below. In contrast, the additional variance brought along445

by overestimating the rank doesn’t seem to be a big concern. This, in essence, can be ascribed to446

bias and variance decomposition. In our settings, the bias incurred in underestimating the rank447

and thus 1/3 loss of parameters contributes a lot more to the MSE compared with the increased448

variance due to 1/3 redundancy in the parameters.449

6 Real Data Application: UK Biobank450

The UK Biobank (Bycroft et al., 2018) is a large, prospective population-based cohort study with451

individuals collected from multiple sites across the United Kingdom. It contains extensive genetic452

and phenotypic detail such as genome-wide genotyping, questionnaires and physical measures for a453
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wide range of health-related outcomes for over 500,000 participants, who were aged 40-69 years when454

recruited in 2006-2010. In this study, we are interested in the relationship between an individual’s455

genotype and his/her phenotypic outcomes. While genome-wide association studies (GWAS) focus456

on identifying SNPs that may be marginally associated with the outcome using univariate tests,457

we would like to leverage the additive effect of all SNPs to make good prediction. Recently there458

is a line of work (Qian et al., 2019; Sinnott-Armstrong et al., 2019; Lello et al., 2018) that builds a459

lasso solution on the large dataset and shows that the prediction is much improved over previous460

methods. Furthermore, a number of phenotypes present nontrivial correlation structures and we461

would like to further improve the prediction and stabilize the variable selection by building a joint462

model for multiple outcomes.463

We focused on 337,199 White British unrelated individuals out of the full set of over 500,000 from464

the UK Biobank dataset (Bycroft et al., 2018) that satisfy the same set of population stratification465

criteria as in DeBoever et al. (2018). Each individual has up to 805,426 measured variants, and466

each variant is encoded by one of the four levels where 0 corresponds to homozygous major alleles, 1467

to heterozygous alleles, 2 to homozygous minor alleles and NA to a missing genotype. In addition,468

we have available covariates such as age, sex, and forty pre-computed principal components of the469

SNP matrix. Among them, we use age, sex and the top 10 PCs for the adjustment of population470

stratification (Price et al., 2006).471

There are binary responses in the data such as many disease outcomes. Although in principle472

we can solve for a mixture of Gaussian and binomial likelihood using Newton’s method, for ease of473

computation in this large-scale setting, it is a reasonable approximation to treat them as continuous474

responses and fit the standard SRRR model. However, after the model is fit, we will refit a logistic475

regression on the predicted score to obtain a probability estimation. Notice that the refit is still476

trained on the training set at each λ value.477

The number of samples is large in the UK Biobank dataset, so we afford to set aside an inde-478

pendent validation set without resorting to costly cross-validation to find an optimal regularization479

parameter. We also leave out a subset of observations as test set to evaluate the final model.480

In particular, we randomly partition the original dataset so that 70% is used for training, 10%481

for validation and 20% for test. The solution path is fit on the training set, whereas the desired482

regularization is selected on the validation set, and the final model is evaluated on the test set.483

In the experiment, we compare the performance of the multivariate-response SRRR model with
the single-response lasso model. To fit the lasso model, we rely on fast implementation of the
snpnet package (Qian et al., 2019), and we also refer to the lasso results as snpnet in the results
section. For continuous responses, we evaluate the prediction by R-squared (R2). Given a linear
coefficient vector β̂ (fitted on the training set) and a subset of data {(xi, yi), 1 ≤ i ≤ n}, it is defined
as

R2 = 1−
∑n
i=1(yi − x>i β̂)2∑n
i=1(yi − ȳ)2 .

