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Abstract 

Motivation: Expression quantitative trait loci (eQTL) harbor genetic variants modulating gene 

transcription. Fine mapping of regulatory variants at these loci is a daunting task due to the 

juxtaposition of causal and linked variants at a locus as well as the likelihood of interactions 

among multiple variants. This problem is exacerbated in genes with multiple cis-acting eQTL, 

where superimposed effects of adjacent loci further distort the association signals. 

Results: We developed a novel algorithm, TreeMap, that identifies putative causal variants in 

cis-eQTL accounting for multisite effects and genetic linkage at a locus. Guided by the 

hierarchical structure of linkage disequilibrium, TreeMap performs an organized search for 

individual and multiple causal variants. Via extensive simulations, we show that TreeMap 

detects co-regulating variants more accurately than current methods. Furthermore, its high 

computational efficiency enables genome-wide analysis of long-range eQTL. We applied 

TreeMap to GTEx data of brain hippocampus samples and transverse colon samples to search 

for eQTL in gene bodies and in 4 Mbps gene-flanking regions, discovering numerous distal 

eQTL. Furthermore, we found concordant distal eQTL that were present in both brain and colon 

samples, implying long-range regulation of gene expression.  

Availability: TreeMap is available as an R package enabled for parallel processing at 

https://github.com/liliulab/treemap. 
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INTRODUCTION 

 

Scans for expression quantitative trait loci (eQTL) aim to discover genetic variants associated 

with variation in transcript abundance among individuals. Genome-wide scanning of eQTL 

involves genomic and transcriptomic profiling of a large number of samples, followed by 

statistical and experimental analyses of polymorphic sites to discover expression quantitative 

trait nucleotides (eQTNs) (1). Due to linkage disequilibrium (LD), typically multiple genetic 

variants at a locus show highly significant statistical scores, although only some of these are 

causal eQTNs. Expression-associated variants (eVars) are usually aggregated into a credible 

set that includes a lead variant with the strongest association signal and other linked variants. 

However, a lead eVar is not necessarily responsible for transcriptional regulation, but tags 

causal eQTNs instead (2,3). Furthermore, in genes with multiple cis-acting eQTL, the 

correspondence between lead eVars and causal variants diminishes quickly due to 

superimposed effects of adjacent loci (4-6).  

 

To better resolve causal variants, recent fine-mapping efforts have gone beyond the 

conventional single-locus assumption and evaluated multi-locus effects (7-10). Because an 

exhaustive search for an unknown number of causal variants in a wide genomic region is 

computationally prohibitive, several strategies have been employed to ease the computational 

burden. Stepwise conditional regression is a greedy algorithm that repeatedly tests individual 

sites and returns lead eVARs with the best marginal test statistics at each iteration (10). This 

algorithm is computationally efficient although the solution is highly susceptible to local 

optima. To overcome local optima, the piMASS method performs a Markov chain Monte Carlo 

search for a user-specified number of causal variants (11). However, the requirement of prior 

knowledge of the number of causal variants and the high computational cost make it 

impractical for genome-wide analysis. The adaptive DAP method takes a tiered strategy that 
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first scans a genomic region for independent eQTL and then conducts an exhaustive search 

within each locus (7). Although this method does not impose constraints on the number of 

causal variants, attempts at finding more than four causal variants are still computationally 

intensive (5). Given that most human genes have multiple cis-acting eQTL (12,13) and 

independent studies have reported that credible intervals generally contain one hundred or more 

eVars per gene (14-16), fine-mapping algorithms capable of identifying an arbitrary number of 

eQTL, prioritizing multiple eVars at a locus, and performing at high computational efficiency 

will improve genome-wide discovery of regulatory variants. 

 

While LD between eVars adds to the complexity of eQTL fine-mapping, it also provides 

a convenient structure with which large genome regions can be dissected into multiple 

relatively independent segments that are then amenable to association testing. The Tree 

Scanning method uses an evolutionary tree of haplotypes to study phenotypic associations (17). 

However, because this method uses haplotypes as the genomic unit, it lacks base-pair resolution 

and is unsuited to fine-mapping tasks. Tree-guided lasso (18) offers an intuitive solution, in 

which selection of groups of variants or individual variants is conducted in a hierarchical 

framework defined by LD structure. This machine-learning method is also highly efficient for 

genome-scale analysis. However, it does not provide statistical confidence on the selected 

features required for biological and clinical applications.  

 

To address these deficiencies, we designed a nested model that first employs the tree-

guided lasso algorithm to scan a large genomic region for candidate loci and candidate variants 

within a locus, and then apply statistical inference to derive credible sets of putative causal 

variants. We tested this new method, named TreeMap, via rigorous simulations. We show that 

TreeMap has significantly higher accuracy and faster computation than existing methods under 

various scenarios, especially for genes with multiple cis-acting eQTL under weak to medium 
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LD. Applications of TreeMap to GTEx data of brain hippocampus samples and transverse colon 

samples revealed abundant distal regulatory variants located in up to 2 Mbps away from gene 

bodies. 

