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Abstract 
Pharmacogenetics (PGx) studies the influence of genetic variation on drug response. Clinically 

actionable associations inform guidelines created by the Clinical Pharmacogenetics 

Implementation Consortium (CPIC), but the broad impact of genetic variation on entire 

populations is not well-understood. We analyzed PGx allele and phenotype frequencies for 

487,409 participants in the U.K. Biobank, the largest PGx study to date. For fourteen CPIC 

pharmacogenes known to influence human drug response, we find that 99.5% of individuals 

may have an atypical response to at least one drug; on average they may have an atypical 

response to 12 drugs. Non-European populations carry a greater frequency of variants that are 

predicted to be functionally deleterious; many of these are not captured by current PGx allele 

definitions. Strategies for detecting and interpreting rare variation will be critical for enabling 

broad application of pharmacogenetics. 

Introduction 

Drug-based interventions play a primary role in medical treatment; more than 72% of visits to 

clinics and hospitals in the United States result in drug therapy1. An individual’s genetic makeup 

can have a profound impact on how they respond to many drugs. Therefore, the field of 

pharmacogenetics (PGx), is vital to improving modern medicine and prescribing practices2.  

The practical value of PGx testing has increased as the field has discovered and characterized 

high impact haplotypes. These haplotypes are catalogued and named by PharmVar 

(www.pharmvar.org) using a nomenclature system typically based on “star alleles”3–5. Generally, 

the relationship between drug response and pharmacogenes is investigated through targeted 

studies on small groups of human subjects. The findings of these studies are aggregated 

through curation efforts such as PharmGKB (www.pharmgkb.org)6. The Clinical 
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Pharmacogenetics Implementation Consortium (CPIC; cpicpgx.org) and other organizations 

assign a clinical function to star alleles based on published experimental research and create 

peer-reviewed and evidence-based clinical practice guidelines7,8. The clinical utility of PGx 

testing was recently recognized by UnitedHealthcare’s decision to extend coverage to PGx 

testing in the case of antidepressants and antipsychotic medications9.  

PGx testing efforts are not yet capable of robustly handling rare genetic variation. Rare variants 

can be high impact, but are unlikely to be identified by a genotyping array or included in an 

established haplotype definition10. Most PGx testing in the US is currently implemented using 

genotyping arrays As a result, test results may be based on incomplete or partial allele 

definitions or proxy variants to assign PGx haplotypes, which may not represent the actual 

haplotype (as would be revealed by full and error-free sequencing) in the subject11,12. 

Developing more robust methods for assigning function to PGx haplotypes is an active area of 

research13. Unfortunately, the extent to which existing haplotypes definitions capture all 

important genetic variation within pharmacogenes is not well characterized11,12,14.  

We used nearly 500,000 genotypes and 50,000 exome sequence samples in the UK Biobank to 

analyze pharmacogenetic variation at a population scale. To this end, we developed PGxPOP, 

a PGx matching engine, that is based on PharmCAT15 and uses its associated PGx allele 

definitions, to characterize pharmacogenetic allele and phenotype frequencies at scale. 

PGxPOP extends the capabilities of PharmCAT by generating diplotypes from population scale 

datasets15. Additionally, PGxPOP is built as a research tool; unlike PharmCAT, it does not 

create output for clinical implementation including patient-level reports containing genotype-

based drug dosing recommendations. This study represents the largest study of 

pharmacogenetic allele and phenotype frequencies to date and investigates both the power and 

limitations of current star allele definitions. Our findings demonstrate the great value of 

characterizing allele frequencies in large populations, but highlights the need for more PGx 
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research on historically under-studied populations, and the importance of using sequencing 

platforms that are capable of capturing rare genetic variation.  

Methods 

Data 
This analysis focused on subjects enrolled in the UK Biobank, a prospective study of more than 

500,000 individuals in the United Kingdom for whom detailed personal information, clinical data, 

and genetic data have been collected29. We use two sources of genomic data from the UK 

Biobank, genotype data imputed from sites collected on the Axiom Biobank Array (dataset 

release version 2), and exome sequencing data from the SPB pipeline (2/12/2020 rerelease of 

corrected data)29,30. We implemented several quality control measures to ensure high quality 

genetic data; we removed individuals from the analysis that were outliers based on 

heterozygosity and missing rates in the genetic data. These values are reported by the UK 

Biobank in the file “ukb_sqc_v2.txt”. Additionally, using VCFtools31, we excluded any loci that 

had a Hardy-Weinberg equilibrium p-value less than 1x10-15 or was missing in more than 10% of 

individuals. The imputed data was aligned to hg19 and the exome data was aligned to GRCh38. 

