
ROBUST AND SCALABLE MANIFOLD LEARNING VIA

LANDMARK DIFFUSION FOR LONG-TERM MEDICAL SIGNAL

PROCESSING

CHAO SHEN, YU-TING LIN, AND HAU-TIENG WU

Abstract. Motivated by analyzing long-term physiological time series, like 24

hours electrocardiogram, we design a computationally efficient spectral embed-
ding algorithm that is suitable to handle “big data”. We measure the affinity

between any pair of two points via a set of landmarks, which is composed

of a small number of points, and “diffuse” on the dataset via the landmark
set to achieve a spectral embedding. We coined the algorithm RObust and

Scalable Embedding via LANdmark Diffusion (ROSELAND). The algorithm

is applied to study the arterial blood pressure waveform dynamics during a
liver transplant operation lasting for 12 hours long. The proposed Roseland

could help researchers handle big datasets or long-term physiological signals if

the spectral embedding is considered, and the landmark idea beyond Roseland
could be applied to speed up other algorithms.

1. Introduction

Learning from data has been an intriguing topic in many scientific fields, par-
ticularly the biomedical field. A learning procedure is taking existing data as the
“knowledge” or “experience” to interpret incoming data and help field experts make
decision. In the clinical medicine, it has been widely debated that eventually a well
trained artificial intelligence (AI) by a proper learning procedure could replace
physicians. While it is not impossible, we believe that there is still a long way
to go. No matter how, a general consensus is that such a system would augment
physicians, and release physicians’ precious time by automatizing some routine and
time-consuming workflow so that physicians.

Motivated by its importance, various datasets of different data types from clin-
ics have been extensively explored from this learning perspective, like electronic
health record [31], medical imaging [21], genomic data [37], biomedical waveforms
(or time series, signals) [19], etc. To our knowledge, however, how to extract in-
trinsic dynamics underlying biomedical waveforms for clinical usage is relatively
less discussed, and most of existing literature focus on simplifying the waveform
information into few scalars [8, 35, 2, 44]. While this has been successfully applied
to clinical medicine, we may loss information encoded in the original waveform.

One solution to depict intrinsic dynamics directly from the original waveform
is obtaining as many “features” as possible, and applying machine learning algo-
rithms [23]. Another solution is applying manifold learning algorithms to the orig-
inal physiological waveforms in a recent study [29, 47]. The basic idea in [29, 47]
is truncating the physiological waveform into pieces according to some rules, and
then apply the spectral embedding algorithm, like the diffusion maps (DM) [10],
to embed those pieces into a finite dimensional Euclidean space, which represents
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the intrinsic dynamics. If the physiological waveform is embedded into the three
dimensional Euclidean space, the physiological waveform is converted into a three
dimensional image so that users can visualize the waveform from a different per-
spective.

It is commonly believed that more data lead to more comprehensive “knowledge”
in the learning procedure, and hence more informative features and better visualiza-
tion of the intrinsic dynamics. We thus hypothesize that if the technique shown in
[29, 47] could be applied to analyze long-term physiological waveforms of length on
the order of days or weeks, it will be beneficial to supporting the short-term memory
of the human brain when handling long-term physiological waveforms. Specifically,
due to the short-term memory limitation, it is easy to overlook information hid-
den in the long-term waveform; for example, what is the relationship between the
waveform in the first hour of the operator and the 7th hour? Will the surgeon
remember the useful information in the first hour after 5 hours? While this idea is
natural, unfortunately, it is prohibited by the computational complexity inherited
in most spectral decomposition based machine learning algorithm, including the
DM applied in [47].

Recall that the DM is based on the eigendecomposition of the graph Laplacian
(GL) matrix. The algorithm has been shown to perform well when the database is
“tiny”, like in the order of 103 ∼ 104. However, when the database gets larger, like
in the order of 106 or above, the algorithm is challenged by the scalability issue.
Take electrocardiogram (ECG) into account. There are 103 ∼ 104 cycles in 1 hour
long ECG, and roughly 106 cycles in 14 days. In practice, it is natural to consider
subsampling the dataset, however, we may loss information. As a result, although
the DM works well and provides alternative clinical information [47], it is limited
to datasets of length about one hour. In this paper, we propose a novel spectral
embedding algorithm to resolve this issue. The solution will be generic and not
limited to analyze physiological waveforms.

1.1. Existing solutions. There have been several solutions toward this scalability
challenge. One usual technique is the k-nearest neighbor (kNN) scheme. However,
it is not robust to noise. Specifically, when the dataset is noisy and the neighboring
information is not provided, obtaining a reliable kNN information is challenging. A
randomized kNN approach is recently considered in [30]. Another practical solution
is directly subsampling the dataset, and then recovering the information of interest
by the Nyström extension [13]. This approach is also called the Nyström low-rank
approximation [7], the kernel extension method [18], or in general the interpolative
decomposition [32]. This approach has several theoretical backups, for example [7],
and has been widely applied. While it works well for some missions, this approach
is limited by the information loss during the subsampling process. Yet another
approach is speeding up the matrix decomposition by taking randomization into
account. For example, we can construct a thin matrix by taking a random subset
of columns of the GL matrix and speed up the algorithm by taking the singular
value decomposition (SVD) into account [32]. While this approach has been widely
applied, to the best of our knowledge, we have limited knowledge about how it helps
the spectral embedding algorithms, and how robust it is to the inevitable noise.
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1.2. Our solution/contribution. Unlike the above, in this paper we propose a
novel algorithm that resolves two common challenges when we apply spectral em-
bedding algorithms—robustness and scalability. In short, we measure the affinity
between any pair of two points via a landmark set, which is composed of a small
number of points. With this affinity, the embedding is carried out via the spectral
decomposition. We coin the proposed algorithm the RObust and Scalable Embed-
ding via LANdmark Diffusion (Roseland).

The algorithm is intuitive and can be summarized in three steps. First, we find
a “small” subset of points from the whole dataset, either randomly or by design,
or collect a separate clean point cloud of small size, which we call a landmark set.
Second, we construct an affinity matrix recording the affinities between points in
the whole dataset and the landmark set, and normalize it properly. This normalized
affinity matrix is thin; that is, there are fewer columns than rows. Third, evaluate
the singular vectors and singular values of the normalized affinity matrix, and embed
the dataset using the singular vectors and singular values. As we will make clear
soon, this algorithm is directly related to the diffusion process.

From the application perspective, in addition to providing a series of numerical
simulations comparing the Roseland with other algorithms, we also demonstrate
how it works in the physiological time series collected from a liver transplant oper-
ation lasting for more than 10 hours.

1.3. Organization of the paper. In Section 2 we recall the DM algorithm, intro-
duce the Roseland, and summarize a closely related algorithm, the HKC algorithm,
which stands for initials of three authors in [20]. In Section 3, we provide numer-
ical results with simulated datasets. In Section 4, we illustrate how to apply the
proposed algorithm to study the arterial blood pressure waveform during the liver
transplant surgery. In Section 5, discussion and conclusion are provided.

