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Abstract Although the neural processing of chromatic and spatial features is intertwined, it is12

unknown how consistent this spatio-chromatic coding is across different brains. In this fMRI13

study we predicted the color a person was seeing using a classifier that has never been trained14

on chromatic responses from that same brain, solely by taking into account: (1) chromatic15

responses in other individuals’ brains and (2) commonalities between spatial coding in brains16

used for training and the test brain. Fitting shared response models to fMRI responses elicited by17

spatially defined and achromatic retinotopic mapping stimuli, we transformed subject-specific18

color responses to a common functional space. In this space we successfully decoded color19

across observers based on activity patterns in V1-V3, hV4 and LO1. Examining classification20

weights, we found that systematic large-scale retinotopic biases for the different colors may21

explain at least partially the observed agreement of neural color coding between brains.22

23

Introduction24

It is an age-old questionwhether the subjective experience one person has of a given colormatches25

that of another person. While it is difficult to answer this directly, it is possible to answer a related26

question: are there similarities in neural representations of colors that are shared across brains? In27

the present study we used amethod called shared responsemodeling to address this question. By28

projecting each participant’s neural representations into a shared neural space that was indepen-29

dent of color, and defined purely by achromatic spatial information, we implicitly also addressed30

the question to which extent color and spatial information are coupled across brains.31

In humans, color vision has traditionally been thought to be mediated by functionally segre-32

gated neural mechanisms already at earliest stages of visual processing (De Valois and Jacobs,33

1968; Zeki, 1973; Derrington et al., 1984; Schiller et al., 1990; Field and Chichilnisky, 2007), consis-34

tent with the “opponent process-theory of color vision”.35

Specifically, early electrophysiological work suggested that color signals were processed inde-36

pendently from spatial signals in the LGN and visual cortex, with spatial information being encoded37

in the cytochrome-oxidase (CO) poor regions and color being encoded along the CO rich “blob” and38

“thin stripe” regions in areas V1 and V2, respectively (Livingstone and Hubel, 1984, 1988; Ts’o and39

Gilbert, 1988; Schiller et al., 1990; Lu and Roe, 2008; Denison et al., 2014; Nasr et al., 2016), and40
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in localized clusters called “globs” in V4 (Conway et al., 2007; Conway and Tsao, 2009). Relatedly,41

functional dissociations between visual areas for chromatic and spatial processing had been re-42

ported at a larger spatial scale: lesions in the medial fusiform gyrus can lead to color blindness43

while sparing object and motion vision, and correspondingly, neural color responses were found44

in area V4 and its satellites (Zeki, 1978, 1980b,a; Lueck et al., 1989; Zeki et al., 1991; Beauchamp45

et al., 1999; Bartels and Zeki, 2000).46

However, it has also been argued that the computations underlying color constancy necessitate47

the integration of chromatic and spatial signals (Land andMcCann, 1971; Land, 1986; Rüttiger et al.,48

1999; Brainard, 2009;Moutoussis, 2015). In accord with this, numerous studies found evidence for49

joint neural coding of chromatic and spatial information (Leventhal et al., 1995; Kiper et al., 1997;50

Johnson et al., 2001, 2008; Friedman et al., 2003; Sincich and Horton, 2005; Garg et al., 2019). A rel-51

evantmechanism in this respectmay consist in the adaptation of neural responses in both primary52

(Wachtler et al., 2003) and extrastriate visual areas (Kusunoki et al., 2006) of the monkey brain in53

response to chromatic modulations of spatial context. In the human brain, color surface represen-54

tations that are robust against illumination changes serve a similar purpose for color constancy55

computations as well (Bannert and Bartels, 2017). Several behavioral phenomena demonstrate56

the interdependence between spatial and chromatic processing (reviewed by Moutoussis, 2015):57

color experience thus depends on the interpretation of an ambiguous 3D figure as either convex58

or concave (Bloj et al., 1999; Kingdom, 2003), on the orientation of an afterimage-inducing grating59

(McCollough, 1965; Vul and MacLeod, 2006). Border (Ware and Cowan, 1982; Pinna et al., 2001;60

Monnier and Shevell, 2003) and filling-in effects (Krauskopf, 1963; Hsieh and Tse, 2006, 2009) like-61

wise exemplify well-known spatiochromatic interactions.62

Accordingly, human neuroimaging found that orientation adaptation effects in the fMRI signal63

were chromatically specific in a way that mirrors perception (Engel and Furmanski, 2001; Engel,64

2005). Pattern classification analyses of BOLD responses similarly showed that the fine-grained65

spatial orientation responses were specific to chromatic contrast (Sumner et al., 2008). Using the66

same approach, it is possible to decode from fMRI responses which of two possible pairings of67

color and motion direction was presented to an observer (Seymour et al., 2009, 2010). This form68

of conjunctive encoding of the two visual features may in fact be one of the brain’s mechanisms69

to solve the binding problem (Di Lollo, 2012). Interestingly, conjunctive spatio-chromatic coding70

is found primarily in the deep and superficial feedback layers of monkey V2 (Shipp et al., 2009),71

consistent with the putative role of attention for feature binding (Treisman, 1988).72

Our research aim was to examine to what extent spatial and chromatic stimulus features were73

simultaneously encoded in brain activity. Specifically, we were interested to learn how consistent74

such co-representation would be across different brains.75

Here, we addressed these questions by aligning subject-specific fMRI response spaces to each76

other using shared response modeling. In contrast to previous similar cross-subject alignment77

approaches (Haxby et al., 2011; Guntupalli et al., 2016), we used brain responses evoked by the78

spatially changing position of slowly moving achromatic checkerboard stimuli used for retinotopic79

mapping. Individual brain activity was hence sampled in response to a highly restricted subset of80

stimulus inputs comprised of purely spatial variability in the absence of chromatic stimulation. This81

allowed us to ensure that the stimulus properties that were used for estimation of shared neural82

responses were based solely on spatial information. If conjunctive neural representations of space83

and color are indeed shared across observers, it should be possible to predict from an observer’s84

pattern of brain activity what color the person was seeing using a classification model that was85

trained solely on other observers’ brain responses to color, i.e. to classify color across the brains86

of different participants. Our findings showed this to be true, and further suggest that the observed87

between-subject decoding is mediated by common spatio-chromatic representations that are at88

least in part embodied by large-scale retinotopic biases shared between brains.89
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Figure 1. Shared response modeling procedure. Retinotopic mapping data (top) were recorded whileparticipants watched a rotating wedge or an expanding/contracting ring stimulus. Datasets from everyparticipant’s ROI were resampled to the same temporal resolution and entered into a shared response model(Chen et al., 2015; Anderson et al., 2016). SRM estimates a transformation matrixWn for every participantmapping voxel response spaces from individual ROIs into a 50-dimensional common space (seeMaterials
and Methods). Note that only retinotopic mapping data were used to estimate transformation matrices.Color responses (bottom) were measured with fMRI from participants performing a luminance changedetection task on red, green, and yellow ring stimuli presented at two luminance levels. Stimuli were shownfor 8.5 s with ITI = 1.5 s (seeMaterials and Methods). Using theWn matrices, these fMRI color responses inevery ROI and participant, which were recorded independently from the retinotopic mapping data, weremapped from individual response spaces into the common space.