Each dataset was processed using the corresponding reference genomes. All data was phased 

using Eagle v2.4.1 (Fig. 1)32. 

We created an “integrated call set” by combining sequencing data of coding regions from the 

exome data and non-coding regions from the imputed genotype data. We used liftOver to map 

the variants in the imputed data to GRCh3833. Variants within the capture region on the exome 

array were extracted from the exomes and merged with intronic variants, and variants from 20 

kilobases upstream and downstream of the transcription start and end sites (respectively). The 

newly merged variants were then phased with Eagle v232.  
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We confirmed the ethnic population assignments using principal component analysis (PCA). We 

first group the self-reported ethnicity according to a standardized biogeographical system into 

African, European, East Asian, and South Asian34. Then, we calculated the mean and standard 

deviation of the first three principal components from a PCA of the genotype array data for each 

biogeographical group. Any sample whose reported ethnicity did not fall within three standard 

deviations of the mean for their reported ethnicity is referred to as “Other”. 

Cross-platform analysis 
We analyzed the ability to call pharmacogenetic haplotypes and phenotypes for all fourteen 

genes (CFTR, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A5, CYP4F2, DPYD, IFNL3, 

NUDT15, SLCO1B1, TPMT, UGT1A1 and VKORC1) across the three call sets: imputed, 

exome, and integrated. We limited the analysis to the 49,702 samples shared across all three 

platforms that pass quality control measures as described above. We calculated the diplotype 

and phenotype concordance between each platform and the integrated call set for each 

individual population and across all populations.  

Haplotype and phenotype calling 
We developed PGxPOP, a tool that makes use of haplotype and phenotype definitions created 

by the PharmCAT effort15. We used the allele definition files in the PharmCAT GitHub repository 

(https://github.com/PharmGKB/PharmCAT), which are derived from allele definitions in 

PharmGKB6. PGxPOP reports exact matches to alleles as defined in PharmCAT’s allele 

definitions. In the case where one allele is completely subsumed within another (i.e. the defining 

variations for the allele are a proper subset of those for another allele), the allele with the 

maximum number of matching positions is reported. Importantly within this research setting, 

PGxPOP also reports partial matches or novel combinations of existing pharmacogenetic alleles 

(i.e. two distinct haplotypes on the same phased genotypes). In cases where there is a 
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complete match to multiple haplotype definitions on the same strand, both haplotypes are 

reported in the program output with “+” notation when they are non-overlapping and “or” 

notation if there is overlap. For instance, if for CYP2D6 both *2 and *9 alleles were found on the 

same strand, PGxPOP would report this as a *2+*9 call, since the alleles for these two 

definitions are mutually exclusive. If instead, variants matching the *35 and *41 alleles were 

found on the same allele, where there is overlap at two positions, but there are also variants 

distinct to each, PGxPOP would report “*35+hg38:chr22.g.42127803C>T or 

*41+hg38:chr22.g.42130761C>T”, in order to represent all possible combinations of the alleles 

found at those positions. Found haplotypes are then mapped to predicted phenotypes based on 

published guidelines from PharmGKB and CPIC. PGxPOP was created as a research tool and 

is not intended for clinical use.  

To enable analyses on large sample populations, we needed PGxPOP to process 100,000s of 

samples in several hours. We facilitated allele definition matching using matrix operations; 

PGxPOP computes the dot product of a reference allele matrix and the observed variant 

matrices (one for each phased haplotype in the VCF) and identifies matching haplotypes as 

those with a complete match to the haplotype definition across the largest number of positions 

(i.e. the sum of the dot product). In addition, we use tabix, a standard VCF indexing tool, to 

rapidly retrieve genomic data from compressed VCF files35.  