 

MATERIALS AND METHODS 

 

Data structure: Given 𝑛 samples, each genotyped at 𝑚 biallelic positions in the upstream 

region of a target gene, a feature matrix 𝑋 contains genotype data with rows corresponding to 

samples and columns corresponding to genetic variants. A response vector 𝑌  contains 

expression level of the target gene in 𝑛 samples. To represent the LD structure of the variants, 

we compute the squared correlation coefficient (𝑟2) between pairs of variants. We define six 

𝑟2  cutoffs (>0.999, 0.98, 0.95, 0.90 0.85 and 0.80). Using each cutoff, we convert the 

correlation matrix into an adjacency matrix and construct an undirected graph with the greedy 

clustering algorithm (19). During the clustering process, we reserve the order of neighboring 

variants and require the largest within-cluster gap <100 consecutive variants. Each cluster in 

the graph represents an LD block for a specific 𝑟2 cutoff. We then organize these blocks into 

a hierarchical structure 𝐺 with 8 levels (Fig. 1A). At the leaf level (𝐺0), each node represents 

a single variant. At higher levels in a sequential order (𝐺1, … , 𝐺6), each node represents variants 

belonging to an LD block with 𝑟2 >0.999, 0.98, 0.95, 0.90 0.85 and 0.80, respectively. The 

root level (𝐺7) has a single node containing all variants.  

 

TreeMap framework: TreeMap takes a 3-layer nested design to remove uninformative 

variants and reduce redundancies among informative variants progressively (Fig. 1B).  At the 

outer layer, tree-guided penalized regression selects groups of variants (internal nodes in 𝐺) or 

individual variants (i.e., leaf nodes in 𝐺) associated with transcriptional changes. At the middle 

layer, stepwise conditional multivariate tests iterate combinations of variants within each 
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selected node to identify a node-specific optimal solution. At the inner layer, variants selected 

from the previous layers are aggregated and passed through a Bayesian multivariate analysis 

to derive a global optimal solution. The final solution satisfies both between-locus sparsity by 

selecting only a few internal nodes, and within-locus sparsity by selecting only a few individual 

variants in a node. Below we provide detailed descriptions of each layer. 

 

Outer layer: We formulate the selection of causal variants from a genomic region with LD 

structure as a sparse learning problem under graph constraints. Specifically, given a feature 

matrix 𝑋 with 𝑛 rows and 𝑚 columns, a response vector 𝑌 of length 𝑛, and a hierarchical 

relationship 𝐺  of features in 𝑋  with 𝑑  levels, we will learn a linear model 𝑌 = 𝑋𝛽 + 𝜖  

that solves 

min (
𝛽

∑(𝑌 − 𝛽𝑋)2 + 𝜆 ∑ ∑ 𝜔𝑗
𝑖 ‖𝛽

𝐺𝑗
𝑖‖)

𝑚𝑖
𝑗=1

𝑑
𝑖=0     [1] 

where 𝛽 is a vector of coefficients of individual variants, 𝛽
𝐺𝑗

𝑖 is the vector of coefficients of 

variants belonging to a node 𝐺𝑗
𝑖, 𝜆 is the regularization parameter, and 𝜔𝑗

𝑖 is the weight of 

each node in group 𝐺𝑗
𝑖. We compute 𝜔𝑗

𝑖 as 

𝜔𝑗
𝑖 =

√𝑘
2

+𝑓̅

∑  𝑠𝑞𝑞∈𝐺𝑗
𝑖

      [2] 

where 𝑘 is the number of variants in the group, 𝑓 ̅ is the average minor allele frequency, and 

 𝑠𝑞 is a user-specified functional impact score of a variant 𝑞 in the group. 

 

The sparsity (i.e., the number of variants with non-zero 𝛽  values) of the solution to 

equation [1] is controlled by 𝜆, such that a larger 𝜆 value leads to fewer selected variants. In 

practice, choosing the most appropriate value of 𝜆  is mostly subjective. To address this 

problem, we test a range of 𝜆 values with bootstrap samples and regard the top 5% variants 

receiving non-zero 𝛽 values as informative. The 𝛽 value of an internal node is the average 

of its member variants. The top 5% internal nodes receiving non-zero 𝛽  values are also 
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informative. We denote the set of variants selected at this layer as 𝑆1. 

 

Middle layer: For each informative internal node, we perform a stepwise conditional analysis 

to find a set of variants in 𝑆1  with non-redundant information. Specifically, given a node 

containing a set of variants 𝑉, we first fit a linear regression model for each and every member 

variant 𝑞 as 

𝑌 = 𝛽0 + 𝛽𝑋𝑞∈𝑉 + 𝜀     [3] 

Among all member variants passing a statistical threshold (i.e. Bonferonni-corrected p value 

<0.05 and explained residual >1%), we choose the variant with the smallest p-value as the 

primary variant. Next, conditional on this primary signal, we test each remaining variant by 

fitting a linear regression model on the residual 𝜀 and identify the variant with the smallest p-

value. We repeat this process until exhausting all member variants or no remaining variants 

passing the statistical threshold. We then aggregate variants selected from this procedure with 

variants in 𝑆1 that do not belong to any informative internal nodes, and map them into nodes 

at the 𝐺6 level (i.e., 𝑟2 > 0.8). Within each node, we iterate all combinations of one or two 

variants to fit a linear regression model and compute the Akaike information criterion (AIC) 

values 

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛(𝐿)     [4] 

where 𝑘 in the number of variants included and 𝐿 is the likelihood of the fitted model. We 

select the variants giving rise to the smallest AIC value and denote this set as 𝑆2. 