Results90

The goal of the experiment was to examine whether representations of chromatic signals were91

shared across human brains and whether this occurs in a spatial neural code. Specifically, our92

hypothesis was that chromatic signals may share aspects of spatial, achromatic representations93

that are conserved across different individuals. For this reason, we used brain responses to achro-94

matic, spatial stimuli to construct a neural space that was shared between observers Figure 1. We95

then tested whether this neural space generalized to decode color responses in specific, individual96

brains from color responses in other observers’ brains – in other words – to predict color across97

brains.98

Within-subject classification of color and luminance (WSC)99

Decoding color across different brains requires that color can be decodedwithin one and the same100

individual brain. For this reason we first performed pattern classification analyses on fMRI activity101

from ROIs at the level of individual subjects. The same logic applied to luminance decoding. Fig-102
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Figure 2. Multivoxel pattern classification results for within-subject classification. For every ROI andparticipant, cross-validated (leave-one-run-out) classification accuracies were obtained for the prediction ofcolor (dark dots) and luminance (light dots). Accuracies are tranformed to z-values using the normalapproximation to the binomial distribution (n = 216) so that both classifications share the same y-axis andaccuracies expected by chance is 0 in both cases. Black diamonds indicate mean accuracy averaged acrossparticipiants and error bars represent the parametric 95 % CI. Asterisks mark accuracies with p values below.01 (permutation tests, 2000 iterations, FWE corrected across 7 ROIs). As shown, classification accuracies weresignificantly larger than chance for both color and luminance classification.

ure 2 shows classification accuracies z-transformed (n = 216) individually and then averaged across103

participants (n = 15). Color as well as luminance could be decoded significantly better than chance104

in all ROIs under investigation (permutation tests, each p < .01, FWE-corrected for seven ROIs). For105

color (chance level: 33 %), the following classification accuracies applied for each ROI, averaged106

across participants. V1: 57 % (z = 7.38, 95 % CI [6.51, 8.25]), V2: 55.4 % (z = 6.89, 95 % CI [5.94,107

7.84]), V3: 52.84 % (z = 6.08, 95 % CI [5.13, 7.03]), hV4: 51.2 % (z = 5.56, 95 % CI [4.21, 6.91]), VO1:108

46.3 % (z = 4.03, 95 % CI [3.01, 5.05]), LO1: 44.8 % (z = 3.56, 95 % CI [2.66, 4.46]), LO2: 42.5 % (z =109

2.86, 95 % CI [1.72, 4]). For luminance (chance level: 50 %), classification accuracies were as follows.110

V1: 61.9 % (z = 3.51, 95 % CI [2.32, 4.7]), V2: 65 % (z = 4.41, 95 % CI [2.81, 6.01]), V3: 66.7 % (z = 4.92,111

95 % CI [3.45, 6.38]), hV4: 59.1 % (z = 2.67, 95 % CI [1.84, 3.5]), VO1: 56.7 % (z = 1.98, 95 % CI [1.16,112

2.8]), LO1: 63.5 % (z = 3.96, 95 % CI [2.71, 5.22]), LO2: 59.9 % (z = 2.9, 95 % CI [1.69, 4.11]). Individual113

response patterns in every ROI thus were reliable enough across fMRI runs to linearly predict color114

and luminance condition.115

Between-subject classification of color and luminance (BSC)116

Next, wequantifiedhowconsistent chromatic neural processingwas across individual brainswithin117

a neural space that was shared across subjects and defined by responses elicited by a solely achro-118

matic and spatially defined retinotopicmapping stimulus. Individual color responsesweremapped119

from independent measurements to that shared response space, and the classifiers were trained120

to predict the color (or luminance) of the stimulus a person was seeing. In contrast to WSC, fit-121

ted classification models were cross-validated across participants instead of runs. As can be seen122

in Figure 3, accuracies for luminance and color classification across different brains significantly123

exceeded chance in areas V1-V3. Additionally, color could be decoded across participants signif-124

icantly better than chance in areas hV4 and LO1 (permutation tests, p < .01, FWE-corrected for125

seven ROIs). For each ROI, significant BSC accuracies for color were as follows. V1: 41.3 % (z =126

9.62, 95 % CI [7.2, 11.96]), V2: 37.5 % (z = 5.03, 95 % CI [2.64, 7.41]), V3: 40.9 % (z = 9.09, 95 % CI127

[6.73, 11.57]), hV4: 37.7 % (z = 5.33, 95 % CI [2.93, 7.78]), LO1: 38.9 % (z = 6.71, 95 % CI [4.32, 9.06]).128

For luminance, significant classification accuracies were as follows. V1: 57.1 % (z = 8.12, 95 % CI129
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Figure 3. Multivoxel pattern classification results for between-subject classification. Individualresponses were transformed to the common space. Transformation matrices were estimated using theshared response model fit to an independent sets of retinotopic mapping data. Classification accuracies arecross-validated by leaving out the participant during classifier training whose data were used for testing(leave-one-subject-out). The normal approximation to the binomial distribution was used to convertaccuracies to z-values (n = 3240). Note that prediction accuracies are represented as bars rather thanindividual dots (see Figure 2) because the prediction accuracies for individual participants are no longerindependent. Error bars denote the 2.5th and the 97.5th percentile of the permuted null distributions.Asterisks denote accuracies significantly exceeding chance at p < .01 (permutation tests, 2000 iterations, FWEcorrected across 7 ROIs). Both color and luminance could be predicted across subjects from areas V1-V3.Additionally, color could be predicted from hV4 and LO1.