We generated population specific haplotype, diplotype, and phenotype frequencies for the 

ethnic populations reported by UK Biobank. Haplotype and variant calls were generated across 

all samples for fourteen genes. We mapped sample diplotypes to phenotypes for all genes 

using CPIC guidelines, except VKORC1 and CYP4F2 because the CPIC guidelines do not 

provide that information for these genes. For phenotype prediction, the haplotypes were 

assigned the CPIC-associated function or activity values in cases of exact star allele matches. 

Phenotype was then determined based on the combination of the two alleles in the diplotype. 
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For star allele combinations of alleles that included additional positions the allele function and 

phenotype was assigned as “not available”. 

We use the star allele definitions when available for these genes with minor modifications. (1) 

We needed to make several assumptions about the ultimate phenotype of combination alleles 

and alleles carrying additional variants in order to assess the distribution of likely response 

phenotypes across the population. In these cases, we assume that if one of these alleles is non-

functional, then the new combination of variants will not recover the function36. Thus, the alleles 

that include star alleles that result in no function are also assigned no function instead of ‘not 

available’. For example, if we identified a CYP2D6 haplotype combination that includes 

CYP2D6*4 and CYP2D6*74 on the same strand (CYP2D6*4+*74), this haplotype would be 

determined to be “no function” even though function of CYP2D6*74 is unknown. We do not 

extend this logic to alleles with decreased or increased function, except for SLCO1B1 and 

UGT1A1 where a haplotype carrying variants for a decreased function star allele is deemed to 

be decreased function. Additionally, any cystic fibrosis patient carrying a CFTR ivacaftor 

responsive allele is said to be ivacaftor responsive. (2) We modified the SLCO1B1 allele 

definitions to exclude synonymous variants. We evaluated the ability to call star alleles in 

SLCO1B1 with and without the three synonymous variants included in the existing star allele 

definitions. (3) For all INDELs we performed a search for identical INDELs in the sequencing 

data that may have been aligned differently. This was done by screening 50bp upstream and 

downstream of each INDEL in the definitions. 

Importantly, structural variants were not called for CYP2D6 or any other gene. Thus, we are not 

able to call star alleles with whole gene deletions (CYP2D6*5), duplications (e.g. CYP2D6*1x2), 

CYP2D7-2D6 hybrids (CYP2D6*13) or CYP2D6-2D7 hybrids including CYP2D6*36. This limits 

the assignment of CYP2D6 function and phenotypes since we are not able to determine 
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CYP2D6 increased function alleles and therefore ultrarapid metabolizer and potentially miss no 

function alleles e.g. CYP2D6*5, *13 or *36.  

We calculated the burden of non-typical response phenotypes for each individual by counting 

the number of diplotypes with predicted non-typical response phenotypes across all twelve 

genes with phenotypes. Gene phenotypes were classified as “typical response” if they did not 

have any guidance away from a drug or its standard dosage based on all CPIC guidelines for 

that gene. Gene phenotypes were determined to have a non-typical response if any CPIC 

guidance recommended an alternate dosage or drug for that phenotype. Details of this heuristic 

can be found in Supplementary Table 1. We then determined the CPIC dosage 

recommendations for each subject for all 41 drugs with guidelines for any of the 14 genes in this 

study. This was done with PGxPOP using an encoding of the CPIC guidelines. For each drug, 

we determined the percent of the population that has been prescribed the drug by analyzing the 

general practice prescription data provided by the UK Biobank for more than 222,000 subjects. 

We considered any record of each drug (or a brand name version of the drug) being prescribed. 

We then calculated the percent of the population who had any record of being prescribed the 

drug.  

Deleterious variant analysis 
In order to estimate the burden of deleterious variants in pharmacogenes we identified variants 

predicted to be deleterious in the exome data. We used a two-fold approach to predict if variants 

are deleterious. Any variant with a high IMPACT rating, such as frameshift indels, stop loss 

variants, was determined to be deleterious37. We then applied an ADME-optimized framework 

for predicting deleteriousness in pharmacogenes, which is an ensemble of deleteriousness 

prediction methods38. This approach enabled the prediction of the impact of missense variants 
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as well as high impact variants. Variant IMPACT classes were determined using VEP39. All 

other annotations were generated using Annovar40. 

Finally, we identified variants that were predicted to be deleterious that were not contained 

within existing star allele definitions. We calculated the aggregate deleterious variant allele 

frequency of all unaccounted-for deleterious variants by taking the sum of all allele counts for 

each deleterious variant not in an existing definition divided by the total number of samples. 