We compute R2 respectively on the training, validation and test sets. For binary response, mis-484

classification error could be used but it would depend on the calibration. Instead the receiver485

operating characteristic (ROC) curve provides more information and demonstrates the tradeoff be-486

tween true positive and false positive rates under different thresholds. The area under the curve487

(AUC) computes the area under the ROC curve — a larger value indicates a generally better classi-488

fier. Therefore, we will evaluate AUCs on the training, validation and test sets for binary responses.489

When comparing different methods, we evaluate both absolute change and relative change over the490
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baseline method (in particular the already competitive lasso in our case), where the relative change491

for a given metric is defined as (metricnew −metriclasso)/|metriclasso|.492

Computationally, in the UK Biobank experiments, the SNP data are stored in a compressed493

PLINK format with two-bit encodings. PLINK 2.0 (Chang et al., 2015) provides an extensive set494

of efficient operations including very fast, multithreaded matrix multiplication. In particular, this495

matrix multiplication module is heavily used in the steps of screening and KKT check in this work496

and other lasso-based results (Li et al., 2020; Qian et al., 2019) on the UK Biobank.497

6.1 Asthma and 7 Blood Biomarkers498

Here, we defined asthma based on a mixture of self-reported questionnaire data and hospital in-499

patient record data described in DeBoever et al. (2018); Tanigawa et al. (2019). Furthermore, we500

focused on 7 additional blood count measurements from Category 100081 in UK Biobank containing501

results of haematological assays that were performed on whole blood.502

We apply the SRRR to the set of phenotypes and expect some performance improvement by503

leveraging the correlation structure. Choice of the phenotypes: monocyte count, neutrophill count,504

eosinophill count, basophill count, forced vital capacity (FVC), peak expiratory flow (PEF), and505

forced expiratory volume in 1 second (FEV1).506

Overall, we see small rank representation can maintain predictive power for specific phenotypes507

(see Figure 4) and that overall the multiresponse model improves the prediction over the single-508

response lasso model (see Figure 5).509

AUC (train)

A
U
C
 (v
al
)

Asthma Basophil count

Figure 4: Asthma and Basophil count prediction performance plots. Different colors correspond to lower
rank predictive performance across (x-axis) training data set and (y-axis) validation data set for (left)
asthma and (right) basophil count.

21

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.30.125252doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.30.125252
http://creativecommons.org/licenses/by/4.0/


● ●

●

●

●

●

●

●

0

5

10

15

0.000

0.025

0.050

0.075

0.100

Bas
op

hil
l c

ou
nt

M
on

oc
yte

 co
un

t

Asth
m

a
PEF

Neu
tro

ph
ill 

co
un

t

Eos
ino

ph
ill 

co
un

t

FEV1
FVC

Phenotype

Te
st

 M
et

ric
 R

el
at

iv
e 

C
ha

ng
e 

(%
) Test M

etric A
bsolute C

hange

Figure 5: Change in prediction accuracy for multiresponse model compared to single response model.
(top) (y-axis 1 bar) R2 relative change (%) for each phenotype (x-axis) and R2 absolute change (y-axis 2).

6.2 35 Biomarkers510

In addition, we used 35 biomarkers from the UK Biobank biomarker panel in Sinnott-Armstrong511

et al. (2019), and apply SRRR to the dataset. Noticeably, for the liver biomarkers including alanine512

aminotransferase and albumin, and the urinary biomarkers including Microalbumin in urine and513

Sodium in urine, we see an improvement in prediction performance for the SRRR application beyond514

the single-response snpnet models (see Figures 6 and 7).515

We can represent the lower rank representation as a biplot of the singular value decomposition516

of the coefficient matrix (Gower et al., 2011; Gabriel, 1971; Tanigawa et al., 2019). Specifically, we517

display phenotypes projected on phenotype principal components as a scatter plot. We also show518

variants projected on variant principal components as a separate scatter plot and added phenotype519

singular vectors as arrows on the plot using sub-axes. In scatter plot with biplot annotation, the520

inner product of a genetic variant and a phenotype represents the direction and the strength of the521

projection of the genetic association of the variant-phenotype pair on the displayed latent compo-522

nents. For example, when a variant and a phenotype share the same direction on the annotated523

scatter plot, that means the projection of the genetic associations of the variant-phenotype pair on524

the displayed latent components is positive. When a variant-phenotype pair is projected on the525

same line, but on the opposite direction, the projection of the genetic associations on the shown526

latent components is negative. When the variant and phenotype vectors are orthogonal or one of527