[5.67, 10.8]), V2: 55.4 % (z = 6.15, 95 % CI [3.73, 8.65]), V3: 53.8 % (z = 4.36, 95 % CI [1.9, 6.86]).130

This suggests that measurements of how purely spatially defined stimulation activates the brains131

of different individuals is sufficient to predict colors and luminance from brain activity in any one132

of them using a classifier trained on data from the remaining participants.133

Retinotopic analysis of classification weights134

Since we observed significant BSC across brains after estimating shared responses from the retino-135

topic mapping experiments, we were interested in a closer examination of any large-scale retino-136

topic biases mediating these effects. In short, we wanted to learn how the classification rules (i.e.,137

weights), which were learned by LDA during BSC classification and which would allow significant138

decoding about the color that was presented, were related to retinotopic locations within a given139

ROI. To that end, a linear classifier was fit to all participants’ data after projection into the shared140

common space. We mapped back classification weights into individual participants’ voxel spaces141

and combined them with retinotopic coordinates. We then used nearest neighbor classifiers to142

predict from retinotopic coordinates in each voxel which class it preferred while cross-validating143

across participants. We thus obtained a visual field map of class preference for every ROI (see144

Materials and Methods and Figure 4 for details).145

Predicting color preference from retinotopic coordinates was significantly better than chance146

(33 %) in all ROIs except LO2, with the following accuracies. V1: 35.8 % (95 % CI [35.1, 36.5]), V2:147

37.7 % (95 % CI [37, 38.4]), V3: 37.9 % (95 % CI [37.1, 38.7]), hV3: 37.7 % (95 % CI [36.7, 38.8]),148

VO1: 36.7 % (95 % CI [35.5, 38]), LO1: 35.9 % (95 % CI [34.6, 37.2]) (all p < .01), LO2: 34.2 % (95149

% CI [33.1, 35.4]) (p < .05, permutation tests with 1000 iterations, Holm-Šidák corrected for seven150

ROIs). Figure 5 shows the class preference maps for color classification. Descriptively, the results151

showed a systematic relationship between visual field location and color preference. In V3 for152

instance voxels representing parafoveal locations showed a preference for yellow. At intermediate153

eccentricities along the horizontal meridian the analysis revealed a preference for green. More154
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Figure 4. Classification weights analysis. (A) For every ROI, an LDA classifier was trained on the commonspace responses from all participants. The weights were transformed back into individual response spacessuch that every voxel was assigned with one weight per class. A nearest neighbor classifier was trained forevery voxel to predict based on its Cartesian retinotopic coordinates which class had the highest weight.Every voxel in every ROI and participant thus obtained a predicted class label that was cross-validated acrossparticipants. These class predictions were used to quantify the relative preference for a given class as afunction of retinotopic location. For each class separately, the retinotopic coordinates of all voxels preferringthat class were entered into kernel density estimation to approximate this function. A second function wasapproximated using all voxels combined, which was subtracted from each of the class-specific functions tonormalize them. (B) Results for green, red, and yellow classes (from left to right) in area V1. Colored areasrepresent visual field locations with a relative overrepresentation of voxels preferring that class while grayareas denote regions with a relative underrepresentation. 0°marks the right horizontal visual meridian.
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Figure 5. Relative class preferences for color discrimination. Same conventions as in Figure 4(B). On theleft, p values indicate that nearest neighbor classification of class preference was significantly above chancein all regions tested (Holm-Šidák corrected for seven ROIs). Classes showed distinctive topographies thatdiffered particularly along visual meridians.
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peripherally, our analysis showed a preference for red in the upper and lower visual fields.155

Interestingly, the maps show some variability across ROIs. For example, whereas in V3 the156

yellow stimuluswas preferred at parafoveal locations, thiswas not the case in V1, where preference157

for yellow was more pronounced at more peripheral locations.158

In the case of luminance classification, predicting stimulus preference from retinotopic coordi-159

nates was also significantly larger than chance (50 %) in many ROIs, with the following accuracies.160

V1: 54.2 % (95 % CI [53.5, 55]), V2: 54.8 % (95 % CI [53.9, 55.5]), V3: 54.4 % (95 % CI [53.6, 55.2]), hV4:161

52.7 % (95 % CI [51.5, 54]), LO1: 51.7 % (95 % CI [50.4, 53.1]) (p < .05, all Holm-Šidák corrected for162

seven ROIs). Classification accuracies did not, however, significantly exceed chance in VO1 (50.1163

%, 95 % CI [48.7, 51.4], p = .4605, uncorrected) and LO2 (49.8 %, 95 % CI [48.5, 51], p = .6763, un-164

corrected, permutation tests with 103 iterations.). Descriptively, preference maps again differed165

across brain regions (Figure 6): While in V1 and V2 the preference for stimulation at high luminance166

increased with increasing eccentricity for instance, this preference first dropped at intermediate167

eccentricities relative to central visual field representations before it increased again in the visual168

periphery.169

In sum, these results indicate a systematic relationship between a voxel’s retinotopic spatial170

preference and its response pattern to color and luminance that could at least partially mediate171

between-subject classification.172

Whole-brain searchlight analysis of shared responses173

The ROI results showed that color could be classified significantly better than chance across differ-174

ent brains if classification was performed in a shared response space estimated from responses175

to only achromatic and spatial stimulation. Yet although the data for these BSC analyses came176

from different brains, they were recorded in ROIs that corresponded to the same retinotopic field177

maps. Despite the interindividual variability in the locations of visual areas, they tend to overlap178

anatomically in standard MNI space.179

We therefore tested how well common shared responses could already be estimated from180

only anatomically aligned activity patterns for subsequent BSC. Individual datasets were warped181

to MNI space separately and SRM was fit to only local patterns of retinotopic mapping responses182

in a searchlight analysis to estimate common space representations for every brain location. After183

transforming individual color responses to this common space, BSC could be carried out on those184

local patterns. This approach had the additional advantage that BSC could be applied to the whole185

brain.186

Applying a false discovery rate of q < .05, we found that classification accuracies in a region187

within the early visual cortex was significantly larger than chance (one-tailed binomial test based188

on 3240 Bernoulli trials). Figure 7 shows the location of this region relative to the hV4 group ROI.189

This ROI comprised all the voxels that were identified as being part of individual hV4 ROIs in at190

least 25 % of the participants. As can be seen, the voxels where classification was significantly191

better than chance were located near the calcarine sulcus but did not overlap with the hV4 group192