Results 

Platform concordance 
We evaluated the concordance between three genomic call sets (imputed, exome, and 

integrated) for both diplotype and phenotype calling across twelve genes (Table 1). IFNL3 and 

VKORC1 were excluded from this analysis because the allele definition file for each gene 

consists of a single non-coding variant. For five genes where the majority of the variants of 

interest are in exons, we find very high (>96%) correlation between the integrated call set and 

both the imputed and exome call sets when calling both diplotypes and phenotypes (CFTR, 

CYP2C9, TPMT, CYP4F2, and DPYD). We observe a variety of concordance patterns for the 

other seven genes. For CYP2C19, which has a common non-coding variant upstream, the 

exome data is highly discordant with the integrated call set. Several genes have a mix of coding 

and non-coding variants, for these both platforms have low concordance with the integrated call 

set (UGT1A1, CYP2D6, SLCO1B1). For three genes, the exome data performs well, and the 

imputed data has lower concordance (CYP2B6, CYP3A5, and NUDT15). The imputed data for 

NUDT15 has extremely low concordance with the integrated data; a variant that is rare in the 

population (rs746071566) was imputed for nearly all samples.  Alluvial diagrams showing the 

change in haplotypes and phenotypes between the imputed and integrated call sets can be 

seen in Supplementary Figure 2.   
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We assessed the population-aware diplotype concordance between the imputed data and the 

integrated data in order to evaluate the population-specific accuracy of imputation. We find 

several genes for which there is a substantial decrease in imputation accuracy for some 

populations (Fig. 2). This gap is most extreme in CYP3A5, where subjects of European descent 

have a diplotype concordance of 86.8%, and subjects of African descent have a diplotype 

concordance of 14.7%. In total, four genes have a decrease of 10% diplotype concordance or 

more from the best performing ethnicity to the worst: CYP3A5, CYP2B6, CYP2D6, and 

UGT1A1.  

Haplotype and phenotype calling 
We analyzed haplotype and phenotype allele frequencies in clinically important pharmacogenes 

among individuals belonging to four global populations in the UK Biobank using a rapid 

haplotype matching engine. PGxPOP takes approximately six hours to call the diplotypes in all 

fourteen genes for the nearly 500,000 subjects. This analysis included 486,518 subjects with  

imputed data from genotyping arrays, 49,790 with exome sequencing data, and 49,790 subjects 

for whom an integrated call set was created by integrating the exome and non-coding regions 

from the imputed data. This study population includes subjects from four global populations (as 

well as 23,357 subjects who do not fall into a single population), verified using self-reported 

ethnicity and genetic ancestry (Table 2, Supplementary Figure 1). Haplotype and phenotype 

frequencies from the exome and integrated call sets for six cytochrome P450 genes included in 

our analysis are shown in Figure 3, and eight non-cytochrome genes in Figure 4. A full list of all 

haplotype, diplotype, and phenotype frequencies can be found for each call set in 

Supplementary file 1.  

We find that on average subjects carry 3.7 non-typical response diplotypes for the fourteen 

pharmacogenes analyzed in the UK Biobank integrated call set, with 99.5% of subjects carrying 
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at least one non-typical drug response diplotype (Fig. 5a). Subjects, on average, carry 

pharmacogene alleles that lead to atypical dosage guidance by CPIC for 12.2 drugs. We find for 

several frequently used drugs, a high number of people receive atypical dosage guidance, 

either recommended a different dose, different drug, or have a different recommended dosing 

procedure (Fig 5b). For example, simvastatin has been prescribed to 25% of the population, and 

22.9 percent of all subjects carry either the rs4149056 C allele or SLCO1B1 star alleles 

assigned possible decreased function (*6, *9, *23, *31), which indicates that a lower dose might 

be recommended due to increased risk of muscle toxicity16. 

Star alleles with unknown or uncertain function, leading to an indeterminate phenotype, were 

found in nine genes. These are diplotypes where both haplotypes exactly match an existing star 

allele definition, but at least one of those haplotypes has unknown function. We find that 5.0% of 

subjects carry unknown or uncertain function star alleles in SLCO1B1, 4.2% in CYP2B6, and 

1.7% in CYP2D6.  