the vectors are of zero length, the projection of the genetic associations of the variant-phenotype528

pair on the displayed latent components is zero. We focused on the top five key SRRR components529
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for AST to ALT ratio (see Figure 8).530
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Figure 7: Change in prediction accuracy for multiresponse model compared to single response model.
(top) (y-axis 1 bar) R2 relative change (%) for each biomarker (x-axis) across different biomarker category
(color) and R2 absolute change (y-axis 2). (bottom) Change in predictive accuracy for multiresponse model
compared to single response model for urinary biomarkers.
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Figure 8: The latent structures of the the top five key SRRR components for AST to ALT ratio. Using
trait squared cosine score described in Tanigawa et al. (2019), the top five key SRRR components for AST
to ALT ratio (components 9, 18, 20, 8, and 3) are identified from a full-rank SVD of coefficient matrix C
from SRRR (C = UDV T ) and shown as a series of biplots. In each panel, principal components of genetic
variants (rows of UD) are shown in blue as scatter plot using the main axis and singular vectors of traits
(rows of V ) are shown in red dots with lines using the secondary axis, for the identified key components.
The five traits and variants with the largest distance from the center of origin are annotated with their
name.

7 Related Work531

There are many other methods that were proposed for multivariate regression in high-dimensional532

settings. Chen, Huang (2012) compares the SRRR with rank-free methods including L2SVS Similä,533

Tikka (2007), L∞SVS (Turlach et al., 2005) that replaces the `2-norm with `∞-norm of each row,534

and RemMap (Peng et al., 2010) that imposes an additional elementwise sparsity of the coefficient535
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matrix. It also compares with the SPLS Chun, Keleş (2010) and points out that the latter does not536

target directly on prediction of the responses so the performance turns out not as good. Another537

important category of methods Canonical Correlation Analysis (CCA) (Hotelling, 1936) that tries to538

constructed uncorrelated components in both the feature space and the response space to maximize539

their correlation coefficients also falls short in the aspect, even though some connection can be540

established with the reduced rank regression as seen in Appendix B.541

More recently, there is a line of new advances in sparse and low-rank regression problems. For542

example, Ma, Sun (2014) proposed a subspace assisted regression with row sparsity and studied543

its near-optimal estimation properties. Ma et al. (2020) furthered this work to a two-way sparsity544

setting, where nonzero entries are present only on a few rows and columns. Li et al. (2019) proposed545

an integrative multi-view reduced-rank regression that encourages group-wise low-rank coefficient546

matrices with a composite nuclear norm. Dubois et al. (2019) developed a fast first-order proximal547

gradient algorithm on the SRRR objective reparameterized by a single matrix and proves linear548

local convergence. Luo et al. (2018) proposed a mixed-outcome reduced-rank regression method549

that deals with different types of responses and also missing data, though it does not aim for550

high-dimensional settings with variable selection.551

In genetics, some approaches proposed to decompose genetic associations from summary level552

data using LD-pruning along with p-value thresholding for variable selection in an approach referred553

to as DeGAs (Tanigawa et al., 2019) and MetaPhat (Lin et al., 2019). DeGAs was extended for554

genetic risk prediction and to ”paint” an individual’s risk to a disease based on genetic component555

loadings in an approach referred to as DeGAs-risk (Aguirre et al., 2019).556

8 Summary and Discussion557

In this paper, we propose a method that takes into account both sparsity in high-dimensional regres-558

sion problems and low-rank structure when multiple correlated outcomes are present. A screening-559

based alternating minimization algorithm is designed to deal with large-scale and ultrahigh-dimensional560

applications, such as the UK Biobank population cohort. We demonstrate the effectiveness of the561

method on both synthetic and real datasets focusing on asthma and 7 related blood count biomark-562

ers, in addition to the 35 biomarker panel made available by UK Biobank (Sinnott-Armstrong et al.,563