ROI.193

In sum, the searchlight analysis suggests that while anatomical alignment of voxels was suffi-194

ciently high for BSC of color in early visual cortex this alignment was too coarse in more anterior195

regions.196

Discussion197

Herewe testedwhether chromatic processing is sufficiently similar between human brains to allow198

decoding of color across different observers. In particular, we examined this question in a neural199

space based on purely spatial and achromatic stimulation. We hence exploited dependencies be-200

tween spatial processing with chromatic processing, for which there is growing evidence (Johnson201

et al., 2001, 2008; Friedman et al., 2003; Engel, 2005; Seymour et al., 2009; Garg et al., 2019). Here202
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Figure 6. Relative class preferences for luminance discrimination. Same conventions as in Figure 4(B).except that since classification was binary, hot areas mark regions in the visual field where high luminancewas preferred and gray areas mark regions where low luminance was preferred. On the left, p values indicatethat nearest neighbor classification of class preference was significantly above chance in all regions testedexcept VO1 and LO2 (Holm-Šidák corrected for seven ROIs). In early areas V1-V3 for instance, luminancepreference changed as a function of eccentricity. Note that although VO1 showed a difference between leftand right visual field descriptively, preference classification in this area (and in LO2 likewise) was notsignificant.
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Figure 7. SRM searchlight map. SRMs were fit to patterns within local spheres (3 voxel radius) of brainresponses to the retinotopic mapping stimulus. After transforming every participant’s dataset into thecommon space, classifiers were used to predict the color of the viewed image using only the information inthe local activity pattern (BSC). Cross-validation was performed by leaving out data from a differentparticipant for testing on every iteration. Classification accuracies are shown in warm colors on a standardMNI template for brain regions that survived the whole-brain significance threshold of a binomial test (q < .05,FDR corrected). Green marks all voxels falling within area hV4 in at least 25 % of the participants. The regionswhere BSC of color yielded accuracies significantly above chance, namely near the calcarine sulcus, weredistinctly different from the location of hV4. This indicates that anatomical alignment was not sufficientbeyond earliest visual areas for BSC (e.g. in hV4).

we followed up on this research by testing if integrated spatiochromatic processing is sufficiently203

similar between human brains to allow decoding of color across different observers based on their204

shared responses to only spatial and achromatic stimulation.205

We found that, after taking into account how different brains respond to the same, purely spa-206

tially defined retinotopic mapping stimulus, there was a strong agreement across participants be-207

tween the fMRI activity patterns elicited by stimuli of different luminance and color. Otherwise it208

would not be possible to linearly classify what color a person was seeing based on their brain activ-209

ity using only the shared responses to the retinotopic mapping stimulus, i.e. without training the210

classifier on actual color responses from that particular brain. This is consistent with previous re-211

ports of integrated spatiochromatic processing. Yet crucially, it follows from this observation that212

the relationship between the specific way that the brain represents spatial and chromatic visual213

features is to some degree preserved across individuals.214

Upon further exploration of the nature of this relationship we discovered systematic retino-215

topic response biases to color as well as luminance. Specifically, we observed that visual field216

coordinates in a voxel predicted for which color or luminance level that voxel was most predictive.217

Mapping voxel preferences across the visual field revealed response biases that correlated with218

eccentricity in a continuous (e.g. V1 in Figure 5) or inverted-U shaped manner (e.g. V3 in Figure 6).219

Some retinotopic biases aligned with the vertical (e.g. V2 in Figure 5) or horizontal meridian (e.g.220

VO1 in Figure 5).221

Response biases had been reported initially for stimulus orientation (Freeman et al., 2011, 2013;222

Sasaki et al., 2006) and motion direction (Beckett et al., 2012) as well as ocular dominance (Lars-223

son et al., 2017). As for color, it has been suggested that chromatic response biases in V1 result224

from neural adaptation to the statistics of natural daylight chromaticities (Lafer-Sousa et al., 2012).225

In mice, differences in the behavioral significance of stimuli in the upper visual field (above the226

horizon) versus the lower visual field (below the horizon) may similarly explain differential opsin227
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distributions (Baden et al., 2013; Rhim et al., 2017), which in turn have been related to differences228

in chromatic discriminatory ability between upper and lower visual fields (Denman et al., 2018).229

Focusing, in contrast, on the human color vision, the following paragraphs will discuss studies230

reporting retinal, behavioral, and cortical chromatic biases in relation to the present findings.231

Retinal spatio-chromatic biases232

With respect to color, the retinotopic response biases may be related to the distribution of cones233

in the retina. The fact that cone density decreases with eccentricity (Curcio et al., 1990), that S234

cones are not found in the fovea (Roorda and Williams, 1999), or that a fourth (melanopsin) pho-235

topigment may contribute to peripheral color vision (Horiguchi et al., 2012) could thus be related236

to differences between preferences at high versus low eccentricities, as we have found for yellow237

stimuli in V1 for instance. However, the distributions of L andM cones (in contrast to S cones) show238

large variability across individuals (Brainard, 2015) so that commonalities at the receptor level likely239

cannot fully explain the observed effects.240

Cortical spatio-chromatic biases241

With regard to postreceptoral processing, V1 shows a decreasing responsiveness to modulations242

in the red/green direction in color space, which was not found for the blue/yellow direction (Vanni243

et al., 2006;Mullen et al., 2007). Although therewas no blue in our stimulus set, this is in agreement244

with our observation of a more pronounced preference for yellow stimuli relative to red and green245

at high eccentricities in V1 (Figure 5). Interestingly, fMRI activity in one of the studies was strongest246

close to the horizontal meridian (Vanni et al., 2006), which may be related to the approximate247

symmetry of the retinotopic pattern of stimulus preference around the vertical axis present in248

our findings. Note, however, that these previous experiments studied only overall BOLD signal249

strength in area V1 whereas we used pattern classification analysis in V1 and extrastriate visual250

areas.251

Both in V1 and beyond, examining fMRI contrast sensitivities for gratings (albeit achromatic252

ones) flashed at various temporal stimulation, an interaction was found between eccentricity and253

flicker frequency with hV4 responses in contrast to earlier regions correlating with behavioral mea-254

surements (Himmelberg and Wade, 2019). A comparison between chromatic and achromatic grat-255

ings found significant differences between spatial frequency sensitivities of areas V1-V4 at eccen-256

tricities of 8-10° but not below 2° of visual angle between the S-cone isolating on the one hand and257