 

Inner layer: If 𝑆2  contains no more than 10 candidate variants, we perform an exhaustive 

search for the best linear model with an arbitrary number of variants based on the Bayes factor. 

We define 𝑀 as a multivariate linear model with selected variables and 𝑀0 as a null model 

with no independent variables. By giving equal prior probabilities to 𝑀 and 𝑀0, the 𝐵𝐹 is 
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𝐵𝐹 =
𝑃𝑟(𝑋,𝑌|𝑀)

𝑃𝑟(𝑋,𝑌|𝑀0)
=

Pr (𝑀|𝑋,𝑌)𝑃𝑟(𝑀0)

Pr(𝑀0|𝑋,𝑌) Pr(𝑀)
=

Pr (𝑀|𝑋,𝑌)

Pr(𝑀0|𝑋,𝑌)
   [5] 

The set of variants giving rise to the largest 𝐵𝐹  value constitutes the lead variants of the 

credible set. If 𝑆2  contains more than 10 candidate variants, we use backward stepwise 

selection based on AIC values as in equation [4] to identify lead variants. Using each lead 

variant as an anchor, we scan 𝑆1 for tagging variants with 𝑟2>0.5 linked to the lead variant. 

We define an eQTL as a lead variant with its tagging variants ranked on 𝑟2 values. The final 

credible set may contain multiple loci. 

 

Estimate effect sizes: After we derive a final credible set for a gene, we build a linear regression 

model 

𝑌 = 𝛽0 + ∑ 𝛽𝑖𝑋𝑖𝑖 + 𝜀    [6] 

where 𝑌 is the transcript abundance, 𝑋𝑖 is the lead eVar of the 𝑖𝑡ℎ eQTL and 𝛽𝑠 are effect 

sizes, and 𝜀 is errors. For each 𝑋𝑖, we test the null hypothesis of 𝛽𝑖 = 0 and use the p-value 

to represent the statistical significance of the corresponding eQTL. We consider the eQTL with 

the best p-value as the primary locus and the remaining eQTL as auxiliary loci. 

  

Simulation data: We used an established approach (5) to simulating gene transcription 

controlled by one to ten causal variants. Given a randomly picked human gene, we retrieved 

genotypes 𝑋 of all variants located in the 200 kb upstream region of its transcription start site 

from the 1000 Genomes Project phase 3 data (20). From among these variants, we picked ℎ 

random variants as causal variants, and assigned each causal variant 𝑖  an effect size 𝛽𝑖 =

√
𝑉𝐸𝑖

2𝜌𝑖(1 − 𝜌𝑖)⁄  where 𝜌𝑖 is the minor allele frequency, and 𝑉𝐸𝑖 is the variance explained. 

We allowed 𝑉𝐸𝑖 to take a random value from a uniform distribution unif(0.02, 1). We then 

simulated gene transcript abundance 𝑌𝑖 = ∑ 𝛽𝑖𝑋𝑖
ℎ
𝑖=1 + 𝜀 where 𝜀 is the environmental noise 

following a normal distribution norm(0, 1). On average, each simulation involved 1,700 
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variants genotyped in 1,835 samples with non-African ancestry from the 1000 Genome Project. 

 

GTEx datasets:  We downloaded RNA-seq data of 123 brain hippocampus samples and 274 

transverse colon samples from the GTEx data portal (v7, mapped to the hg19 reference 

genome) (21). Transcript abundance quantified as Transcripts Per Kilobase per Million mapped 

reads (TPM) were available for 23,725 genes in brain and for 24,423 genes in liver. Following 

the recommendations from the GTEx Consortium, we adjusted TPM values for technical 

covariates using multivariate linear regression (22). For each gene, we retrieved genotypes of 

common variants (minor allele frequency MAF > 0.05) located inside the region from 2 Mbps 

upstream of the transcription start site (TSS) to 2 Mbps downstream of the transcript end site 

(TES). On average, each gene had 8,199 common variants. We built a hierarchical tree of these 

variants using the method described above and applied TreeMap to each gene. 

 

RESULTS 

Using simulation data, we tested the performance of TreeMap, DAP and stepwise conditional 

analysis. We then applied TreeMap to analyze GTEx data of brain hippocampus samples and 

transverse colon samples.  

 

Performance on computer simulations 

Mapping independent causal variants 

We randomly sampled 400 genes from the human genome and simulated 1, 2, 3, and 4 causal 

variants for each gene. We required that r2 values between all pairs of causal variants of a gene 

were less than 0.1. These simulations represented genes with only independent cis-acting eQTL. 

We first examined if each method reported the correct number of independent eQTL. 

When a gene had a single causal locus, TreeMap reported the correct number 98% of the time, 

which was significantly higher than DAP (94%, two-proportion test P=0.003) and conditional 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.31.125880doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.125880
http://creativecommons.org/licenses/by-nc-nd/4.0/


analysis (75%, P=10-21). As the number of independent causal loci per gene increased, the 

accuracies of all three methods decreased linearly (Fig. 2A). However, the accuracy of 

TreeMap remained as the highest among the three methods in all scenarios. For genes with four 

independent causal loci, TreeMap still made correct predictions 79% of the time, whereas the 

accuracies of DAP and conditional analysis dropped to 70% (P=0.002) and 58% (P=10-9), 

respectively. When these methods made wrong predictions, they tended to over-estimate the 

number of independent causal loci, with conditional analysis showing the largest deviations 

and TreeMap showing the smallest deviations (Fig. 2B).  