2019). We anticipate that the approach presented here will generalize to thousands of phenotypes564

that are currently being measure in UK Biobank, e.g. metabolomics and imaging data that are565

currently being generated in over 100,000 individuals.566

Methodologically, in the UK Biobank experiments, we use continuous approximation to binary567

outcomes. This is a reasonable assumption but ideally one would like to solve the exact problem568

based on their respective likelihood. In principle, there is no theoretical challenge in the algorithmic569

design. We can use Newton’s method and enclose the procedure with an outer loop that conducts570

quadratic approximation of the objective function. However, the quadratic problem involving both571

penalty and low-rank constraint can be very messy. We might need some heuristics to find a more572

convenient approximation. We see this as future work along with extending the SRRR algorithm573

to other families including time-to-event multiple responses that can be used for survival analysis.574

Furthermore, for an individual we can project a variant and phenotype loading across the reduced575

rank to their risk to arrive at a similar analysis of outlier individuals with unusual painting of576

genetic risk and to quantify the overall contribution of a component which may aid in disease risk577

interpretation. Overall, we see the method and algorithms presented here as an important toolkit578

to the prediction problem in human genetics.579
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A Additional Proofs734

A.1 Proof of Lemma 1735

This is intuitively the same as one without the rank constraint because when the coefficients just736

start to become nonzero, the coefficient matrix is low-rank in its nature. Therefore, for the purpose737

of finding the maximum meaningful λ, we can ignore the rank constraint unless r = 0. Without the738

constraint, it follows from the KKT condition that having all coefficients to be zero is equivalent739

to setting740

λ ≥ λmax = max
1≤j≤p

‖x>j Y‖2. (14)

Therefore, the maximum λ that accommodates a nontrivial solution is λmax = max1≤j≤p ‖x>j Y‖2.741

A.2 Proof of Lemma 2742

We plug in the SVD of Z and have Tr(Z>V) = Tr(NDM>V) = Tr(DM>VN) =
∑r
k=1 DkkSkk,743

where S = M>VN and the last equality is due to the fact that D is a diagonal matrix. Notice that744

by the skinny SVD, SS> = M>V>NN>VM = I. We thus know S is an orthogonal matrix and the745

magnitude of its diagonal elements cannot exceed 1. Since Dkk are all non-negative. To maximize746 ∑r
k=1 DkkSkk, we let Skk = 1 for all 1 ≤ k ≤ r. This is equivalent to setting S = M>VN = I.747

Therefore, one solution is given by V = MN>. The maximum value of the objective is thus748 ∑r
k=1 Dkk = ‖Z‖∗, the nuclear norm of Z.749

A.3 Proof of Theorem 2750

We notice that in Problem (3) we can solve explicitly for V and plug back into the objective
function. It yields the objective function (after dropping the constant term (1/2)‖Y‖2F ):

Fλ(U) = 1
2‖XU‖22 − ‖Y>XU‖∗ + λ

p∑
j=1
‖Uj·‖2,

We let fλ(U) = (1/2)‖XU‖22 − ‖Y>XU‖∗ without the penalty term so that Fλ(U) = fλ(U) +
λ
∑p
j=1 ‖Uj·‖2. Define a local smooth approximation of Fλ as

F̃ tλ(U′; U) = fλ(U) + 〈∇fλ(U),U′ −U〉+ (1/2t)‖U′ −U‖2F + λ

p∑
j=1
‖Uj·‖2,

and U+ = argminU′ [F̃ tλ(U′; U) − Fλ(U)]. Dubois et al. (2019) showed that if t is small enough751

such that F̃ tλ(U+; U) ≥ Fλ(U+), we have752

Fλ(U+)− F ∗λ ≤
(

1−min
(

1
2 , µt

))
(Fλ(U)− F ∗λ ). (15)
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Consider the iterates (Uk,Vk)k≥1 in the alternating minimization algorithm. Notice that∇fλ(Uk) =753

X>XUk −X>YVk. We have754

Fλ(Uk+1) = g(Uk+1,Vk+1)− 1
2‖Y‖

2
F (g is the SRRR objective function)

≤ g(Uk+1,Vk)− 1
2‖Y‖

2
F

= min
U

g(U,Vk)− 1
2‖Y‖

2
F

= min
U

(
1
2‖Y−XUk(Vk)>‖2F + 〈X>(XUk −YVk),U−Uk〉+

1
2 Tr((U−Uk)>X>X(U−Uk))