L-M as well as achromatic gratings on the other (Welbourne et al., 2018).258

Behavioral spatio-chromatic biases259

Behaviorally, the contrast sensitivities for the chromatic red-green cone mechanism peaks at the260

fovea and is stronger than for achromatic and blue-yellow mechanisms, yet it also shows the261

strongest decrease as a function of eccentricity such that it falls below the blue-yellow and achro-262

matic sensitivities at large eccentricities (Mullen, 1991; Mullen and Kingdom, 2002; Hansen et al.,263

2009).264

Spatio-chromatic biases across polar angles265

With respect to the dependence upon polar angle, performance effects for the perception of var-266

ious visual features like contrast, spatial frequency or orientation especially along the horizontal267

and vertical meridians are well known (Karim and Kojima, 2010; Jóhannesson et al., 2018). Com-268

pared to eccentricity dependence, the findings are mixed with some reporting an advantage of269

the lower visual field for color discrimination relative to the upper visual hemifield (Levine and270

McAnany, 2005) while others found no differences in any of the hemifield comparisons (Danilova271

andMollon, 2009). At the retinal level, cone densities change depending on polar angle in that they272

are higher along the horizontal than the vertical meridians (Curcio et al., 1990; Song et al., 2011).273

Simulation has shown, however, that cone density differences as a function of polar angle are too274
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small to account for differences in visual performance at least as far as orientation discrimination275

is concerned and that postreceptoral, possibly cortical, contributions are therefore likely (Kupers276

et al., 2019). To what extent these findings generalize to differences in cone ratios and chromatic277

processing remains an open question.278

Regarding cortical effects, human fMRI was able to link the advantage of the lower visual field in279

an orientation discrimination task to stronger and more extensive activation at the corresponding280

retinal locations in V1/V2 (Liu et al., 2006). Population receptive field (pRF) model fits between281

visual field maps representing the upper versus lower hemifield exhibited significant differences282

in size and orientation parameters (Silson et al., 2018) as well as a systematic dependence of pRF283

size and cortical magnification upon polar angle (Silva et al., 2018). Finally, at the anatomical level,284

it has been shown that there is a cortical overrepresentation of the horizontal meridian in area V1285

in humans (Benson et al., 2012).286

Flexibility in spatio-chromatic biases287

Recently, it has been demonstrated that the coarse-scale response biases found for orientation are288

not fixed but can be changed by multiplying a grating stimulus with a modulator whose intensity289

changes cyclically as a function of either polar angle or eccentricity (Roth et al., 2018). These mod-290

ulators determined whether the orientation bias was radial or tangential – a phenomenon termed291

“stimulus vignetting”. It is unclear if similar effects exist for the color preference of a voxel or even292

what type of modulator would be an appropriate candidate to test for a comparable mechanism293

in color perception.294

However, it is indeed known that cortical responsiveness to color and luminance is flexible and295

changes as a function of chromatic context (MacEvoy and Paradiso, 2001; Wachtler et al., 2003;296

Kusunoki et al., 2006; Bannert and Bartels, 2017), presumably supporting perceptual constancy.297

This flexibility also depends on task properties. Color responses in the ventral pathway for instance298

cluster in a way that reflects behavior in a concurrent color-naming task (Brouwer and Heeger,299

2013). Relatedly, color representations canbe changedusing neurofeedback such that associations300

between specific orientations and color are learned (Amano et al., 2016).301

On the other hand there is evidence that some neural color representations are preserved302

across tasks. Accordingly, patterns of brain activity do show some agreement between viewing303

veridically colored stimuli and stimuli with strong associations to the same colors like cherries or304

kiwis (Bannert and Bartels, 2013; Vandenbroucke et al., 2016; Teichmann et al., 2019). Similar305

correspondences have been found between color viewing and imagery (Bannert and Bartels, 2018)306

as well as working memory (Serences et al., 2009). In sum, given the evidence for both flexibility307

and stability of color representations, it would be interesting to probe the plasticity of the observed308

large-scale response biases.309

Materials and Methods310

Participants311

Weanalyzed fMRI data fromN=15 (2male) participants aged between 22 and 35 years (mean: 25.5)312

who took part in a previously published fMRI study about color vision (Bannert and Bartels, 2018).313

We only selected participants from that study for which the cortical retinotopic representations of314

the visual field were measured along both the polar and the eccentricity axis of the visual field (see315

below). All participants hadnormal or corrected-to-normal visual acuity andwere tested for normal316

color vision using Ishihara color plates (Ishihara, 2011). Each participant gave written informed317

consent before the first study session. The experiment was approved by the local ethics committee318

of the Tübingen University Hospital.319

Experimental setup320

All stimuli were shown to the volunteers while they were lying in the scanner using a projector (NEC321

PE401H) that was gamma-calibrated with a Photo Research PR-670 spectroradiometer running the322
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Psychtoolbox-3 display calibration script. Experimental stimuli were presented at a resolution of323

800×600 pixels and a refresh rate of 60 Hz. The display on the projection screen had a size of 21.8°324

by 16.2° of visual angle. Stimulus presentation was controlled using Psychtoolbox-3 (Kleiner et al.,325

2007) and MATLAB running on Windows XP.326

Stimuli327

Brain responses obtained from a retinotopic mapping session (described below) and a color vision328

experiment were used for the present analysis. Stimuli of both sessions have been described in329

detail before (Bannert and Bartels, 2018), and are again briefly describe below. In the color vision330

experiment, we showed stimuli with each belonging to one of three different color categories: red331

(mean chromaticiticies x = 0.39, y = 0.35), green (mean chromaticities x = 0.34, y = 0.41), yellow332

(mean chromaticities x = 0.41, y = 0.43). Each color category was shown at a high or low luminance,333

resulting in a total of six trial types. Each stimulus consisted of concentric rings presented against334

a mid-level gray background (154 cd/m²). Stimulus intensities were psychophysically matched (see335

below) for the high and low luminance conditions, respectively, yielding mean luminance values336