2. The proposed Roseland algorithm and relevant algorithms

In this section, we assume that we have a data set X = {xi}ni=1 ⊆ Rq. Take
a set Y = {yk}mk=1, which might or might not be a subset of X . We call Y the
landmark set. Fix a non-negative kernel function K : R≥0 → R+ with proper decay
and regularity; for example, a Gaussian function.

2.1. The proposed algorithm – Roseland. We introduce the Roseland. First
we construct a landmark-set affinity matrix W (r) ∈ Rn×m, which is defined as

(1) W
(r)
ik = Kε(xi, yk) := K

(
‖xi − yk‖Rq√

ε

)
.

That is, the (i, k)-th entry of W (r) is the similarity between the i-th data point and
j-th landmark, and clearly the larger the distance between two points (or the two
points are less similar), the smaller the similarity. Next compute a diagonal matrix
D(R) as

(2) D
(R)
ii := e>i W

(r)(W (r))>1 ,

where 1 is a n×1 vector with all entries 1, and ei is the unit vector with 1 in the i-th

entry. D
(R)
ii is called the degree of the i-th data point xi. Intuitively, it represents
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how strong xi is attached to the data set. With W (r) and D(R), we evaluate the
SVD of (D(R))−1/2W (r):

(3) (D(R))−1/2W (r) = UΛV >,

where the singular values σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0 are on the diagonal of the
diagonal matrix Λ. Set Ū := (D(R))−1/2U . Take q′ ∈ N so that q′ ≤ m. Let

Ūq′ ∈ Rn×q′ to be a matrix consisting of the second to the (q′ + 1)-th columns of
Ū and Lq′ := diag(σ2

2 , . . . , σ
2
q′+1). Finally we define the Roseland embedding as

(4) Φ
(R)
t : xi 7→ e>i Ūq′(Lq′)

t ,

where t > 0 is the chosen diffusion time, in other words, the i-th data point xi is
embedded using the i-th row of Ūq′ entry-wisly rescaled by [σ2t

2 , · · · , σ2t
q′+1]. See

Algorithm 1 for a summarization of the Roseland algorithm. We thus define the
associated Roseland diffusion distance (RDD) by

(5) D
(R)
t (xi, xj) := ‖Φ(R)

t (xi)− Φ
(R)
t (xj)‖Rq′ .

Figure 1. Main idea of Roseland: to measure the similarity be-
tween x1 to x2, instead of diffuse from x1 to x2 directly, we take
a detour and first diffuse x1 to the landmarks y1, y2, y3, and then
diffuse from the landmarks to x2.

Note that the Roseland induces a new affinity matrix on the data set X via

(6) W (R) := W (r)(W (r))> ∈ Rn×n ,
where W (r) is the landmark-set affinity matrix (1). We call W (R) the landmark-
affinity matrix, which is positive and positive-definite. We remark that traditional
affinity matrices between data points are often constructed from one global pre-fixed
kernel K, while in Roseland we cannot find a global fixed kernel K̄ and a bandwidth

ε̄ > 0 so that W
(R)
ij = K̄(‖xi − xj‖/ε̄) for all i, j in general. Hence Roseland can

provide us with more dynamic similarity measurements between data points based
on the landmarks. Also note that A(R) := (D(R))−1W (R) is a transition matrix on
X , which means each of the row in A(R) sums to 1. This is because D(R) is the
degree matrix associated with the landmark-affinity matrix W (R) by construction.
Hence, we can view the similarity measure between data points xi and xj as a
Markov or diffusion process through the landmarks. A systematic convergence
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Algorithm 1 The pseudo-code of Roseland.

1: procedure Input(data set X = {xi}ni=1 ⊂ Rq, landmark set Y = {yi}mi=1 ⊂
Rq, kernel K, bandwidth σ > 0, embedded dimension q′ ∈ N, 0 ≤ α ≤ 1, and
diffusion time t > 0)

2: Construct the affinity matrix W (r) w.r.t. the landmark set.
3: Construct the degree matrix D(R).
4: Run SVD (D(R))−1/2W (r) = UΛV >, where U ∈ O(n) and V ∈ O(m).

Denote singular values as σ1 ≥ σ2 ≥ . . . ≥ 0.
5: Set Ū = (D(R))−1/2U .

6: Let Ūq′ ∈ Rn×q′ be the second to the (q′ + 1)-th columns of Ū . Set Lq′ :=
diag(σ2

2 , σ
2
3 , . . . , σ

2
q′+1).

7: Embed X via Φ
(R)
t : xi 7→ e>i Ūq′L

t
q′

8: Output {Φ(R)
t (xi)}ni=1 ⊂ Rq′ .

9: end procedure

analysis and robustness analysis of Roseland under the manifold assumption can
be found in [39].

2.2. Graph Laplacian and Diffusion Maps. We now review the GL and com-
pare Roseland with the well-known algorithm diffusion map (DM) [10]. First, pre-fix
a kernel function K and a bandwidth parameter ε > 0. Then, compute the affinity
matrix W ∈ Rn×n by

(7) Wij := K

(
‖xi − xj‖Rq√

ε

)
and the corresponding degree matrix D ∈ Rn×n, which is a diagonal matrix defined
as Dii :=

∑n
j=1Wij . For a fixed α ∈ [0, 1], the α-normalized affinity matrix W (α) ∈

Rn×n [10] is defined as W
(α)
ij :=

Wij

DαiiD
α
jj

, where W
(α)
ij is called the α-normalized

affinity between xi and xj . Note thatW (0) = W defined in (7). In some applications
when we want to remove the density effect caused by data sampling, we set α =
1. With the α-normalized affinity matrix W (α), one can analogously define the

associated degree matrix D(α) ∈ Rn×n by D
(α)
ii :=

∑n
j=1W

(α)
ij . The GL is defined

as L(α) := I −A(α), where

(8) A(α) := (D(α))−1W (α)

is the associated transition matrix. Clearly, A(α) is row stochastic, and it de-
fines a random walk on the dataset X . We mention that the transition ma-
trix (D(R))−1W (R) in the Roseland algorithm can be viewed as an alternative
way of constructing a Markov process on the dataset X . Since A(α) is similar
to (D(α))−1/2W (α)(D(α))−1/2 we can find its eigendecomposition with eigenvalues
1 = λ1 > λ2 ≥ . . . ≥ λn and the associated eigenvectors φ1, . . . , φn. Denote φi the
i-th right eigenvector of A(α). Recall in Roseland, we perform the SVD decompo-
sition in (3), which is a parallel step of the eigen-decomposition of Ā(0).

Among various algorithms, we focus on the well-known DM algorithm that we
shall see to be closely related to Roseland. With the spectral decomposition of the
GL, the chosen normalization α, embedding dimension q′ and diffusion time t, the
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DM embeds X via the map

(9) Φt : xi 7→ e>i Ũ
(α)
q′ (Λ

(α)
q′ )t ∈ Rq

′
,

where Ũ
(α)
q′ ∈ Rn×q′ to be a matrix consisting of the second to the (q′ + 1)-th

columns of Ũ (α) and Λ
(α)
q′ := diag(λ2, . . . , λq′+1). The diffusion distance (DD)

with the diffusion time t > 0 is defined as

(10) Dt(xi, xj) := ‖Φt(xi)− Φt(xj)‖Rq′ .