We find that for some genes, many novel combinations of alleles and allelic variants from 

existing allele definitions occur on a single haplotype in the integrated call set. These allele 

combinations can be a complete star allele or haplotype definition along with any number of 

additional variants from another previously defined allele. For example, 29.0% of the study 

population carries haplotypes that contain both the CYP4F2*2 and CYP4F2*3 variants on a 

single strand. Large numbers of novel allele combinations are also found in CYP2D6 (159 

unique combinations in 6.1% of subjects), SLCO1B1 (34 in 2.9%), and CYP2B6 (37 in 0.9%). At 

least one such allele combination was identified in twelve genes, the median number of allele 

combinations was eight, 288 were identified in total. DPYD and CFTR variation are represented 

by individual variants rather than star alleles, but combinations of variants were identified on a 

single strand for both genes. For analysis purposes, we assign function to these star allele and 

variant combinations by assuming that any no function star allele or variant will not be recovered 
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by the addition of other variants in the same allele. The full details of the assumptions are 

described in the Methods. With these assumptions, predicted haplotype functions can be 

assigned to 102 of the variant combinations. The remaining 186 allele combinations cannot 

reliably be mapped to a function and are designated as ‘not available’ phenotype. 

Individuals carrying a star allele with unknown or uncertain function or a star allele combination 

haplotype cannot be confidently mapped to a phenotype, and thus no CPIC drug dosing 

guidelines apply. Genes most impacted by this limitation are CYP4F2 (30.2% of subjects), 

SLCO1B1 (12.2%), CYP2B6 (5.1%), and CYP2D6 (3.4%). These counts exclude combination 

alleles for which we estimated function based on the rules defined in the previous paragraph. 

We modified the SLCO1B1 star allele definitions to exclude the three synonymous coding 

variants for the PGxPOP caller (chr12.g.21176827G>A, chr12.g.21178665T>C, and 

chr12.g.21178691C>T). These three variants appear in many combinations with the other core 

star allele variants and the star alleles that include these variants *18, *19, *20, *21 are 

assigned uncertain function. Including these three synonymous variants, 315 unique haplotypes 

were identified. The number of haplotypes decreased to 55 when those variants were removed. 

We find that when synonymous variants are included in the allele definition 77.9% of SLCO1B1 

haplotypes do not perfectly match one of the defined alleles and contain some combination of 

star allele variants and one or more variants from other definitions. This value drops to 2.9% 

when synonymous variants are excluded from the SLCO1B1 definitions.  

Deleterious variant analysis 
We estimated the burden of deleterious variants that are not currently included in allele 

definitions for eight of the fourteen genes in our study, CYP2B6, CYP2C9, CYP2C19, CYP2D6, 

CYP3A5, NUDT15, SLCO1B1, and TPMT. We predicted the deleteriousness of each variant 

found in the exome data and filtered out variants that were included in any existing allele 
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definition, resulting in 478 deleterious variants across all eight genes (Fig. 6). Of the 478 

deleterious variants identified, 244 have not been observed previously in gnomAD (Fig. 6c). All 

identified deleterious variants are rare (minor allele frequency < 1%). However, we find that 

6.1% of all subjects carry at least one unaccounted for deleterious variant in one of these eight 

genes studied. To identify which populations are most underserved by current definitions we 

calculated the total frequency of all out-of-definitions deleterious variants in a population-specific 

manner (Fig. 6b). We find that across most genes, non-European populations carry the highest 

level of out-of-definition deleterious variants. For example, out-of-definition deleterious variants 

in CYP2B6 have an allele frequency of 0.023 in the East Asian population. A full list of all 

identified deleterious variants can be found in Supplementary Table 3. 

Discussion 
Here we present a pharmacogenetic analysis of 487,409 participants in the UK Biobank, the 

largest study of its kind by an order of magnitude. The study cohort comprises mostly those of 

White British descent (n=442,615), however the minority populations in this study still represent 

the largest cohorts for those populations to date. Quantifying haplotype and phenotype 

frequencies at this scale enables a better understanding of the overall population risk of an 

adverse event when prescribing drugs related to these pharmacogenes, the coverage and 

accuracy of different genetic platforms, as well as the limitations of current pharmacogenetic 

allele definitions.  