(SD in brackets) of 241.7 (19.8) cd/m² and 199.8 (9.0) cd/m² for red, 242.4 (11.4) cd/m² and 190.0 (8.8)337

cd/m² for green, 230,4 (11.6) cd/m² and 179.6 (9.8) cd/m² for yellow. Transparency of the stimulus338

color was sinusoidally modulated as a function of radial distance from the center (thereby confer-339

ring the appearance of multiple concentric rings). The radius of the largest ring was 8.61° of visual340

angle and the cycle size of the modulation was 2.16° of visual angle with its phase changing con-341

tinuously at a speed of 2.47°/s in an outward direction. To ensure that the three colors appeared342

isoluminant, we used the minimum flicker method (Kaiser, 1991) inside the scanner prior to data343

acquisition: a color rectangle of size 3.28° by 2.46° degress of visual angle in vertical and horizon-344

tal directions from a given color category was shown foveally to the participant while continuously345

replacing it every second frame with an achromatic reference stimulus of a given luminance. By346

adjusting the luminance of the color patch by button press in steps of 11 – 12 cd/m², the partici-347

pant chose the stimulus intensity that minimized the amount of perceived flicker. Since the three348

color conditions were presented in either low or high luminance (151.3 cd/m² or 184.9 cd/m²), each349

participant individually performed adjustments with reference stimuli at two different luminance350

levels. Our color experiment thus had a 3-by-2 factorial design.351

Experimental design and task352

The observers had to foveate the fixation dot in the middle of the screen while paying attention353

to the expanding color rings. Each stimulus was presented for 8.5 s at an inter-stimulus-interval354

(ITI) of 1.5 s. There were 36 trials per imaging run for a total of 216 trials. The trial sequence was355

pseudo-randomized across runs to ensure that each of the 6 conditions was preceded equally356

often by every condition (Brooks, 2012). The last trial in every run was repeated at the beginning357

of the subsequent run to ensure that the trial sequence remained counterbalanced across all runs.358

The first trial of each run was excluded from the analysis.359

The task was to indicate by button press the occurrence of a brief (0.3 s) luminance increment360

or decrement of the color stimulus. Specifically, when presenting a high luminance color stimulus,361

the target was the low luminance stimulus and vice versa. Observers were instructed to respond362

as quickly and accurately as possible and received visual feedback about mean reaction time (RT)363

and errors at the end of each imaging run.364

Retinotopic mapping details365

In the retinotopic mapping experiment each participant underwent four runs of polar angle and366

two runs of eccentricity mapping following standard protocol (Sereno et al., 1995; Wandell and367

Winawer, 2011). In polar runs observers viewed an achromatic contrast-reversing checkerboard368

stimulus through a wedge-shaped aperture in a mid-level gray layer occluding the checkerboard.369

Thewedge had an angle of 45 degrees and extended to the edge of the display. The aperture slowly370
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rotated in a clockwise direction in half of the runs or counter-clockwise direction in the remaining371

half. In the two eccentricity runs the checkerboard stimulus was viewed through an annulus that372

cyclically expanded in one run whereas it contracted in the other. The check sizes in the polar373

and eccentricity runs as well as the annulus width increased logarithmically with radial distance374

to accommodate cortical magnification. Participants were instructed to keep their eyes on the375

fixation cross in themiddle of the screen while paying attention to the wedge or annulus apertures,376

respectively, and to press a button each time a red dot briefly appeared randomly anywhere in the377

visible checkerboard.378

Per run, most participants saw 10 cycles of the rotating wedge and expanding or contracting an-379

nulus with each cycle lasting 55.68 s. For subjects 2, 8, and 14, the stimulus period was 50.46 s and380

12 cycles were presented. Subject 1 saw only 9 cycles. To be able to use shared responsemodeling381

(see below), we made sure that the stimulus input was the same for each time point across partic-382

ipants by including only fMRI measurements for the first 9 cycles and temporally resampling data383

from subjects, 2, 8, and 14 to obtain 576 fMRI volumes for each participant. However, we used384

each participant’s original dataset to define retinotopic regions-of-interest (ROIs) and determine385

polar coordinates for each voxel.386

fMRI scan details387

Imaging was carried out on a Siemens Prisma scanner at 3 T magnetic field strength using a 64388

channel head coil. The 56 slices were positioned, without gaps between them, approximately par-389

allel to the AC-PC line for whole brain coverage. We employed a multi-band factor 2 and GRAPPA390

factor 2 to obtain a four-fold accelerated parallel imaging sequence. T2*-weighted functional im-391

ages were recorded at a repetition time (TR) of 0.87 s and an in-plane matrix resolution of 96×96.392

Slice thickness and voxel size were 2mm isotropic. Echo time (TE) was 30ms and flip angle was 57°.393

Anatomical images were recorded for each participant at a voxel size of 1 mm isotropic using a T1394

weighted MP-RAGE ADNI sequence. To correct for magnetic field inhomogeneities, we measured395

gradient field maps which were included in the motion correction step of the fMRI preprocessing396

pipeline.397

fMRI data preprocessing398

Data from themain experimentwere preprocessedusing SPM8 (https://www.fil.ion.ucl.ac.uk/spm/)399

running onMATLAB 2014b (TheMathworks, Inc., Natick, MA, USA). We excluded the first 11 images400

of each run to allow the magnetic field to reach equilibrium. To correct for head motion, each par-401

ticipant’s functional images were realigned to the first recorded image. The gradient field maps402

were used to unwarp the image sequence in order to take into account magnetic field distortions.403

We corrected for differences in slice acquisition times by shifting the phase of each frequency in the404

signal’s Fourier representation to the middle of the volume. Every participant’s image sequence405

was then co-registered to their respective anatomical scan. Anatomical scans were spatially nor-406

malized to MNI space using SPM’s segmentation-based method and the ensuing transformations407

were also applied to normalize functional images to MNI space.408

The data from the retinotopic mapping experiment were motion-corrected, co-registered, and409

slice-time-corrected with SPM8 in the same way as the data from the main experiment. We used410

FreeSurfer’s recon-all pipeline (https://surfer.nmr.mgh.harvard.edu/) to reconstruct each partici-411

pant’s cortical surface from their individual anatomical scan (Fischl, 2012). The functional images412

were then spatially smoothed on the cortical surface with a 4 mm Gaussian kernel.413

Retinotopic ROI definition414

We used standard retinotopic procedures to functionally identify visual areas in each participant415

separately (Sereno et al., 1995;Wandell andWinawer, 2011). After applying Fourier-transformation416

to the time series of each vertex, we plotted the corresponding phase of each vertex at the fre-417

quency of the polar angle mapping stimulus onto the inflated cortex. The reversals in the angle418
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map indicate the boundaries between visual areas. In this way, we delineated boundaries for areas419