Recall the Roseland embedding (4) and the RDD (5) to notice the close relation
between the DM embedding and the DD.

As it is expensive to perform eigen-decomposition of dense matrices, one common
practice of DM or general spectral embedding methods is to use the kNN scheme to
construct a rather sparse affinity matrix; that is, set Wij = 0 when xj is not within
the first k nearest neighbors of xi, where k is chosen by the user. Another way is
to use a compactly supported kernel K. For example, K(t) is 1 when t ∈ [0, 1] and
0 when t > 1.

2.3. The HKC algorithm. HKC was proposed for the texture separation prob-
lem. The authors proposed to first divide an image into a collection of small patches,
from which to choose a subset consists of specific patterns of interest as the refer-
ence set. Note that in [20], the reference set plays the same role as the landmark set
in Roseland. Then one can construct an affinity matrix associated of the patches
based on the landmark set. HKC is the closest algorithm to the Roseland among
others. However, the normalization in HKC is different from the Roseland, and this
difference turns out to be significant.

We now summarize the HKC algorithm [20]. Firstly, form the affinity matrix
between the data set and the landmark set just like (1) in the Roseland; that is,

set W (HKC) = W (r). HKC then compute a n × n diagonal matrix by D
(HKC)
ii =∑m

j=1W
(HKC)
i,j , where i = 1, . . . , n. Then, convert W (HKC) to be row stochastic by:

A(HKC) = (D(HKC))−1W (HKC) ∈ Rn×m .(11)

One should notice the difference between Roseland and HKC when computing the
degree matrix. In Roseland, the degree matrix is computed from the row sum of the
matrix W (HKC)(W (HKC))> instead of the row sum of W (HKC). Therefore, Roseland
defines a Markov process on the data set, but HKC does not. Indeed, due to the
normalization (11), W̄ (HKC) can only be viewed as a new affinity matrix on X , and
is different from the (D(R))−1/2W (R)(D(R))−1/2 in Roseland. This normalization
step plays a significant role. Finally, HKC embeds the data via the eigenvectors
ψj of the matrix W̄ (HKC) = A(HKC)(A(HKC))> ∈ Rn×n, which can be computed
efficiently by

ψ
(HKC)
j = (λ

(HKC)
j )−1/2A(HKC)φ

(HKC)
j(12)

where φ
(HKC)
j is the j-th eigenvectors of the matrix W̃ (HKC) := (A(HKC))>A(HKC) ∈

Rm×m associated with the eigenvalue λ
(HKC)
j . The denominator (λ

(HKC)
j )1/2 is to

ensure that ‖ψ(HKC)
j ‖2 = ‖φ(HKC)

j ‖2. In summary, we see that the HKC algorithm
is close to Roseland with a different normalization.
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2.4. Nyström Extension. Another widely applied algorithm aiming to scale up
spectral embedding is the Nyström extension [3, 18, 49, 4, 11]. The idea is simple
but effective. First, run the eigen-decomposition on a subset of the given dataset.
Then, extend the eigenvectors to the whole dataset. There are some variants of the
Nyström extension method, for example, [5]. A direct application is out of sample
embedding.

We are interested in applying the Nyström extension to the eigen-decomposition
of the transition matrix defined in (8) for the spectral embedding purpose. Similarly,
we consider the symmetric kernel matrix M = D−1/2WD−1/2. Note that if we want
to apply Nyström extension directly on M , we would have to compute the affinity
matrix W and the degree matrix D, which is expensive and the kNN scheme is
needed. We thus follow the existing literature [26, 41] and apply the following
modified Nyström extension.

Suppose we have n data points. First, run the DM on a chosen subset, also called
the landmark set, which is of size L = nβ , where β ∈ (0, 1). Denote the affinity
matrix associated with this landmark set as WL, and run the eigen-decomposition of

the matrix D
−1/2
L WLD

−1/2
L = VLLLV >L , where DL is the degree matrix associated

with WL and LL = diag
[
`1 . . . `L

]
∈ RL×L. Let ŨL = D

−1/2
L VL to be the

eigenvectors of D−1L WL. We then extend it to the rest n− L points by:

(13) Ǔext = D−1n−LEŨLL
−1
L ∈ R(n−L)×L ,

where E ∈ R(n−L)×L is the affinity matrix between the remaining n−L data points
and the landmark set. In other words, Ei,j is the similarity between point xi in the
remaining dataset and xj in the landmark set; Dn−L is a (n−L)× (n−L) diagonal

matrix such that Dn−L(i, i) =
∑L
j=1E(i, j). Hence the eigenvectors to be used to

embed the whole dataset is:

Ǔ =

[
ŨL
Ǔext

]
=

[
D−1L

D−1n−L

] [
WL

E

]
ŨLL−1L .(14)

Roughly speaking, the embedding coordinates of a data point x outside the land-
mark set is simply the average of all of the landmarks’ embeddings, weighted by
the similarity between x and all the landmarks.

While it is slightly different from the original Nyström extension, we still call
it the Nyström extension. Note that in practice, we only need to calculate WL

and E instead of W and D, which is more efficient in the sense of both time
and spatial complexities. With the estimated eigenvectors on the whole dataset,
we can define the associated embedding and hence the distance just as in Rose-
land and DM. Specifically, suppose we have Ǔ =

[
ũ1 . . . ũL

]
∈ RN×L and

Ľ = diag
[
`1 . . . `L 0 . . . 0

]
∈ Rn×n. Then we can define the associated

embedding by

(15) Φ
(Nyström)
t : xi 7→ e>i Ǔq′Ľtq′ ,

where t > 0 is the chosen diffusion time, Ǔq′ ∈ Rn×q′ to be a matrix consisting of

ũ2, . . . , ũq′+1 and Ľq′ := diag(`2, . . . , `q′+1).

2.5. Complexity analysis. Let n be the size of the dataset and nβ the size of the
landmark set, where β ≤ 1 throughout and set k = nβ whenever kNN scheme is
applied. For dense affinity matrix, the spatial complexity of the DM is O(n2). If

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 1, 2020. ; https://doi.org/10.1101/2020.05.31.126649doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.126649


8 CHAO SHEN, YU-TING LIN, AND HAU-TIENG WU

kNN scheme is applied, the spatial complexity of the DM becomes O(n1+β). On
the other hand, no matter what kernel is chosen, compactly supported or not, the
spatial complexity of the Roseland and the Nyström extension is O(n1+β).