We then examined the sizes of credible sets (i.e., number of putative causal variants at 

a locus) reported by each method. A credible set contains a lead eVar and additional linked 

eVars. Small credible sets help narrow target candidate variants and are thus preferred. Because 

credible sets reported by conditional analysis contained only lead eVar, we compared TreeMap 

and DAP. On average, a causal variant was linked to 23 variants with r2≥0.8. Among these 

linked variants, TreeMap selected only 37%-42% to include in credible sets, whereas DAP kept 

51%-61%. Therefore, the credible set of TreeMap was significantly smaller than that of DAP 

(all paired t tests P<0.05, Fig. 2C). 

Next, we assessed how many causal variants were identified in the credible sets using 

two measures. The first measure is the lead recall rate (i.e., the fraction of causal variants 

mapped to lead eVar). In general, the lead recall rates of all three methods were similar (ranging 

from 49% to 54%) and varied only slightly with the number of eQTL (Fig. 2D). This was likely 

due to the relatively independence of the simulated causal variants, such that signals from 

multiple causal variants did not interfere with each other. However, because sampling noise 

could shift the signal of a true causal variant to a neighboring variant, about half of the lead 

eVar did not map to the causal variants. In these cases, we expected that other eVars in the 

credible sets should capture the causal variants. We thus assessed each method using a second 

measure, i.e., precision-recall curves that accounted for different sizes of credible sets. For 
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conditional analysis, we created a credible set for each lead eVar by including linked variants 

with r2>0.8. Across all scenarios, TreeMap showed the best precision-recall curves, followed 

by DAP and then conditional analysis (Fig. 2E). To achieve a given recall rate, TreeMap had 

the highest precision (i.e., reporting the fewest eVars in the credible set), and conditional 

analysis had the lowest precision.  

A representative example was simulations of 3 causal variants upstream of the 

SLC28A3 gene (Fig. 2F). TreeMap predicted 3 eQTL correctly. At each locus, the lead eVar 

matched the causal variant. DAP and conditional analysis both predicted one extra eQTL and 

had only one lead eVar matching the causal variants. For the remaining two causal variants, 

conditional analysis was able to recover both from the linked variants in the credible sets, 

whereas DAP recovered only one and missed the other. 

 

Mapping linked causal variants 

We previously reported that linked causal variants concurrently regulating the transcription of 

the same target gene may create spurious signals on neighboring variants (Fig. 3A), which 

challenges fine-mapping (5). To simulate these cases, we generated 900 genes with two causal 

variants that were linked at r2 values >0.1 (100 genes for each r2 interval of 0.1 in the range of 

0.1 to 1). We then examined the influence of the LD structure on the performance of each 

method. Overall, when the two causal variants were weakly or moderately linked (r2≤0.7), the 

impact of LD on TreeMap and DAP was mild. Both methods were able to detect two eQTL 

>70% of the time (Fig. 3B). However, when the linkage was strong (r2>0.7), the fraction of 

correct predictions quickly dropped to below 30%. When these methods made wrong 

predictions, they mostly collapsed the two causal variants into one eQTL (Fig. 3C). As 

expected, conditional analysis performed the worst across all scenarios.  

 Next, we examined if these methods could recall the two linked causal variants in a 

credible set. To account for different sizes of credible sets reported by each method, we limited 
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our search among the five top-ranked eVars in each credible set. TreeMap showed the highest 

recall rates across the full range of r2 (Fig. 3D). As the linkage increased, the advantage of 

TreeMap over the other two methods became more prominent. For pairs of causal variants with 

r2 between 0.1 and 0.2, TreeMap recalled both variants in 60% of simulations, which was 10% 

higher than conditional analysis and 29% higher than DAP. Conditional analysis was the most 

sensitive to LD. Even weak to medium linkage (0.3 < r2 < 0.5) between the two causal variants 

caused the performance of conditional analysis to decline linearly. Contrarily, the performance 

of TreeMap and DAP were relatively stable until the LD reached a high level (r2 >0.7), with 

TreeMap showing a consistent 15% to 30% higher recall rate than DAP.   

 For all three methods, the recall rate of one causal variant was significantly higher 

than that of two causal variants (Fig. 3D). Again, TreeMap achieved the best recall rates across 

the three methods. It reported at least one causal variant among the five top-ranked eVars for 

81%-91% simulations, which was on average 14% higher than the other two methods and 

varied only slightly across different linkage categories. 

 To illustrate the advantage of TreeMap, we presented a simulation in which two causal 

variants upstream of SMTN gene were linked at r2=0.57 (Fig. 3E). TreeMap correctly identified 

two eQTL with the lead eVars corresponding to the two causal variants. DAP also identified 

two eQTL. However, only one causal variant was included in its credible sets. Conditional 

analysis collapsed the two eQTL into a single locus and did not recall any causal variants. It 

also reported a false positive eQTL that was 6,496 bps away and weakly linked (r2=0.24) to 

one of the causal variant. 