V1, V2, V3, hV4, VO1, LO1, and LO2.420

Pattern estimation and preparation421

To extract patterns of brain activity we fit each voxel time series with a general linear model (GLM)422

in SPM8. The design matrix contained one boxcar regressor for each of the 216 trials (36 trials per423

run, six runs in total), a regressor each for the first trials in every run, which were excluded from424

the analysis, a constant intercept for each run, and the six parameters from the motion correction425

step to model out motion-induced artifacts in the voxel time series. To account for the hemody-426

namic lag of the BOLD response, we shifted each boxcar 5 s forward in time. The beta weights427

were obtained using restricted maximum likelihood estimation and were then used to form vec-428

tors of brain responses to their respective color stimulus. Finally, before a sequence of vectors429

were entered into pattern classification analyses, each voxel time series within this sequence was430

– for each run separately – temporally detrended by removing the fit of a second-order polynomial431

(effectively high-pass filtering the data), followed by scaling to zero mean and unit variance432

Pattern classification433

Pattern classification was performed in Python 3 using scikit-learn 0.19.1 (Pedregosa et al., 2012).434

We used Linear Discriminant Analysis (LDA) to train classifiers based on a shrinkage estimate of the435

covariance matrix (Ledoit and Wolf, 2004). In a first step, we tested how well color (and luminance)436

information could be decoded from brain signals when the training and test data came from the437

same participant. In the second step, we examined how well color (or luminance) patterns gener-438

alized across participants. We refer to the analyses in the first and second steps as within-subject439

classification (WSC) and between-subject classification (BSC), respectively (Haxby et al., 2011).440

In WSC analyses, we trained LDA classifiers to predict from vectors of neural responses from441

which of the three color categories (or the two luminance conditions in the luminance classification)442

they came. Weobtained unbiased estimates of classification performance by cross-validating them443

following a leave-one-run-out cross-validation procedure. Individual results were averaged across444

all participants.445

In BSC analyses, however, we were interested to learn how well color (or luminance) responses446

generalized across participants. Rather than cross-validating classifiers across runs and averag-447

ing over participants we now cross-validated across participants and obtained a single value for448

the whole group. Another difference was that vectors used for classification came from the 50-449

dimensional common space estimated through shared response modeling (see below). Since450

shared response modeling implicitly already performs dimensionality reduction, we did not use451

any additional feature selection such as recursive feature elimination.452

Since color decodingwas a three-way classificationwhereas luminance decodingwas a two-way453

classification, classification accuracies were transformed to z-values using the normal approxima-454

tion to the binomial distribution:455

n(a − p)
√

np(1 − p)
(1)

n is the number of predictions in the classification problem (i.e., Bernoulli trials), a is the fraction456

of correct predictions, and p is the probablity of a correct prediction expected by chance, i.e. the457

reciprocal of the number of classes. Intuitively, this transformation simply expresses the extent458

to which classification accuracy exceeded chance, scaled by the standard deviation expected by459

chance. After z-transformation chance level for both classification problems was hence zero.460

Shared response modeling461

Ourhypothesiswas that the purely achromatically defined functional retinotopic architecture shared462

across brains also contained color representations that were equally shared across participants.463
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We therefore used shared response modeling (SRM, Chen et al., 2015; Anderson et al., 2016) to464

identify the shared functional architecture from responses to the achromatic retinotopic mapping465

stimulus. For all our SRM analyses we used the implementation that is part of the Brain Imaging466

Analysis Kit, https://brainiak.org (version 0.7.1). An important advantage of SRM over a related467

method called hyperalignment (Haxby et al., 2011; Guntupalli et al., 2016) is that it allows for dif-468

ferent dimensionalities of individual data matrices (i.e., number of voxels). This is because SRM469

estimates linear mappings between Xi and S whereas hyperalignment uses Procrustes transfor-470

mation to align representational spaces by rotating and scaling vectors between voxel spaces of471

the same dimensionality. For intelligibility of this manuscript, in the following we briefly describe472

the mathematical concept of the SRM implementation used.473

Let Xi be a v-by-d matrix of fMRI responses (Xi ∈ IRv×d ) measured for participant i with v de-474

noting the number of voxels (e.g., within a ROI) and d the number of measurements (in our case475

number of volumes recorded in the retinotopic mapping experiment). In SRM each participant’s476

response matrix Xi is then modeled as a linear transformation of a common response S ∈ IRk×d477

that is shared by all participants:478

Xi = WiS + Ei (2)
k is the predefined number of components in the shared common space. We chose themodel’s479

default of k = 50 in all our ROI analyses. Wi ∈ IRv×k is the transformation matrix that describes the480

relationship between the shared responses in the common space S and each individual’s original481

response space with matrix Ei ∈ IRv×d modeling the error between fitted and observed individual482

data.483

SRM estimates the common space matrix S and individual transformation matricesW1,W2,... ,484

Wi,... ,Wm for each of the m participants such that they minimize the Frobenius norm ‖ ⋅ ‖F of each485

error matrix Ei summed over all participants:486

min
Wi ,S

m
∑

i=1
‖Xi −WiS‖2F

s.t. W⊤
i Wi = Ik

This optimization is performed subject to an orthonormality constraint on each transformation487

matrix Wi. The estimated solutions for Wi are therefore similar in interpretation to orthogonality488

in PCA. Importantly, we can useWi to map patterns of fMRI responses between individual spaces489

and the common space.490

We fit SRMs to data from the retinotopic mapping experiment (Figure 1). This yielded one trans-491

formation matrixWi per participant and ROI describing the linear mappings between each individ-492

ual dataset and the common space of shared responses to purely achromatic, spatially defined493

stimulation. Let Di ∈ IRv×216 be the matrix of v-dimensional patterns of responses to the color and494

luminance stimuli from the main experiment. The transformation matrices Wi ∈ IRv×k for partici-495

pant i can then be used tomap the individual color responses to the k-dimensional common space496

as W⊤
i Di. We repeatedly trained LDA classifiers to distinguish between color (or luminance) cate-497

gories leaving out one participant’s transformed dataset each time for generalization and then av-498

eraging generalization scores across iterations. Note that due to the partially shared training sets499

classification accuracies obtained for different subjects were no longer independent from each500

other. We therefore obtained confidence intervals for the averaged values from the permuted501

null distributions (see Statistical inference below) instead of constructing confidence intervals502

parametrically.503

SRM searchlight analysis504

In addition to ROI analyses, we also applied SRM in a whole-brain analysis to local patterns at every505

location in the brain normalized to MNI standard space. The purpose of this analysis was to test506
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how specific the shared commonalities were to the exact individual locations of visual areas com-507

pared to anatomically aligned patterns of brain responses. Please note that anatomical alignment508

here refers to the alignment of response patterns which are then subjected to SRM. We do not509

assume that anatomically aligned voxels already exhibit similar stimulus tunings. Rather, we were510

interested in determining the difference between modeling shared responses between retinotopi-511

cally versus anatomically aligned patterns of brain activity.512

We used SRM in combination with a searchlight technique that analyzed only local patterns of513

brain activity within a radius of 3 voxels (“searchlight sphere”) at every location in the whole brain514