)
+ λ

p∑
j=1
‖Uj·‖2 −

1
2‖Y‖

2
F

≤ min
U

(
fλ(Uk) + 〈∇fλ(U),U′ −U〉+ 1

2σ
2
max‖U−Uk‖2F

)
+ λ

p∑
j=1
‖Uj·‖2

= min
U

F̃
1/σ2

max
λ (U; Uk),

where the fourth line is the quadratic expansion of g(U,Vk) at Uk, the second to last is by the fact755

that Tr((U −Uk)>X>X(U −Uk)) ≤ σ2
max‖U −Uk‖2F , and the last equality is by the definition756

of F̃ tλ function. Therefore, if we let Uk,+ = argminU[F̃ 1/σ2
max

λ (U; Uk)− Fλ(Uk)], we have757

Fλ(Uk+1)− F ∗λ ≤ Fλ(Uk,+)− F ∗λ . (16)

We need to show that Uk,+ satisfies the condition F̃
1/σ2

max
λ (Uk,+; Uk) ≥ Fλ(Uk,+). To see this,758

notice that in fact for any U,759

1
2‖XU‖22 = 1

2‖XUk‖2F + 〈X>XUk,U−Uk〉+ 1
2‖X(U−Uk)‖2F

≤ 1
2‖XUk‖2F + 〈X>XUk,U−Uk〉+ 1

2σ
2
max‖U−Uk‖2F .

Since X>YVk is a subgradient of ‖Y>XU‖∗ at Uk, we have

−‖Y>XU‖∗ ≤ −‖Y>XUk‖∗ − 〈X>YVk,U−Uk〉.

Adding the two inequalities up, and we have Fλ(U) ≤ F̃
1/σ2

max
λ (U; Uk) for all U. In particular, it

holds for Uk+. Therefore, by (15) and (16), we have

Fλ(Uk+1)− F ∗λ ≤ Fλ(Uk,+)− F ∗λ ≤
(

1−min
(

1
2 ,

µ

σ2
max

))
(Fλ(Uk)− F ∗λ ),

and the convergence is linear.760

B Connection with CCA761

Canonical Correlation Analysis (CCA) has an internal connection with Reduced-Rank Regression762

(RRR). In particular, it can be shown that the low-rank components constructed on the X space763
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turn out to be the same by a relaxed CCA and a generalized RRR. CCA finds linear combinations764

XU ∈ Rn×r of variables in X ∈ Rn×p and linear combinations YV ∈ Rn×r of variables in Y ∈ Rn×q765

that attain the maximum correlation. We assume both X and Y have been centered. CCA solves766

the following optimization problem:767

maximize
U,V

Tr(U>X>YV),

s.t. U>X>XU = V>Y>YV = Ir.
(17)

In particular, in the one dimensional case, this reduces to the problem of maximizing our familiar768

correlation coefficient. An equivalent representation to (17) can be written as769

minimize
U,V

‖YV−XU‖2F ,

s.t. U>X>XU = V>Y>YV = Ir.
(18)

The solution to the problem is Û = S−1/2
xx Q(r), V̂ = S−1/2

yy P(r) where P(r) and Q(r) are the r770

leading left and right singular vectors of matrix R = S−1/2
yy SyxS−1/2

xx . P(r) is also the r leading771

eigenvectors of S−1/2
yy SyxS−1

xxSxyS−1/2
yy . A relaxed form of CCA problem ignoring the U-constraint772

solves773

minimize
U,V

‖YV−XU‖2F ,

s.t. V>Y>YV = Ir.
(19)