 

Computational efficiency 

We simulated 2,000 genes, each with 1 to 10 causal variants. We distributed these causal 

variants randomly in the 200 kbps upstream regions of a gene. Each gene had an average of 

1,700 variants genotyped in 1,835 samples. The pairwise linkages of these causal variants 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.31.125880doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.125880
http://creativecommons.org/licenses/by-nc-nd/4.0/


covered the full range of r2 values from 0 to 1. We then executed each method as a single-

threaded process on a Dell laptop computer with an Intel® Core™ i7-7600 CPU at 2.80 GHz 

and 16GB RAM. Conditional analysis was the most efficient method, taking an average of 9.0 

seconds (secs) to analyze a gene with a single causal variant, and 38.3 secs to analyze a gene 

with 10 causal variants (Fig. 3F). To analyze a gene with only one or two causal variants, DAP 

took a shorter time than TreeMap (mean CPU time = 24.8 – 37.3 secs for DAP, and 104.1 – 

116.3 secs for TreeMap). However, when the number of causal variants increased, the CPU 

time of DAP increased exponentially. For a gene with 6, 8 or 10 causal variants, DAP took an 

average of 965.2, 1610.6 and 5034.0 secs (16.1 minutes to 83.9 minutes) to analyze it. The 

CPU time of TreeMap was stable, increasing only to 162.6, 178.0 and 189.0 secs (2.7 to 3.2 

minutes) in these cases.  

 

Applications to GTEx data 

We retrieved genotype and transcriptome profiles of 123 brain hippocampus samples and 274 

transverse colon samples from the GTEx data portal. There were 23,410 genes expressed in at 

least 10% of the brain samples and 17,065 genes expressed in at least 10% of the colon samples. 

For each gene, we retrieved genetic variants in a large genomic region that spanned from 2 

Mbps upstream of the transcription start site (TSS) to 2 Mbps downstream of the transcription 

end site (TES). After removing rare variants with MAF<5%, each gene had on average 8,281 

genetic variants in this region. For each gene, we applied TreeMap to organize variants into a 

hierarchical tree based on pairwise r2 values, and to identify eQTL and putative causal variants 

guided by the tree. To correct for multiple comparisons, we required that the primary eQTL 

locus of a gene had a p-value <10-6 corresponding to a false discovery rate of approximately 

0.01 (i.e., 10-6 x 8,281). For auxiliary loci, we applied a lenient cutoff of p-value < 0.01 because 

these were post hoc tests after a significant primary eQTL was identified (23). 

 We detected eQTL of 4,950 genes in brain samples and eQTL of 4,636 genes in colon 
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samples. In both tissues, only a small fraction (10%-18%) of genes had a single eQTL (Fig. 

4A). The majority (69%-73%) had two to four eQTL.  These eQTL were mostly located in 

noncoding regions (Fig. 4B, 41%-44% upstream of the target gene, 31%-38% downstream, 

14%-19% intronic, 1%-2% in 5’-UTRs and 1%-2% in 3’-UTRs). Meanwhile, 3%-5% eQTL 

were in protein-coding regions (mean distance to TSS =5,580 bps). These distributional 

patterns are consistent with previous reports of eQTL from the GTEx consortium. Compared 

to all variants analyzed, these eQTL were >250 fold enriched in 5’-UTRs, >70 fold enriched in 

3’-UTRs, >88 fold enriched in exons, and >18 fold enriched in introns (two proportions tests 

each having P<10-8). 

While the identified eQTL were spread across the ±2Mbps gene-flanking regions and 

gene bodies, we found that primary eQTL loci were located closer to TSS or TES than auxiliary 

loci (median distances=150 vs. 900 kbps in brain samples, 20 vs. 74 kbps in colon samples, t-

test P=0, Fig. 4C). For example, we found 10 eQTL of the MCFD2 gene (Fig. 4D). The primary 

locus overlapped with the gene body and consisted of a lead eVar (rs34111570) and a linked 

eVar (rs7574514). This locus corresponded to an extensive block of LD. In fact, all eVars 

reported by the GTEx consortium were inside this locus. However, as we searched beyond this 

LD block, we found nine auxiliary loci that were located as far as 1.9 Mbps downstream of 

TES of this gene.  

To test whether lead eVars of credible sets were more likely to be causal variants than 

linked variants, we examined their overlap with open chromatin regions as indicated by DNase 

I hypersensitivity sites, and overlap with transcription factor binding sites (TFBSs) as annotated 

in the ENCODE database. As expected, the fraction of variants in open chromatin regions was 

highest among lead eVars in primary eQTL (26%-29) and lower in linked eVars (21%-22%, 

two proportions test P<10-15, Fig. 4E). Furthermore, all eVars are enriched in open chromatin 

regions as compared to all variants analyzed (19%, hypergeometric test P<10-26). Similarly, the 

fraction of variants in transcription factor binding-sites (TFBSs) was the highest among lead 
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eVars at primary eQTL (18%-26%) and lower among linked eVars (18%-19%, two proportions 

test P<10-8), both of which were significantly higher than that among all variants analyzed 

(15%, P<10-20, Fig. 4F).  

We found shared eQTL for 1,377 genes in both brain and colon samples, 739 (53.7%) 

of which had the same putative causal variants. When these putative causal variants did not 

overlap, most of them (397 among 638) were in the same LD block (Fig. 5A) or in close vicinity 

(Fig. 5B). TreeMap identified many eVars located far from gene bodies not explored by other 

methods. This was expected because TreeMap searched up to 4Mbps regions for eQTL in 

regions that had generally not been analyzed before. However, if these distal eVars were found 

in both tissues and shared close genomic positions or LD blocks, they were more likely to be 

functional. For example, the primary eQTL of the AC018804 gene in brain and colon samples 

were located 1.3 Mbps downstream of the gene. The lead eVars had extraordinary p-values (10-

17 and 10-28) and concordant effect sizes (0.79 and 1.27) in brain and colon samples, respectively. 