For the computational complexity, it can be divided into two parts. The first
part is forming the affinity matrix and the corresponding degree matrix; the sec-
ond part is performing the eigen-decomposition or SVD. In the ordinary DM, the
construction of the affinity matrix and the degree matrix is O(n2). If the kNN
construction is considered and the k-d tree based algorithm is applied, the aver-
aged time complexity of constructing the affinity matrix and the degree matrix
is O(n log(n) + n1+β) = O(n1+β). In the Nyström extension, the construction of
the WL and hence its degree matrix is O(n2β) when L = nβ for β ≤ 1, while
the construction of E and Dn−L is O(n1+β). Thus, the first part complexity for
the Nyström extension is O(n2β + n1+β). In the Roseland, the construction of
the landmark-set affinity matrix and its associated degree matrix is O(n1+β). For
the second part, it falls in the discussion of the complexity of the general eigen-
decomposition and SVD. For a symmetric kernel matrix M ∈ RN×N , the eigen-
decomposition complexity is usually O(N3),1 and when M is k sparse, where k ≤ n,

the complexity can be improved to O(N2+η′) for an arbitrary η′ > 0 when k ≤ N0.14

[50]. In our application, even if we make k ≤ N0.14, the eigen-decomposition of the

M is roughly O(N2+η′). On the other hand, for a matrix of size N × N ′, where
N ≥ N ′, then the complexity of the SVD for is O(NN ′2). Hence, the overall com-
putational complexity for the ordinary DM is O(n3) and is O(nω) for the DM with
the kNN scheme, where ω > 2 depends on the chosen β, O(n1+β + n3β) for the
Nyström extension, and O(n1+2β) for the Roseland. The complexity of the HKC is
the same as that of the Roseland. To summarize, both the Nyström extension and
the Roseland are more efficient than the ordinary DM with or without the kNN
scheme. While the Roseland is not faster than the traditional Nyström extension
approach, it is comparable, particularly for small β.

2.6. Roseland is robust to noise. It is well known that when the dataset is noisy,
spectral embedding algorithms might lead us to a bad, or even misleading result,
due to inevitable noise, unless the parameters are properly chosen. In [16], efforts
have been made to stabilize the algorithm; for example, consider the complete graph
or choose a large number of kNN, and force the random walk non-lazy. It is clear
that this solution is not scalable. Roseland, on the other hand, automatically enjoys
the desired robustness property since Roseland measures similarities between data
points by diffusing through all landmarks. This step can be viewed as a surrogate
of knowing true neighbors in the kNN scheme, and it explains the robustness of
Roseland.

2.7. Reference set as subset of the data. In cases that we may not be able to
acquire additional data points as landmark set but have to select the landmark set
from the available dataset, we propose to first sample m landmarks, denoted by Y,
from X so that Y is independent of X \ Y. Then, we apply the Roseland on X \ Y
using Y as landmarks, and extend the embedding to Y by the Nyström extension.

1Theoretically, it can reach O(Nω+η), where the Nω part comes from the algorithm of matrix
multiplication, and an arbitrary η > 0 [14]. Note that when M is dense, ω = ω0 ≈ 2.376 [12].

However, the implied constant in these asymptotic is too large and cannot be practical [27].
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When |Y| � |X |, the discrepancy of this approach and the independence setup
with original Roseland is negligible, and will asymptotically vanish.

3. Numerical Simulation Results

To illustrate how the Roseland performs, in addition to showing the dimension
reduction and geometric recovery results, we also compare the results with the
Nyström extension and the HKC. For a fair comparison, in all the following simu-
lations, the subset used in the Nyström extension and the reference set used in the
HKC to embed the dataset are the same as the landmark set used in the Roseland.
As a result, the ranks of the matrices associated with the Roseland, the HKC and
the Nyström extension are the same.

3.1. Scalability of the Roseland. We take the dataset consists of random pro-
jections of the two-dimensional Shepp-Logan phantom [42]. A phantom is a 2-dim
image function ψ compactly supported on R2 without any symmetry assumption.
It is commonly applied in medical imaging society as a benchmark. Suppose we
uniformly sample n points from S1, θ1 . . . θn ∈ S1, as the projection angles. Then
we generate a high dimensional data set by taking the Radon transform of ψ, de-
noted as Rψ : S1 → L2(R), followed by discretizing the projection image into p ∈ N
points; that is, we have the dataset X := {DpRψ(θi)}ni=1 ⊂ Rp, where Dp is the
discretization operator. We refer readers with interest to [42] for details. In this
simulation, we fix the number of discretization points p = 128 and let the number
of projections n vary. We run the DM, the Roseland, the HKC and the Nyström
extension with n = 10, 000 and m = nβ , where β = 0.5, and show the 3-dim em-
bedding of X in Figure 2. Clearly, both the DM and the Roseland recover the S1

structure, while the Roseland is distorted. On the other hand, the HKC and the
Nyström extension are confused and lead to erroneous embeddings. The computa-
tional times of different algorithms with β = 0.3 are also shown for a comparison.
When n = 1, 280, 000, the Roseland can finish in about 2.5 minutes in an ordinary
laptop.

3.2. Robustness of the Roseland. We compare performance of the Nyström
extension, the HKC, and the Roseland from the aspect of spectral embedding when
the data is noisy. We consider the standard S1 model, which is the one-dimensional
canonical S1 embedded in the first two coordinates of R100, since all ground truths
can be analytically calculated. Specifically, we uniformly sample n = 90, 000 points
from the S1 to be the dataset and independently sample another m = 300 points
uniformly to be the landmark set; that is, β = 0.5. Then, embed all points to Rp,
where p = 100, and add independent Gaussian noise εi to both the dataset and the
landmark set, where εi are i.i.d. sampled from N (0, 1√

pIp×p). The visualization

results are shown in Figures 3. Clearly, while the Nyström extension and the HKC
embed S1 successfully, the embedding by the Roseland is cleaner.

Next, the recovered eigenvectors are shown in Figures 4 and 5. Clearly, the
Nyström method can only successfully recover first few eigenfunctions of the Laplace-
Beltrami operator (visually, only the first 8 look reasonably), while the HKC and
the Roseland can recover more eigenfunctions (visually, the first 10 are reasonably
well). Since HKC is not designed to recover the Laplace-Beltrami operator of S1,
we do not consider it in Figure 5. Compared with eigenvectors, only the first 7
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Figure 2. The random projection data from the phantom image,
where the data size is n = 10, 000 and the dimension is p = 128. In
the top row, we take β = 0.5 for the Roseland, the Nyström, and
the HKC. In the bottom row, we show the relationship between the
computational time and the data size. Top row, from left to right:
the DM embedding, the Roseland, the HKC, and the Nyström
extension. All embeddings are 3-dim, and have been rotated to
optimize the visualization. Bottom row: the runtime comparison
of various algorithms when β = 0.3 The x-axis is in the natural log
unit, and the largest database size is 1, 280, 000.

Figure 3. Left: noisy data and noisy subset (only the first two
coordinately are shown). Middle left: the Nyström embedding.
Middle right: the HKC embedding. Right: the Roseland embed-
ding.

or 8 eigenvalues of Laplace-Beltrami operator can be well approximated in both
Nyström method and Roseland.