The solution is Û = S−1
xxSxyS−1/2

yy P(r), V̂ = S−1/2
yy P(r), where P(r) is the r leading eigenvectors774

of S−1/2
yy SyxS−1

xxSxyS−1/2
yy . Therefore, the solution for V remains unchanged, though U is different775

due to the constraint.776

On the other hand, in the (generalized) reduced rank regression, given a given positive-definite777

matrix Γ, the problem becomes778

minimize
U,V

Tr(Γ1/2(Y−XUV>)>(Y−XUV>)Γ1/2). (20)

This can be derived, for example, as an maximum likelihood estimator under the Gaussian assump-779

tion with known covariance Γ−1. One solution (Velu, Reinsel, 2013) is given by780

Û = S−1
xxSxyΓ1/2P(r),

V̂ = Γ−1/2P(r),

where P(r) is the leading eigenvectors of R = Γ1/2SyxS−1
xxSxyΓ1/2. We see that the solution when781

Γ = S−1
yy is closely related to the relaxed CCA solution. U is the same while V is the so-called782

reflexive inverse of V there.783

C Additional Experiments784

We conduct some experiments to gain more insight into the method and compare with other meth-785

ods. We generate the X ∈ Rn×p with independent samples from some multivariate Gaussian786
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N (0,ΣX). For the first several cases, we generate the response from the true, most favorable model787

Y = XUV>+E, where each entry in the support of U ∈ Rp×r (sparsity k) is independently drawn788

from a standard Gaussian distribution, and V ∈ Rq×r takes the left singular matrix of a Gaussian789

ensemble. Hence B = UVT is the true coefficient matrix. The noise matrix is generated from790

N (0, σ2
eΣE), where σ2

e is chosen such that the signal-to-noise ratio791

SNR = Tr(B>ΣXB)
σ2
e ·Tr(ΣE) (21)

is set to a given level. The performance is evaluated by the test R2, defined as follows:

R2 = 1− ‖Y−XB̂‖2F
‖Y− Ȳ‖2F

.

We consider several sets of experiments.792

1. Scenario 1-9 Small experiments: (n, p, k) = (200, 100, 20), (200, 500, 20), (200, 500, 50), q =793

20, r = 3. The X has independent design, and the noise across different responses are all794

independent, i.e. ΣX = Ip,ΣE = Iq. Target SNR = 0.5, 1, 3. The results are evaluated on795

test sets of size 5000.796

2. Scenario 10-18 Same as Scenario 1-9. The true coefficient matrix is no longer exact low797

rank. It is perturbed by Gaussian noise with mean 0 and standard deviation 0.5.798

3. Scenario 19-27 Same as Scenario 1-9, except that the predictors are correlated. In particular,

Cov(xj ,xj′) =
{

1, j = j′,

ρ, j 6= j′.

We let ρ = 0.5 in this set of simulation.799

4. Scenario 28-36 Same as Scenario 10-18, except that the predictors are correlated as in800

Scenario 19-27.801

From the simulations, we find that underestimating the rank can degrade the performance instantly.802

Overestimating the rank will give one a variance penalty, but it seems to be rather robust compared803

with the other direction.804
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Scenario 1-9 Small experiments: (n, p, k) = (200, 100, 20), (200, 500, 20), (200, 500, 50), q = 20, r =805

3. The X has independent design, and the noise across different responses are all independent, i.e.806

ΣX = Ip,ΣE = Iq. Target SNR = 0.5, 1, 3. The results are evaluated on test sets of size 5000.807
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Figure C.1: Scenario 1-9. R2 each run is evaluated on a test set of size 5000.
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Scenario 10-18 Same as Scenario 1-9. The true coefficient matrix is no longer exact low rank.808

It is perturbed by Gaussian noise with mean 0 and standard deviation 0.5.809
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Figure C.2: Scenario 10-18. R2 each run is evaluated on a test set of size 5000. The oracle here does not
take into account the noise in true coefficient matrix, and do reduced rank regression on the true support
and the true rank.
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Scenario 19-27 Same as Scenario 1-9, except that the predictors are correlated. In particular,

Cov(xj ,xj′) =
{

1, j = j′,

ρ, j 6= j′.