The two lead eVars were within a 7.2 kbps interval on chromosome 3 (132,240,509 in brain 

samples and 132,233,317 in colon samples). Furthermore, both lead eVars were in open 

chromatin regions, providing additional evidences of their functional roles. 

 

DISCUSSION 

With increasing sample sizes for eQTL mapping it has become apparent that the majority of all 

genes have a complex pattern of regulation influenced in cis by multiple SNPs.  Fine mapping 

of the causal variants is constrained by the high degree of LD covering most regulatory regions, 

and high levels of polymorphism such that credible intervals average 100 sites or more (4). 

Three broad approaches to dealing with this complexity are being developed: stepwise 

conditional regression, Bayesian dimensionality reduction, and haplotype-based modeling. The 

method introduced in this study, TreeMap, combines elements of the latter two. 

An important aspect of haplotype-based methods is the heuristic definition of 
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haplotypes. Perhaps the most rigorous procedure uses the four-gamete test to identify minimal 

length haplotypes by virtue of inferred recombination events. A genome-wide association 

mapping method based on this approach, HaploSNP (24), explains much more of the variance 

per locus. However, because haplotypes are greatly susceptible to biases introduced for 

example by population structure and do not have base pair resolutions, HaploSNP has not been 

widely adopted for fine mapping. Instead, we here propose a hierarchical approach based on 

successive LD thresholds. Causal variants are assumed to be embedded in LD blocks although 

the extents of linkage are unknown. Transcriptional effects are gleaned from comparison of the 

likelihoods of models for blocks defined by varying LD thresholds. This algorithm is thus 

independent of cladistic methods for assembly of cladograms with ad hoc thresholds that may 

have hampered adoption of earlier iterations of haplotype-based approaches (17,24). 

Using extensive simulation, we show that TreeMap modestly, yet significantly, 

outperforms representative alternative multi-site eQTL mapping algorithms (stepwise 

conditional regression, and DAP) in several key regards. First, it recovers more independent 

variants, particularly as the complexity of multisite regulation increases. Second, it reduces the 

size of the credible interval as assessed by improvement in the precision-recall curve. Third, it 

recovers more causal variants under LD. Furthermore, since the method is computationally far 

less demanding than even the fastest Bayesian approach, DAP, it is possible to scan 4Mb around 

the transcription start site, and this doubling of the potential regulatory region led to the 

discovery of multiple hitherto unrecognized distal eQTL in the GTEx dataset. 

There remain several limitations to be addressed. Like the other methods, performance 

drops as the number of independent causal variants in an eQTL increases, particularly if they 

fall within intervals of high LD. Under soft selection scenarios, it may be expected that 

regulatory regions will harbor more than one variant influencing gene expression, with multiple 

signals embedded in a haplotype. Variants that have opposing signs of effect will tend to reduce 

the overall signal. Methods for multi-site mapping of tightly linked causal variants need to be 
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further explored. One strategy is to incorporate functional evidence from ENCODE or 

evolutionary conservation into the mapping algorithm (25,26), though this strategy seems to 

be more productive for promoter-proximal than distal elements. 

TreeMap, and future improvements of incorporating prior biological knowledge in 

fine mapping algorithms, facilitate discoveries of regulatory variants from genome-association 

studies and whole-genome sequencing studies as well. The capability of searching long 

genomic regions makes it a promising approach to identifying novel distal regulatory variants 

underlying human diseases and other health-related genotypes. 

 

Data availability 

GTEx data are accessible from the GTEx portal (https://gtexportal.org). All simulation data 

used in this study are available at the TreeMap Github site (https://github.com/liliulab/treemap). 

 

FUNDING 

This study was supported by NIH grant R01-HG008146 from the National Institute of Human 

Genome Research to GG and SK and a Flinn Foundation grant to LL. 

 

ACKNOWLEDGEMENT 

We thank Dr. Panwen Wang for insightful discussions. 

 

REFERENCES 

 

1. Gaffney, D.J., Veyrieras, J.B., Degner, J.F., Pique-Regi, R., Pai, A.A., Crawford, G.E., 

Stephens, M., Gilad, Y. and Pritchard, J.K. (2012) Dissecting the regulatory architecture 

of gene expression QTLs. Genome Biol, 13, R7. 

2. Schaid, D.J., Chen, W. and Larson, N.B. (2018) From genome-wide associations to 

candidate causal variants by statistical fine-mapping. Nat Rev Genet, 19, 491-504. 

3. van de Bunt, M., Cortes, A., Consortium, I., Brown, M.A., Morris, A.P. and McCarthy, 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.31.125880doi: bioRxiv preprint 

https://gtexportal.org/
https://github.com/liliulab/treemap
https://doi.org/10.1101/2020.05.31.125880
http://creativecommons.org/licenses/by-nc-nd/4.0/


M.I. (2015) Evaluating the Performance of Fine-Mapping Strategies at Common 

Variant GWAS Loci. PLoS Genet, 11, e1005535. 