This analysis includes nearly 50,000 subjects with genetic data from both genotype array and 

exome data, providing an opportunity to assess the accuracy of each platform at a large scale. 

We find that for most genes there is high concordance between genomic data imputed from a 

genotyping array and sequencing data, for both haplotype and phenotype calls. Additionally, we 

show that the creation of an integrated call set, merging coding regions from exome data and 
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non-coding regions from imputed data, leads to greater ability to identify haplotypes in genes 

that have functionally important non-coding variants (e.g. CYP2C19).  

We find that several very important pharmacogenes are highly discordant between the imputed, 

exome, and integrated call sets, and some genes that have differences in imputation accuracy 

between populations--suggesting the need for great care when choosing a platform for 

pharmacogenetic analysis with regard to the gene and population of interest. For genes with 

splicing and other non-coding variants, exome data may not be sufficient (e.g. CYP2C19). While 

for highly polymorphic genes, imputed data may not be sufficient (e.g. CYP2D6). This highlights 

the potential clinical importance of having data from genome sequencing or a targeted capture 

array that includes coding and non-coding regions, such as PGRNseq17. Having genome 

sequencing would allow for the analysis of another crucial factor not captured by this study, the 

role of structural variants. For CYP2D6 analysis, copy number variants and other structural 

aberrations are common and must be considered to make an accurate assessment of 

phenotype. Lack of structural variant analysis is a major limitation of this study's ability to 

determine population level phenotype predictions of CYP2D6. However, we believe establishing 

star allele frequencies for star alleles identified from the variant data may still be useful. 

Across all genes with haplotypes described by a star allele nomenclature, we find that there are 

haplotypes which are combinations of star allele variants that are currently not found together in 

any existing star allele definition. We also found combinations of individual variants in DPYD 

and CFTR on the same chromosome. Using array data can lead to the detection of only one of 

these alleles or variants, or the assumption that the alleles/variants are on different 

chromosomes. Either case can lead to the incorrect diplotype and phenotype assignment which 

could in turn result in an incorrect prescribing recommendation. We provide the star allele and 

variant combinations found in the UK Biobank population in the supplemental material to 

highlight the possibility and the frequency with which these occur. 
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The problem of accounting for rare variants is particularly challenging because numerous 

deleterious variants have not yet been submitted to PharmVar3,4, a resource devoted to 

cataloguing, defining and naming pharmacogene allele variation, so these deleterious variants 

do not contribute to current allele definitions. Individually, these variants are very rare; none 

have a minor allele frequency greater than 1%, and many of them are observed for the first time 

in this dataset. However, taken as a whole 17% of the population carries at least one 

deleterious variant in one of the fourteen genes analyzed that is not captured by the existing 

allele definitions. Deleterious variants within pharmacogenes are likely to have a strong effect 

on an individual’s PGx phenotype, indicating that 17% of the population in this study could 

benefit from a PGx guideline if one were to exist for their rare variation14. Non-European 

populations are the greatest affected, likely due to the European bias with which genetic studies 

have been conducted18,19. A greater effort to study pharmacogenetics in broader populations is 

necessary to make pharmacogenetics more accessible to the global community. 

To date, SLCO1B1 has not been included in PharmVar. Instead, SLCO1B1 alleles *1a-*36 have 

been defined in 5 publications16,20–23. We find that the 37 star alleles for SLCO1B1 are not 

commonly found as the only allelic variation for that gene. Only 22.1% of the SLCO1B1 alleles 

from the UK Biobank exactly match the star allele definitions from these publications. Three 

synonymous coding variants (chr12.g.21176827G>A, chr12.g.21178665T>C, and 

chr12.g.21178691C>T) were the most commonly found with other star allele variants and 

removing them from the star allele definitions increased the allele matches to 97.1%. Further 

studies of the SLCO1B1 haplotypes to confirm these findings in other populations would help 

inform if the current star allele definitions should be altered to exclude these three variants. 