(Kriegeskorte et al., 2006). The number of SRM components k was again 50 in every searchlight515

sphere or – if the total number of voxels within the sphere was smaller (e.g. near edges in the brain516

mask) – the number of available voxels. LDA was then used in the same manner as in the BSC ROI517

analyses to calculate an unbiased estimate of classification performance for every location in the518

brain, which was then assigned to the center voxel of the sphere. The resulting brain map was519

then spatially smoothed with a Gaussian kernel of size 6 mm FWHM.520

Retinotopic classification weight analysis521

If an SRM derived from responses to purely spatial, retinotopically defined stimulation produces522

color and luminance representations that generalize across brains (as we found in BSC), this raises523

the question about the precise relationship between the retinotopic architecture and color/luminance524

representations.525

To explore this relationship, we converted each individual’s phasemap pairs (of polar angle and526

eccentricity maps) to their respective voxel space. The phase maps from the polar angle mapping527

experiment in combination with the phase maps from the eccentricity mapping experiment pro-528

vide the preferred visual field location of every voxel, which we converted to a Cartesian coordinate529

system with its origin centered on the fovea. We related the category-selective patterns that gave530

rise to significant BSC in the following way: we fit an LDA classifier to the data from all participants531

in the common space, thus yielding a vector of k = 50 classification coefficients for each color cate-532

gory. (Since luminance classification was binary, we obtained only one vector in total but defined533

a new one for the negative class by flipping the coefficient signs.) In order to obtain color and lu-534

minance preferences in a given individual’s voxel space, we used their transformation matrix Wi535

to map the classification coefficients C ∈ IRk×3 of the LDA model to their individual voxel space as536

WiC where each column in C corresponds to the weight vector for that class.537

We then checked if color preference could be predicted from retinotopic Cartesian coordinates.538

For every voxel in all participants, we determined which class had the highest coefficient and its539

x, y coordinates (Figure 4). We fitted nearest neighbor classifiers (considering 5 neighbors) to dis-540

tinguish between stimulus classes, leaving out all voxels from one participant at a time for cross-541

validation. We thus determined a cross-validated class prediction for every voxel indicating its542

preferred color. Gaussian kernel density estimation (KDE, using Scott’s rule to choose bandwidth)543

was used to visualize biases in preferred color: first, KDE was applied to all voxels in the group of544

participants. Then it was applied to only those voxels with a preference for a specific class yielding545

one density for each class in the classification problem. The density estimated from all voxels was546

finally subtracted fromeach of the class-specific densities (Figure 4 bottom). Positive values denote547

retinotopic locations where preference for a given class was more pronounced with respect to the548

overall voxel density. Negative values denote the opposite and are shown in gray in Figure 5.549

Statistical inference550

Within-subject and between-subject classification.551

All our statistical decisions were based on permutation tests. For WSCwe tested the one-tailed null552

hypothesis that the sample average across all participants’ classification accuracies was equal to553

or below chance. Since there were three classes in the color classification problem, chance level554
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was 1∕3. Likewise chance level in the luminance classification was 1∕2 as there were two luminance555

levels.556

We created 2000 new label assignments in the following way: For every participant the se-557

quence of training labels was shuffled with the restrictions that labels were only permuted within558

cross-validation folds, i.e., functional runs, and that permutations were identical across ROIs. Both559

restrictions were implemented by setting the groups and random_state arguments in scikit-learn’s560

permutation_test_score accordingly. A group average of classification accuracies was calculated561

for each ROI and iteration. This way we obtained a null distribution of average classification accu-562

racies expected under the hypothesis that there was no relationship between labels and neural563

activity patterns.564

It was important that permutations were identical across ROIs because they constituted the565

test family for which we controlled the family wise error (FWE). We formed a new null distribution566

for all ROIs by taking the maximum of group average classification accuracies across ROIs in every567

iteration (Nichols and Holmes, 2002). P values were computed as the fraction of permutations that568

resulted in accuracies that were larger than or equal to the observed classification accuracy. We569

declared results significant if p was below .05, thereby keeping the type I error probability of falsely570

rejecting at least one null hypothesis at � = 0.05. For each ROI, the lower and upper limits of the 95571

% confidence interval (CI) were calculated parametrically using the standard error of the mean. In572

the BSC analysis, upper CI limits were obtained by adding the difference between the mean of the573

(uncorrected) null distribution and its 2.5th percentile to the observed accuracy. Lower CI limits574

were obtained by subtracting the difference between the 97.5th percentile and the mean from the575

observed accuracy.576

The permutation test for BSC was identical to that for WSC. However, since data from all par-577

ticipants were now combined in the 50-dimensional functional common space and hence non-578

independent, classifiers were now cross-validated leaving out one participant at a time. Again,579

labels were permuted only within cross-validation folds, which in this analysis were individual par-580

ticipants.581

Retinotopic weight analysis.582

In this analysis we tested for each ROI whether we could predict from the Cartesian visual field583

coordinates which color (or luminance level) was preferred by a voxel using a nearest neighbor584

classifier. Voxel labels were permuted 103 times, separately within cross-validation folds (partici-585

pants), and p values were obtained from the null distribution of each ROI. CIs were calculated in the586

same way as for BSC results. Since there was no correspondence between voxels from different587

ROIs, we could not control the FWE using the same max statistic approach as in the previous ROI588

analyses and therefore used Holm-Šidák correction instead to keep � at .05.589

SRM searchlight analysis.590

The searchlight analysis yielded a brain map of cross-validated estimates of classification accu-591

racies. In order to test if classification accuracies were significantly larger than what would be592

expected by chance, we used a one-tailed binomial test instead of a t-test because the classifica-593

tion accuracies from each leave-one-participant-out cross-validation were not independent. The594

number of correctly classified trials were assumed to come from a sequence of 216 × 15 = 3240595

Bernoulli trials with success probability equal to one divided by the number of classes. We applied596

multiple comparisons correction to the resulting map of p values by keeping the false discovery597

rate at q = .05 (Benjamini and Hochberg, 1995).598
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