“Visually” the qualities of the first two non-trivial eigenfunctions of the Nyström
extension, HKC and Roseland are similar, but the qualities of embeddings are
different. To understand this discrepancy, we consider the following quantities.
Note that the first two non-trivial eigenvectors, v1, v2 ∈ Rn from either the Nyström
extension, the HKC or Roseland, if successfully recovered the eigenfunctions of the
Laplace-Beltrami operator, should be sin(θ+φ) and cos(θ+φ) for some φ ∈ (0, 2π]
respectively. Here, the phase φ comes from the uncertainty nature of the spectral
embedding methods. We then plot arctan(v1(i)/v2(i)) and

√
v1(i)2 + v2(i)2 against

θi, where θi is the angle of the i-th sampled point. The results are shown in Figure
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Figure 4. Noisy data set and subset. Superimpose the top 12
non-trivial eigenvectors by the Nyström, the HKC and the Rose-
land with the ground truth (superimposed in red). Top three rows:
the top 6 eigenvectors; bottom three rows: the 7th to the 12th

eigenvectors.
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Figure 5. Illustration of the Nyström method and the Roseland
on the noisy dataset and landmark set. Left: the top 18 non-trivial
eigenvalues by the Nyström and Roseland with the ground truth.
Middle: relative error of eigenvalues. Right: relative L∞ and L2

error of the top 12 non-trivial eigenvectors by the Nyström and
Roseland with the ground truth.

6. Clearly, the amplitude eigenvectors of the Nyström extension and the HKC
fluctuates more than those of the Roseland, while the phase recovery qualities are
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similar. This difference comes from the different normalization steps of Roseland
and HKC.
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Figure 6. Noisy data set and subset. Top left: the phase of
the embedding by the Roseland. Top middle: the phase of the
embedding by the HKC. Top right: the phase of the embedding
by the Nyström extension. Bottom left: the amplitude of the
embedding by the Roseland and the Nyström. Bottom right: the
amplitude of the embedding by the Roseland and the HKC. The
phase of the embedding is determined by arctan(v1(i)/v2(i)) and

the amplitude is determined by
√
v1(i)2 + v2(i)2, where v1 and v2

are the first non-trivial eigenvectors determined by the Nyström
extension or Roseland.

4. Liver transplant analysis

4.1. Background. Liver transplant surgery is the only life-saving treatment for
patients in certain medical conditions. It is a challenging surgical procedure, and
significant medical resource, experience and dedication are needed. During the
surgery, the clamping of major vessels and the subsequent vascular anastomosis
bring huge impacts on the recipient’s circulation system [38]. As a better under-
standing of the cardiovascular dynamics during the procedure may help optimize the
intraoperative management, commercial monitoring instruments based on real-time
arterial blood pressure (ABP) waveform analysis has been introduced. However,
they been questioned subsequently for its performance in liver transplant surgery
[6, 45, 40]. Thus, obtaining useful information from the ABP waveform in liver
transplant is still a challenging problem.

We shall briefly detour to discuss the ABP waveform analysis before showing our
results. It is well known that the ABP waveform morphology reflects the physical
effect of fluid dynamics, like wave reflection. Deep into the root of the matter,
the waveform morphology reflects more complicated dynamical interaction over
the physiological network [33]. For example, the sympathetic neural activity in
response to surgical stress produces vasoconstriction and increases cardiac contrac-
tility. Epinephrine and norepinephrine releasing may increase the blood volume
returning to the heart to enhance heart contractility by the Frank-Starling law,
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and the subsequent increased blood pressure induces baroreflex to reduce the heart
beat rate. The renin-angiotensin system also work in tendem with the autonomic
nerve system to regulate the vascular wall tension while the fluid volume changes
drastically during the vascular procedure of liver transplantation. The above physi-
ological mechanisms contain sequential and parallel control loops forming a complex
network-like interaction. Traditionally, various extracted features, either landmark
measurements in the time domain [34] or quantities in the frequency domain [48],
serve as the input for the subsequent pulse waveform analysis. These designated
features are supposed to reflect underlying physiological information, or those pa-
rameters driving the network interaction.

However, it is reasonable to suspect that information hidden in the finer scale
might be ignored via the above approach, and hence finer structure of network
dynamics is overlooked, particularly when the physiology is disturbed. It is thus
reasonable to argue that taking the whole waveform into account might provide
more complimentary information compared with those traditional parameters. On
the other hand, due to the short-term memory nature of human brain, it is chal-
lenging to visualize and directly utilize the dynamics encoded in the ABP waveform
on the large scale. Motivated by handling the above challenges, including finding
finer information on the short scale, and exploring the dynamics on the large scale,
in our previous research, we reported a solution under the manifold learning frame-
work, and showed that the DM can extract rich information directly from the raw
cardiovascular waveform [47]. The novelty in [47] capturing subtle morphological
changes that might be overlooked by the designed features. However, due to the
computational barrier intrinsic to the DM, the approach is limited to relatively
small dataset.

In this study, we hypothesize that with the help of Roseland, the manifold learn-
ing approach shown in [47] can be applied to study the ABP waveform during
the liver transplant procedure, and provide hemodynamic information on both the
small and large scales. Note that the Roseland is critical in this analysis since
the whole period of the surgery can yield more than 105 continuous pulses as data
points in high dimensional space for a pulse-to-pulse waveform analysis.

4.2. Material. The data was collected from an observational study per institu-
tional ethic regulation. We collected physiological signals via the data collection
software, S5 collect (GE Healthcare, Chicago, Illinois, United States) from the
standard patient monitor instrument, GE CARESCAPETMB850 (GE Healthcare,
Chicago, Illinois, United States). The recorded ABP signal was uniformly sampled
at 300 Hz in the instrument and resampled at 500 Hz via the cubic spline inter-
polation for off-line processing. The signal is of 78,350s long spanning the whole
surgical procedure and contains 120,725 pulses.

4.3. Data analysis. Denote the ABP waveform as xA ∈ RN . We used the
maximum of the first derivation during the ascent of each ABP pulse waveform
as a fiducial point. A legitimate ABP pulse is determined by a two-pass algo-
rithm using the following measurements automatically: the peak maximum, the
trough minimum, the minimum of difference between the maximum and mini-
mum within the pulse, the pulse width, and the duration to the previous pulse.
The thresholds for those measurements are automatically adjusted by a feedback
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mechanism. Suppose there are L legitimate cycles in xA. Denote the i-th fidu-
cial point as ni. Break xA into L − 1 segments so that the i-th segment is
the i-th ABP pulse containing one waveform cycle. Denote the i-th segment as
x̄Ai := [xA(ni), x

A(ni + 1), . . . , xA(ni+1)]T . Since the duration of each pulse is not
constant, we truncated them into an uniform size according to their minimal length
q = min{ni+1−ni+1} ∈ N, and get x̂Ai := [xA(ni), x

A(ni+1), . . . , xA(ni+q−1)]T .
Next, normalize x̂Ai by removing the mean and setting the variance to 1 to sepa-
rate the blood pressure information from the normalized ABP pulse, and denote
the normalized ABP pulse as xAi ∈ Rq. Derived from the ABP signal, we get the
data set XA = {[(xAi )T (xAi−1)T (xAi−2)T ]T }Li=3 ⊆ R3q. We assume that XA can be
well approximated by a low dimensional manifold, referred to as the wave-shape
manifold [29]. To apply the Roseland, the landmark set YA = {yAk }mk=1, where
m = bn/600c, was chosen from XA via setting yAk = xA600k.