4. Zeng, B., Lloyd-Jones, L.R., Montgomery, G.W., Metspalu, A., Esko, T., Franke, L., 

Vosa, U., Claringbould, A., Brigham, K.L., Quyyumi, A.A. et al. (2019) 

Comprehensive Multiple eQTL Detection and Its Application to GWAS Interpretation. 

Genetics, 212, 905-918. 

5. Zeng, B., Lloyd-Jones, L.R., Holloway, A., Marigorta, U.M., Metspalu, A., 

Montgomery, G.W., Esko, T., Brigham, K.L., Quyyumi, A.A., Idaghdour, Y. et al. 

(2017) Constraints on eQTL Fine Mapping in the Presence of Multisite Local 

Regulation of Gene Expression. G3 (Bethesda), 7, 2533-2544. 

6. Zaykin, D.V. and Zhivotovsky, L.A. (2005) Ranks of genuine associations in whole-

genome scans. Genetics, 171, 813-823. 

7. Wen, X., Lee, Y., Luca, F. and Pique-Regi, R. (2016) Efficient Integrative Multi-SNP 

Association Analysis via Deterministic Approximation of Posteriors. Am J Hum Genet, 

98, 1114-1129. 

8. Kichaev, G., Yang, W.Y., Lindstrom, S., Hormozdiari, F., Eskin, E., Price, A.L., Kraft, 

P. and Pasaniuc, B. (2014) Integrating functional data to prioritize causal variants in 

statistical fine-mapping studies. PLoS Genet, 10, e1004722. 

9. Hormozdiari, F., Kostem, E., Kang, E.Y., Pasaniuc, B. and Eskin, E. (2014) Identifying 

causal variants at loci with multiple signals of association. Genetics, 198, 497-508. 

10. Yang, J., Lee, S.H., Goddard, M.E. and Visscher, P.M. (2013) Genome-wide complex 

trait analysis (GCTA): methods, data analyses, and interpretations. Methods Mol Biol, 

1019, 215-236. 

11. Guan, Y. and Stephens, M. (2011) Bayesian variable selection regression for genome-

wide association studies and other large-scale problems. The Annals of Applied 

Statistics, 5, 1780-1815. 

12. van Arensbergen, J., Pagie, L., FitzPatrick, V.D., de Haas, M., Baltissen, M.P., 

Comoglio, F., van der Weide, R.H., Teunissen, H., Vosa, U., Franke, L. et al. (2019) 

High-throughput identification of human SNPs affecting regulatory element activity. 

Nat Genet, 51, 1160-1169. 

13. Ulirsch, J.C., Lareau, C.A., Bao, E.L., Ludwig, L.S., Guo, M.H., Benner, C., Satpathy, 

A.T., Kartha, V.K., Salem, R.M., Hirschhorn, J.N. et al. (2019) Interrogation of human 

hematopoiesis at single-cell and single-variant resolution. Nat Genet, 51, 683-693. 

14. Bhalala, O.G., Nath, A.P., Consortium, U.K.B.E., Inouye, M. and Sibley, C.R. (2018) 

Identification of expression quantitative trait loci associated with schizophrenia and 

affective disorders in normal brain tissue. PLoS Genet, 14, e1007607. 

15. Strunz, T., Grassmann, F., Gayan, J., Nahkuri, S., Souza-Costa, D., Maugeais, C., 

Fauser, S., Nogoceke, E. and Weber, B.H.F. (2018) A mega-analysis of expression 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.31.125880doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.125880
http://creativecommons.org/licenses/by-nc-nd/4.0/


quantitative trait loci (eQTL) provides insight into the regulatory architecture of gene 

expression variation in liver. Sci Rep, 8, 5865. 

16. Kim, Y., Xia, K., Tao, R., Giusti-Rodriguez, P., Vladimirov, V., van den Oord, E. and 

Sullivan, P.F. (2014) A meta-analysis of gene expression quantitative trait loci in brain. 

Transl Psychiatry, 4, e459. 

17. Templeton, A.R., Maxwell, T., Posada, D., Stengard, J.H., Boerwinkle, E. and Sing, C.F. 

(2005) Tree scanning: a method for using haplotype trees in phenotype/genotype 

association studies. Genetics, 169, 441-453. 

18. Yuan, L., Liu, J. and Ye, J. (2011), Advances in Neural Information Processing Systems, 

pp. 352-360. 

19. Clauset, A., Newman, M.E. and Moore, C. (2004) Finding community structure in very 

large networks. Physical review E, 70, 066111. 

20. Genomes Project, C., Auton, A., Brooks, L.D., Durbin, R.M., Garrison, E.P., Kang, 

H.M., Korbel, J.O., Marchini, J.L., McCarthy, S., McVean, G.A. et al. (2015) A global 

reference for human genetic variation. Nature, 526, 68-74. 

21. GTEx-Consortium. (2019). 

22. GTEx-Consortium, Laboratory, D.A., Coordinating Center -Analysis Working, G., 

Statistical Methods groups-Analysis Working, G., Enhancing, G.g., Fund, N.I.H.C., 

Nih/Nci, Nih/Nhgri, Nih/Nimh, Nih/Nida et al. (2017) Genetic effects on gene 

expression across human tissues. Nature, 550, 204-213. 

23. Kim, H.Y. (2015) Statistical notes for clinical researchers: post-hoc multiple 

comparisons. Restor Dent Endod, 40, 172-176. 