Our observation of individuals carrying combinations of PGx haplotypes and the rare nature of 

deleterious variants indicates that the current allele-based system would benefit from additional 

population-scale studies of PGx variation. Novel variation could then be incorporated into 
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existing or new PGx allele definitions. However, our analysis demonstrates the limitations of the 

current PGx allele definitions; it is important that the community identify causal variants (and 

their mechanisms) so that reliance on specific LD structures can be reduced—a particularly 

important consideration in admixed populations, which are a virtually infinite source of haplotype 

diversity.  An alternative to defining individual haplotypes and/or driving mutations, is to take a 

top down approach, in which regions of the gene or genes themselves are deemed essential, 

and any deleterious variant within essential components can be assigned an inferred 

phenotype. Recent work on the development of data-driven PGx phenotyping methods indicates 

that given enough data, it might be possible to move away from variant level rule-based 

systems and towards data-driven machine-learning models capable of robustly handling 

unobserved genetic variation13,24,25. The challenges posed by rare variation is likely to be a 

consistent issue for the current PGx system and will likely grow over time as genotyping gives 

way to genome sequencing and more populations are studied in detail revealing rarer and/or 

private mutations harbored by individuals.  

We find that many individuals whose genotype does not match with an existing PGx definition 

are from populations that are underrepresented in PGx studies. So, there is a need to perform 

broad sequencing of global populations in order to enhance known pharmacogenetic variants 

across underrepresented populations. Underrepresented populations historically have low 

engagement in genetic medicine, in part due to fear of discrimination or lack of trust, among 

other barriers26. The genomic medicine community needs to continue to work to overcome 

these barriers and encourage population diversity in studies, submitting discovered 

pharmacogenetic variants and impact to PharmVar to better represent global populations. 

One major limitation of this study is that we do not consider the effects of structural variants. 

Copy number variation and structural variation are well known to be functionally important in 

CYP2D6 and relatively frequent phenomena. We attempted to perform copy number analysis of 
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the exome data, but the existing tools for calling CNVs from exome data were found to be poorly 

maintained. We attempted to use tools built specifically to call CYP2D6 structural variants but 

were because they were either not able to use exome data as input27, or require the reads to be 

aligned to hg19, which was computationally intractable28. Other studies have called CNVs from 

genotyping array intensities in the UK Biobank, but the observed frequencies of CNVs from 

array data are significantly different from those observed in genome sequencing data, calling 

the accuracy of these methods into question. Once the UK Biobank releases genome 

sequencing data, an analysis of structural variation in CYP2D6 and other pharmacogenes will 

be a valuable contribution. 

Availability 

PGxPOP is freely available and can be downloaded from 

https://github.com/PharmGKB/PGxPOP. All data used in the study can be obtained by applying 

to the UK Biobank for access. 
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Figures 

Figure 1. Analysis workflow. Our analysis comprises three data types, data imputed from 
genotype arrays, exome sequencing data, and an integrated call set that combines both. We 
phase all datasets using statistical phasing with EAGLE v2. We then generate pharmacogenetic 
alleles for all samples using PGxPOP and generate a report of the matching star allele, the 
variants contributing to that call, and the resulting phenotype. 
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Table 1. Platform concordance with integrated data is variable. We calculated the diplotype and 
phenotype concordance between the integrated call set and both contributing call sets, exome 
and imputed. For each gene we show the percent concordance (the percent of diplotypes or 
phenotypes that exactly match). Haplotypes for IFNL3 and VKORC1 contain only single variants 
that are in the non-coding regions, so the concordance is not listed for the exome data. 
SLCO1B1 star alleles are determined excluding synonymous variants. 
 

 Diplotype concordance w/ Integrated Phenotype concordance w/ Integrated 

Gene Imputed Exome Imputed Exome 

NUDT15 0.01% 99.63% 0.04% 99.67% 

UGT1A1 9.32% 29.26% 77.14% 48.92% 

CYP2D6 34.23% 84.50% 64.86% 86.64% 

CYP2B6 43.23% 99.83% 95.16% 99.89% 

SLCO1B1 68.41% 89.73% 76.64% 92.64% 

CYP3A5 85.48% 100.00% 85.69% 100.00% 

CFTR 96.43% 99.95% 96.47% 99.95% 

TPMT 97.76% 99.93% 99.17% 99.93% 

CYP2C19 97.85% 61.77% 99.44% 68.64% 

CYP2C9 98.23% 99.85% 98.36% 99.86% 

CYP4F2 99.44% 99.91% 99.49% 99.91% 

DPYD 99.60% 95.67% 99.61% 95.68% 

IFNL3 1.00 - 1.00 - 

VKORC1 1.00 - 1.00 - 
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Table 2. Counts for each population analyzed and genetic data source. Subpopulations were 
grouped into global populations for broader analysis. 
 