4.4. Results. The dataset consists of L = 120, 725 legitimate cycles of length
q = 334, and hence 120, 723 data points in XA. Thus, m = 201 and note that
201 = 120, 7230.453. The total computation time of the Roseland algorithm is
less than 40s on an ordinary personal computer (CPU: Intel Core i5-7500, oper-
ation system: Microsoft Windows 10 64-bit home edition, programming platform
and language: Microsoft Visual Studio Community version 2019, .NET framework
4.8, and C#, LAPACK software library: Intel Math Kernel Library 2020 Initial
Release), while the estimated computation time using traditional DM algorithm
based on eigendecomposition would be more than one day.

The embedding result is shown in Figure 7. The successive pulses evolve with
time and constitute a trajectory on the manifold presented as a 3D embedding
(Fig.7, panel A). The trajectory visits different locations during different steps of
the liver transplant procedure. Moreover, there is a “clustering” effect in the em-
bedding, which is enhanced by the imposed color that encodes the temporal infor-
mation. We can thus visualize the relationship among different hemodynamic status
during different surgery steps. This relationship provides physiological dynamics
on the large scale. We emphasize that while we can easily read the waveform, but
it is not easy to perceive the dynamics and organize them with only human eyes
and brain (Fig.7, panel B and C), particularly when the signal is long.

We further quantify the trajectory in different surgical phases as well as the
phase transition periods in which the trajectory moves in fast pace. We consider
the following different hemodynamic phases during the liver transplant procedure,
particularly those that phase transition happens with violent physiological changes
take place—First, the occlusion of blood inflow to the “old” liver (to be replaced),
performed by the cross-clamp of the inferior vena cava, the largest vein of the
human body; second, the start of the circulatory connection from the graft (the
new liver organ) to the circulation system as the blood flow starts in the portal
vein; third, the start of the connection between hepatic artery and the graft. All
these transitions drastically affect the cardiovascular system via the changes of fluid
volume and electrolyte composition.

For each hemodynamic phase, we embed the ABP waveforms by the Roseland
embedding into 10-dim Euclidean space; that is, q′ = 10, and evaluate the geo-
metric center of all beats during that phase. Then, we define the distance between
two hemodynamic phases groups by measuring the RDD between their geometric
centers. The quantitative measurement is expressed as mean and 95 % confidence
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Figure 7. The 3D embedding (panel A) of pulse-to-pulse pressure
waveforms collected from a 78,350s ABP signal (120,725 pulses)
during the liver transplantation procedure. The embedded pulses
are labeled by colors encoding the time. The color helps visualize
the ever-changing trajectory formed from successive pulse wave-
forms. The embedding is clustered and different clusters are re-
lated to different stages. During transition phases of inferior vena
cava cross clamping (panel B, C), the ABP tracings provide little
clues with respect to the subtle waveform information and its long-
term evolving, while the Roseland algorithm reveals the fast paced
movements (panel D). To signify the physiological dynamics asso-
ciated with the vascular clamp (panel D) and reperfusion (panel E)
events, pulses in transition phases are labeled with colored linked
dots while the rest pulses are not colored. In panels A, D, and E,
the grids are drawn to enhance the 3D visualization, and an online
supplementary video is provided for more details.

interval after bootstrap resampling without replacement in 100,000 samples. In
light of the Newtonian mechanics, we consider two quantities. The two-point ve-
locity measures the dynamics on the large scale. The two-point velocity is defined
as the ratio of the RDD between two points and the time difference between the
two points. We also consider the trajectory speed, which measures the dynamics on
the small scale. The trajectory speed is defined as the ratio of the path length of
the trajectory and the time different between the beginning and ending of the tra-
jectory. The quantitative result (Table 1) shows that during the phase transition,
the trajectory moves faster macroscopically (on the large scale) when quantified
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Table 1. Quantitative results of phases and phase transitions
from liver transplantation data

Surgical phases two point

velocity

trajectory

speed

RDD to previous

phase

dissection phase before clamp 0.59 32.77 na

vascular clamp (transition) 5.34 32.32 na

anhepatic phase after clamp 0.84 36.58 2152.6 (2127.9,
2177.2)

anhepatic phase before reperfusion 0.74 17.53 409.8 (386.1, 434.0)

reperfusion (transition) 6.27 41.41 na

neohepatic phase after reperfusion 0.64 13.26 984.8 (976.4, 993.3)

before artery anastomosis 0.21 16.65 439.3 (422.5, 456.3)

artery anastomosis (transition) 2.47 22.23 na

after artery anastomosis 0.34 11.87 1818.9 (1802.8,

1834.9)

All numbers expressed by 10−5; speed and velocity unit: s−1

by the two-point velocity, particularly when compared with that within each surgi-
cal phase. However, the trajectory speeds, which represents hemodynamics on the
microscopic scale (small scale), are similar during the phase transition and within
each surgical phase. The numeric results are consistent with visualization from the
3D embedding (Figure 7 and 8).

5. Discussion and conclusion

In this paper, we introduce a new spectral embedding algorithm based on the
landmark set. We provide a series of numerical simulation and a real-world appli-
cation to support the potential of the algorithm.

5.1. Related work – scalability and robustness. The recent paper [13] con-
tains a comprehensive review of numerical acceleration techniques for nonlinear
dimension reduction, and we refer readers with interest to that work. To handle
scalability, an intuitive approach is accelerating the kNN search step. See [13] for
a summary and a recently proposed randomized kNN approach [30]. However, it is
well known that the kNN scheme is not robust when the dataset is noisy when the
neighboring information is not provided. Specifically, it is challenging to estimate
pairwise distance robustly, unless we have extra structure to design a robust metric,
for example, in the image analysis [9]. If the tangent plane is known, it can help
us determine neighbors [46]; however, when the dataset is noisy, the local principle
component analysis approach to estimate the tangent space is biased [25]. In short,
the kNN is only useful when we have an accurate information about the neighbors.

Another natural approach to handle scalability is accelerating the eigen-decomposition
step. For example, we can approximate the kernel decomposition by classical
iteration-based algorithms [22]. We can also evaluate the matrix decomposition
by designing a randomized algorithm [36].