24. Sargent, D.J., Yang, Y., Surbanovski, N., Bianco, L., Buti, M., Velasco, R., Giongo, L. 

and Davis, T.M. (2016) HaploSNP affinities and linkage map positions illuminate 

subgenome composition in the octoploid, cultivated strawberry (Fragariaxananassa). 

Plant Sci, 242, 140-150. 

25. Cannon, M.E. and Mohlke, K.L. (2018) Deciphering the Emerging Complexities of 

Molecular Mechanisms at GWAS Loci. Am J Hum Genet, 103, 637-653. 

26. Yang, J., Fritsche, L.G., Zhou, X., Abecasis, G. and International Age-Related Macular 

Degeneration Genomics, C. (2017) A Scalable Bayesian Method for Integrating 

Functional Information in Genome-wide Association Studies. Am J Hum Genet, 101, 

404-416. 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.31.125880doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.125880
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

  

Figure 1. The TreeMap method. (A) Data structure. 𝑋 is a feature matrix containing 

genotypes of 𝑉 variants. 𝑌 is a response vector containing transcriptional abundances 

of the target gene. Variants are organized into a hierarchical structure 𝐺 that reflects 

different levels of linkage estimated by 𝑟2 values. (B) Nested design. (i) At the outer 

layer, individual variants (leaf nodes, red circles) or groups of variants (internal nodes, 

red circles) associated with gene transcription are selected. (ii) At the middle layer, 

variants belonging to the selected groups (gray blocks and blue blocks) are tested for 

node-specific optimal solutions (dark gray circles and dark blue circles). (iii) At the inner 

layer, variants selected from previous layers are aggregated to identify a global optimal 

solution (green circles). 
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Figure 2. Performance of TreeMap, DAP and conditional analysis on computer 

simulations. (A) Fraction of genes with correctly predicted numbers of eQTL. Asterisks 

indicate that DAP or conditional analysis made significantly fewer correct predictions than 

TreeMap (P <0.05). (B) Mean deviation of the predicted and the true number of eQTL. 

Asterisks indicate that DAP or conditional analysis had significantly larger deviations than 

TreeMap (P < 0.05). (C) Mean size of credible sets. Because conditional analysis reports 

only lead variants, it is not included in the plot. Instead, average locus size of simulated 

causal variants is displayed that is the number of variants linked to a causal variants at 

r2>0.8. Asterisks indicate that DAP had significantly larger credible sets than TreeMap. 

(D) Recall rate among lead variants, i.e., the fraction of causal variants matched to lead 

variants. (E) Precision-recall plots for various scenarios. (F) An example with 3 simulated 

causal variants (red vertical lines) located in independent loci upstream of the SLC28A3 

gene. Vertical lines with an arrow top indicate lead eVars. Short vertical lines with a blunt 

top indicate linked eVars. The heat map shows pairwise r2 values of variants. 
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Figure 3. Influence of LD structure on performance. (A) Schematic illustration of a scenario 

where two regulatory variants (red bars) co-locate in an LD block, creating spurious signals 

(black lines) for neighboring variants. Spurious signals may be stronger than the true signals. 

(B, C) In simulated cases where two causal variants are linked, computational methods may 

predict two causal loci correctly, or predict fewer or more causal loci. Based on 100 

simulations in each LD category, fractions of correct predictions are plotted in panel B. 

Numbers of predictions of zero to three causal loci are plotted in panel C. (D) In simulated 

cases where two causal variants are linked, we searched the top five eVars at each predicted 

locus. The rate of recalling at least one causal variant (black lines) or recalling both causal 

variants (blue lines) are plotted. (E) An example with two simulated (red) causal variants linked 

at r2=0.57 located upstream of the SMTN gene. Among the lead eVars (vertical lines with an 

arrow top) predicted by the three methods, TreeMap recalled both causal variants, whereas 

DAP and conditional analysis recalled 1 and 0 causal variants, respectively. Locations of lead 

eVars were marked. The heat map shows pairwise r2 values of variants. (F) Average CPU 

time (seconds in log scale) spent to analyze one simulated case. 

A B 

C 

D F 

E 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.31.125880doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.125880
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 4. Analysis of GTEx samples. (A) Fractions of genes with single or multiple 

eQTL. (B) Fractions of eQTL located in various genomics regions. (C) Boxplots of 

distances to gene bodies of primary eQTL and auxiliary eQTL. (D) Lead eVars of eQTL 

of the MCFD2 gene. Effect sizes and –log P values of each lead eVar is displayed in the 

top panels and LD structure of the genomic regions is displayed in the bottom panel. (E) 

Fractio of eVars in open chromatin regions. The dotted line represents the fraction of all 

analyzed variants located inside open chromatin. (F) Fractions of eVars in TFBSs. The 

dotted line represents the fraction of all analyzed variants located inside TFBSs. 
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Figure 5. Overlapping eQTL between brain and colon samples. (A) Numbers of genes 

sharing eVars in the same LD blocks. LD blocks were defined based on r2 values. (B) 

Numbers of genes sharing nearby eVars. (C) eQTL of the AC018804 gene in brain and 

colon samples. The primary eQTL in both tissues is located 1.3 Mbps downstream of 

the gene. The lead eVars were within 7.2 Kbps of one another on chromosome 2 

(132,240,509 in brain samples and 132,233,317). 
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