Population Subpopulation Imputed count Exome count Integrated count 

European British 422,678 42,560 42,560 

European Irish 12,619 1,481 1,481 

European Any other white background 11,153 1,247 1,247 

European White 486 34 34 

European Total 446,936 45,322 45,322 

African Caribbean 4,110 632 632 

African African 3,089 329 329 

African Any other Black background 94 8 8 

African Black or Black British 22 3 3 

African Total 7,315 972 972 

South Asian Indian 5,533 682 682 

South Asian Pakistani 1,709 138 138 

South Asian Bangladeshi 212 16 16 

South Asian Total 7,454 836 836 

East Asian Chinese 1,456 170 170 

Other Total 23,357 2,490 2,490 

Total  486,518 49,790 49,790 
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Figure 2. Concordance between diplotypes called from imputed data and integrated call set 
reveal inefficiencies in data imputed from genotype. The concordance is the proportion of 
diplotypes that exactly matched between the two call sets. We calculated population-specific 
concordance between the imputed data and integrated call sets. This comparison highlights the 
differences in the coding regions only, as the non-coding regions in the integrated call set are 
derived from the imputed data. Difference colors represent different global populations.  
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Figure 3. Star allele and phenotype frequencies for cytochrome P450 genes. Frequencies 
shown here are generated from the integrated call set which comprises nearly 50,000 subjects. 
The star allele frequency plots show all star alleles occurring with a frequency of 3% or greater. 
Any haplotypes with under 3% allele frequency in all populations are grouped into “Other”. 
Combination alleles, alleles that contain either partial or full matches of more than one star allele 
on the same strand occurring with less than 3% allele frequency are grouped in “Other combos”. 
The number of alleles in “Other” and “Other combos” is shown in the legend for each gene. Note 
that allele and phenotype frequencies for CYP2D6 do not include structural variants. 
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Figure 4. Star allele and phenotype frequencies for non-cytochrome P450 genes. Frequencies 
shown here are generated from the integrated call set which comprises nearly 50,000 subjects. 
The star allele frequency plots show all star alleles occurring with a frequency of 3% or greater. 
Any haplotypes with under 3% allele frequency in all populations are grouped into “Other”. 
Combination alleles, alleles that contain either partial or full matches of more than one star allele 
on the same strand occurring with less than 3% allele frequency are grouped in “Other combos”. 
The number of alleles in “Other” and “Other combos” is shown in the legend for each gene. 
SLCO1B1 star alleles are determined excluding synonymous variants. 
 
  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2020. ; https://doi.org/10.1101/2020.05.30.125583doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.30.125583
http://creativecommons.org/licenses/by/4.0/


27 

 
Figure 5. Frequency of pharmacogenes with a predicted non-typical response across the study 
population derived from the integrated call set and CPIC guideline recommendations for 41 
drugs. a) The distribution of non-typical response alleles across each of the populations 
included in this study. Frequency of non-typical response pharmacogene alleles per subject 
range from 0 to 10, with a mean of 3.7. b) CPIC dosage guidance for 41 drugs that include 
recommendations based on any of the fourteen genes included in this study. We show the 
percent of the population that has ever been prescribed the drug, the drug name, the genes 
from this study that contribute to the recommendation, and the distribution of CPIC 
recommendations.  
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Figure 6. Analysis of deleterious variants not contained within existing star allele definitions. We 
identified presumptive deleterious variants in the exome sequencing data for eight genes by 
identifying probable loss of function variants as well as predicted deleterious missense variants. 
(a) shows the allele frequency of each probable deleterious variant in gnoMAD. Variants with an 
allele frequency of 0 were not identified in gnoMAD. (b) shows the number of deleterious 
variants identified as well as the frequency of each type of variant. (c) shows the total frequency 
of any deleterious variant in each population in the exome data. Concretely, the frequency 
represents the sum of allele frequencies for all deleterious variants not found within existing star 
allele definitions for each population. 
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