For the robustness issue, one naive idea is “denoising” the dataset before applying
any algorithm. However, it is in general an independent challenging problem. Under
the manifold setup, researchers have proposed several algorithms to denoise the
dataset. For example, the “reverse diffusion” scheme [24] and the manifold fitting
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Figure 8. The 3D embedding highlights the locations of transi-
tion phases (in linked dot) in relation to the whole period of ABP
waveforms (smaller dot) in a liver transplant surgery. The color
labels the time sequence. Panel B is the horizontally rotated Panel
A by 60 degrees for a better visualization of the artery anastomo-
sis transition. These views show geographic relationship between
surgical stages and transition phases. Zoom-in views of the 3D em-
bedding of pulse-to-pulse ABP waveform include transition phases
of major vascular cross-clamping (panel A), new liver graft reper-
fusion (panel B), and hepatic artery anastomosis (panel C), which
shows fast paced movement in transition phases (enlarged colored
dots with line-link). On the other hand, in the statuses immediate
before and after transition (colored dots without line-link), we see
less movement and the embeddings are clustered. The rest pulses
(uncolored small dots) appears in the background.

scheme [17]. We mention that the algorithm might not be scalable, but not too
much is known at this moment. Another approach is modifying the random walk
scheme to a non-lazy random walk via diffusion to obtain a self-consistency Markov
chain. But it is under the assumption that the edge information is known [43],
which is not possible in many applications. To our knowledge, the general theory
for the robustness of kernel methods was first studied in [15], and the analysis
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was extended to the large noise setup [16]. The authors proved that the spectral
embedding methods can be efficiently stabilized by forcing the random walk to be
a non-lazy one on the complete graph. Unfortunately, while it could help stabilize
the noise impact, the algorithm is not scalable.

5.2. Application of the Roseland. The idea of landmark set have several ap-
plications. Here we mention two of them. The VDM [41] is a generalization of
DM that aims to encode the group structure when comparing objects. The VDM
suffers from the expensive computational cost more than the DM, since the group
structure is usually represented as a matrix, which inflates the matrix size. Specif-
ically, if the group structure is represented as a q× q matrix and we have n objects
to compare, then we need to eigendecompose a nq×nq kernel matrix in the VDM.
We expect the landmark idea can be generalized to accelerate the VDM. We will
explore this possibility in our future work.

Spectral clustering methods are known to perform well when the classical clus-
tering methods such as k-means and linkage fail [1]. It is well known that the
more clusters we need to determine, the more eigenvectors we need [1, 28]. As is
shown in the numerical section, the Roseland has the ability to recover more and
better eigenvectors, at least compared with the Nystöm extension. This shows the
potential of applying the Roseland for the multiway spectral clustering purpose.

5.3. Implication in Medical Signal Processing. The liver-transplant example
shows the benefit and potential of the Roseland algorithm. As more (longer) data
leads to a richer knowledge base, we now have an unprecedented signal processing
tool for a long-period signal with complex underlying physiology. In the liver trans-
plant example, the 3D embedding reflects the complex relationship among different
surgical phases without ad hoc pulse waveform knowledge. This suggests the prac-
ticability of handling data governed by complex physiological mechanism. As there
is room to be improved in monitoring the hemodynamic status in liver transplant
surgery [6, 45, 40], we expect that the proposed waveform analysis would lead to
more insights into the hemodynamic status of liver transplant surgery to improve
the patient’s outcome. We will report research in this direction in our future work.
Certainly, the source of knowledge base is not limited to the ABP waveform. Dif-
ferent physiological waveforms can be considered to further enrich the knowledge
base. How to simultaneously utilize multimodal physiological waveforms, partic-
ularly when the recording is long, is a relatively white area, and we expect that
the proposed waveform analysis would form a base toward this goal. We also ex-
pect that the similar principal could be applied to study other medical datasets for
different medical problems, for example, the long-term outcome of the patient un-
derwent organ transplantation with respect to the immune function, or the genetic
predisposition and environment factors with respect to the cancer occurrence.
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L. Meacci, R. Mozzo, and F. Filipponi. Evaluation of a new software version of the flo-
trac/vigileo (version 3.02) and a comparison with previous data in cirrhotic patients under-

going liver transplant surgery. Anesthesia & Analgesia, 113(3):515–522, 2011.

[7] L.B. Chang, Z. Bai, S.Y. Huang, and C.R. Hwang. Asymptotic error bounds for kernel-based
nyström low-rank approximation matrices. Journal of Multivariate Analysis, 120:102–119,

2013.

[8] C.-H. Chen, E. Nevo, B. Fetics, P. H. Pak, F. C.P. Yin, W. L. Maughan, and D. A. Kass.
Estimation of central aortic pressure waveform by mathematical transformation of radial

tonometry pressure: validation of generalized transfer function. Circulation, 95(7):1827–1836,
1997.

[9] B. Cheng, J. Yang, S. Yan, Y. Fu, and T.S. Huang. Learning with `1-graph for image analysis.

IEEE transactions on image processing, 19(4):858–866, 2009.
[10] R.R. Coifman and S. Lafon. Diffusion maps. Appl. Comput. Harmon. Anal., 21(1):5–30, 2006.

[11] R.R. Coifman and S. Lafon. Geometric harmonics: a novel tool for multiscale out-of-sample

extension of empirical functions. Applied and Computational Harmonic Analysis, 21(1):31–
52, 2006.

[12] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symb.

Comput., 9:251–80, 1990.
[13] W. Czaja, T. Doster, and A. Halevy. An overview of numerical acceleration techniques for

nonlinear dimension reduction. In Recent Applications of Harmonic Analysis to Function

Spaces, Differential Equations, and Data Science, pages 797–829. Springer, 2017.
[14] J. Demmel, I. Dumitriu, and O. Holtz. Fast linear algebra is stable. Numer. Math., 108:59–91,

2007.
[15] N. El Karoui. On information plus noise kernel random matrices. Ann. Statist., 38(5):3191–

3216, 2010.

[16] N. El Karoui and H.-T. Wu. Graph connection laplacian methods can be made robust to
noise. The Annals of Statistics, 44(1):346–372, 2016.

[17] C. Fefferman, S. Ivanov, Y. Kurylev, M. Lassas, and H. Narayanan. Fitting a putative man-
ifold to noisy data. In Conference On Learning Theory, pages 688–720, 2018.

[18] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the nystrom method.

IEEE transactions on pattern analysis and machine intelligence, 26(2):214–225, 2004.

[19] N. Gambarotta, F. Aletti, G. Baselli, and M. Ferrario. A review of methods for the signal
quality assessment to improve reliability of heart rate and blood pressures derived parameters.

Medical & biological engineering & computing, 54(7):1025–1035, 2016.
[20] A. Haddad, D. Kushnir, and R.R. Coifman. Texture separation via a reference set. Applied

and Computational Harmonic Analysis, 36(2):335–347, 2014.

[21] S. S. Halabi, L. M. Prevedello, J. Kalpathy-Cramer, A. B. Mamonov, A. Bilbily, M. Cicero,

I. Pan, L. A. Pereira, R. T. Sousa, and N. Abdala. The rsna pediatric bone age machine
learning challenge. Radiology, 290(2):498–503, 2019.