We let ρ = 0.5 in this set of simulation.810
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Figure C.3: Scenario 19-27. R2 each run is evaluated on a test set of size 5000.
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Scenario 28-36 Same as Scenario 10-18, except that the predictors are correlated as in Scenario811

19-27.812
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Figure C.4: Scenario 28-36. R2 each run is evaluated on a test set of size 5000.

D Additional Information on the Methods813

D.1 Compliance with ethical regulations and informed consent814

This research has been conducted using the UK Biobank Resource under Application Number815

24983, “Generating effective therapeutic hypotheses from genomic and hospital linkage data” (http:816

//www.ukbiobank.ac.uk/wp-content/uploads/2017/06/24983-Dr-Manuel-Rivas.pdf). Based817
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on the information provided in Protocol 44532 the Stanford IRB has determined that the research818

does not involve human subjects as defined in 45 CFR 46.102(f) or 21 CFR 50.3(g). All participants819

of UK Biobank provided written informed consent (more information is available at https://www.820

ukbiobank.ac.uk/2018/02/gdpr/).821

D.2 Population stratification in UK Biobank822

We used genotype data from the UK Biobank dataset release version 2 and the hg19 human genome823

reference for all analyses in the study. To minimize the variabilities due to population structure in824

our dataset, we restricted our analyses to include 337,151 White British individuals (Figure D.1)825

based on the following five criteria (DeBoever et al., 2018; Tanigawa et al., 2019) reported by the826

UK Biobank in the file “ukb sqc v2.txt”:827

1. self- reported white British ancestry (“in white British ancestry subset” column)828

2. used to compute principal components (“used in pca calculation” column)829

3. not marked as outliers for heterozygosity and missing rates (“het missing outliers” column)830

4. do not show putative sex chromosome aneuploidy (“putative sex chromo- some aneuploidy”831

column)832

5. have at most 10 putative third-degree relatives (“excess relatives” column).833

D.3 Variant annotation and quality control834

We prepared a genotype dataset by combining the directly-genotype variants, copy number variants835

(CNVs) and HLA allelotype datasets.836

We annotated the directly-genotyped variants using the VEP LOFTEE plugin (https://github.837

com/konradjk/loftee) and variant quality control by comparing allele frequencies in the UK838

Biobank and gnomAD (gnomad.exomes.r2.0.1.sites.vcf.gz) as previously described28. We focused839

on variants outside of the major histocompatibility complex (MHC) region (chr6:25477797-36448354)840

as previously described. We focused on the variants according to the following criteria:841

• Missigness of the variant is less than 1%, considering that two genotyping arrays (the UK842

BiLEVE array and the UK Biobank array) which covers a slightly different set of variants.843

• Minor-allele frequency is greater than 0.01%, given the recent reports casting questions on844

the reliability of ultra low-frequency variants.845

• The variant is in the LD-pruned set846

• Hardy-Weinberg disequilibrium test p-value is less than 1.0× 10−7
847

• Manual cluster plot inspection. We investigated the cluster plots for subset of variants and848

removed 11 variants that have unreliable genotype calls.849

• Passed the comparison of minor allele frequency with gnomAD dataset as described before850
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CNVs were called by applying PennCNV v1.0.4 on raw signal intensity data from each array851

within each genotyping batch as previously described. We applied a filter on minor-allele frequency852

(MAF > 0.01%), which resulted in 8,274 non-rare (MAF > 0.01%) CNVs.853

The HLA data from the UK Biobank contains all HLA loci (one line per person) in a specific854

order (A, B, C, DRB5, DRB4, DRB3, DRB1, DQB1, DQA1, DPB1, DPA1). We downloaded these855

values, which were imputed via the HLA:IMP*2 program (Resource 182); the UK Biobank reports856

one value per imputed allele, and only the best-guess alleles are reported. Out of the 362 alleles857

reported in UKB, we used 175 alleles that were present in >0.1% of the population surveyed.858

Figure D.1: The identification of unrelated White British individuals in UK Biobank. The first two
genotype principal components (PCs) are shown on the x- and y-axis and the identified unrelated White
British individuals (Methods) are shown in red.
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