[22] N. Halko, P.G. Martinsson, and J.A. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):217–

288, 2011.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 1, 2020. ; https://doi.org/10.1101/2020.05.31.126649doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.126649


20 CHAO SHEN, YU-TING LIN, AND HAU-TIENG WU

[23] F. Hatib, Z. Jian, S. Buddi, C. Lee, J. Settels, K. Sibert, J. Rinehart, and M. Cannesson.

Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure

waveform analysis. Anesthesiology, 129(4):663–674, 2018.
[24] M. Hein and M. Maier. Manifold denoising. In B. Schölkopf, J. C. Platt, and T. Hoffman,

editors, Advances in Neural Information Processing Systems 19, pages 561–568. MIT Press,

2007.
[25] I. M. Johnstone. High dimensional statistical inference and random matrices. In Proceedings

of the International Congress of Mathematicians Madrid, August 22–30, 2006, pages 307–

333, 2007.
[26] S. Lafon, Y. Keller, and R.R. Coifman. Data fusion and multicue data matching by diffusion

maps. IEEE Transactions on pattern analysis and machine intelligence, 28(11):1784–1797,

2006.
[27] F. Le Gall. Faster algorithms for rectangular matrix multiplication. In 2012 IEEE 53rd annual

symposium on foundations of computer science, pages 514–523. IEEE, 2012.
[28] J.R. Lee, S.O. Gharan, and L. Trevisan. Multiway spectral partitioning and higher-order

cheeger inequalities. Journal of the ACM (JACM), 61(6):37, 2014.

[29] Y.-T. Lin, J. Malik, and H.-T. Wu. Wave-shape oscillatory model for biomedical time series
with applications. arXiv preprint arXiv:1907.00502, 2019.

[30] G. C. Linderman, G. Mishne, Y. Kluger, and S. Steinerberger. Randomized near neighbor

graphs, giant components, and applications in data science. arXiv preprint arXiv:1711.04712,
2017.

[31] J. L. Marcus, L. B. Hurley, D. S. Krakower, S. Alexeeff, M. J. Silverberg, and J. E. Volk.

Use of electronic health record data and machine learning to identify candidates for hiv
pre-exposure prophylaxis: a modelling study. The Lancet HIV, 6(10):e688–e695, 2019.

[32] P.G. Martinsson, V. Rokhlin, and M. Tygert. A randomized algorithm for the decomposition

of matrices. Applied and Computational Harmonic Analysis, 30(1):47–68, 2011.
[33] D. A. McDonald. Blood flow in arteries. , Williams & Wilkins, 1974.

[34] G. F. Mitchell, S.-J. Hwang, R. S. Vasan, M. G. Larson, M. J. Pencina, N. M. Hamburg,
J. A. Vita, D. Levy, and E. J. Benjamin. Arterial stiffness and cardiovascular events: the

framingham heart study. Circulation, 121(4):505, 2010.

[35] M. F. O’Rourke and W. W. Nichols. Changes in wave reflection with advancing age in normal
subjects. Hypertension (Dallas, Tex.: 1979), 44(6):e10–1, 2004.

[36] V. Rokhlin, A. Szlam, and M. Tygert. A randomized algorithm for principal component

analysis. SIAM Journal on Matrix Analysis and Applications, 31(3):1100–1124, 2009.
[37] C. F. Rowlands, D. Baralle, and J. M. Ellingford. Machine learning approaches for the pri-

oritization of genomic variants impacting pre-mrna splicing. Cells, 8(12):1513, 2019.

[38] M. R. Rudnick, L. De Marchi, and J. S. Plotkin. Hemodynamic monitoring during liver
transplantation: A state of the art review. World journal of hepatology, 7(10):1302, 2015.

[39] C. Shen and H.-T. Wu. Scalability and robustness of spectral embedding: landmark diffusion

is all you need. arXiv preprint arXiv:2001.00801, 2020.
[40] B-F Shih, P-H Huang, H-P Yu, F-C Liu, C-C Lin, PC-H Chung, C-Y Chen, C-J Chang,

and Y-F Tsai. Cardiac output assessed by the fourth-generation arterial waveform analysis
system is unreliable in liver transplant recipients. In Transplantation proceedings, volume 48,

pages 1170–1175. Elsevier, 2016.

[41] A. Singer and H.-T. Wu. Vector diffusion maps and the connection laplacian. Communications
on pure and applied mathematics, 65(8):1067–1144, 2012.

[42] A. Singer and H-T Wu. Two-dimensional tomography from noisy projections taken at un-
known random directions. SIAM journal on imaging sciences, 6(1):136–175, 2013.

[43] S. Steinerberger. A Filtering Technique for Markov Chains with Applications to Spectral

Embedding. Applied and Computational Harmonic Analysis, 40:575–587, 2016.

[44] J.-L. Teboul, B. Saugel, M. Cecconi, et al. Less invasive hemodynamic monitoring in critically
ill patients. Intensive care medicine, 42(9):1350–1359, 2016.

[45] Y-F Tsai, B-C Su, C-C Lin, F-C Liu, W-C Lee, and H-P Yu. Cardiac output derived from
arterial pressure waveform analysis: validation of the third-generation software in patients
undergoing orthotopic liver transplantation. In Transplantation proceedings, volume 44, pages

433–437. Elsevier, 2012.

[46] J. Wang, Z. Zhang, and H. Zha. Adaptive manifold learning. In Advances in neural informa-
tion processing systems, pages 1473–1480, 2005.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 1, 2020. ; https://doi.org/10.1101/2020.05.31.126649doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.126649


ROSELAND AND BIOMEDICAL SIGNAL ANALYSIS 21

[47] S.-C. Wang, H.-T. Wu, P.-H. Huang, C.-H. Chang, C.-K. Ting, and Y.-T. Lin. Novel imaging

revealing inner dynamics for cardiovascular waveform analysis via unsupervised manifold

learning. Anesthesia & Analgesia, 130(5):1244–1254, 2020.
[48] Y.-Y L. Wang, T.-L. Hsu, M.-Y. Jan, W.-K. Wang, et al. Theory and applications of the

harmonic analysis of arterial pressure pulse waves. Journal of Medical and Biological Engi-

neering, 30(3):125–131, 2010.
[49] C.K.I. Williams and M. Seeger. Using the nyström method to speed up kernel machines. In

Advances in neural information processing systems, pages 682–688, 2001.

[50] R. Yuster and U. Zwick. Fast sparse matrix multiplication. Lect. Notes Comput. Sci., 322:604–
15, 2004.

Department of Mathematics, Duke University, Durham, NC, USA

Department of Anesthesiology, Taipei Veteran General Hospital, Taipei, Taiwan

Department of Mathematics, Duke University, Durham, NC, USA; Department of Sta-

tistical Science, Duke University, Durham, NC, USA; Mathematics Division, National
Center for Theoretical Sciences, Taipei, Taiwan

E-mail address: hauwu@math.duke.edu

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 1, 2020. ; https://doi.org/10.1101/2020.05.31.126649doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.126649

