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Abstract 

Background 

This study proposed a computational method to detect the cancer areas and calculate 

the tumor proportion score (TPS) of PD-L1 immunohistochemistry (IHC) expression 

for lung adenocarcinoma based on deep learning and transfer learning. 

Patients and methods 

PD-L1 22C3 and SP142 IHC slides of lung adenocarcinoma samples on digitized 

whole-slide images (WSI) database were employed. We build a deep convolutional 

neural network (DCNN) to automatically segment cancer regions. TPS was calculated 

based on segmented areas and then compared with the interpretations of pathologists.  

Results  

We trained a DCNN model based on 22C3 dataset and fine-tuned it with SP142 

dataset. We obtain a robust performance on cancer region detection on both datasets, 

with a sensitivity of 93.36% (22C3) and 92.80% (SP142) and a specificity of 93.97% 

(22C3) and 89.25% (SP142). With all the coefficient of determinations larger than 0.9 

and Fleiss’ and Cohen’s Kappa larger than 0.8 (between mean or median of 

pathologists and TPS calculated by our method), we also found out the strong 

correlation between the TPS estimated by our computational method and estimation 

from multiple pathologists’ interpretations of 22C3 and SP142 respectively.  

Conclusion 

We provide an AI method to efficiently predict cancer region and calculate TPS in 

PD-L1 IHC slide of lung adenocarcinoma on two different antibodies. It demonstrates 

the potential of using deep learning methods to conveniently access PD-L1 IHC 

status. In the future, we will further validate the AI tool for automated scoring PD-L1 

in large volume samples. 
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1. Introduction 

Programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) pathway-

targeted immunotherapy has been proved as an important management of non-small 

cell lung cancer (NSCLC)1-3. This development prompted companion diagnostic 

immunohistochemistry (IHC) tests assessing the PD-L1 protein expression as a 

biomarker that predicts response to immunotherapy2-5. Different antibodies’ 

properties, expression quantitation, intra-tumoral heterogeneity and diverse spatial 

distribution patterns of different cell types6-9 have already brought challenges for PD-

L1 IHC staining’s applications. Pathologists have difficulties in interpreting an 

accurate PD-L1 status on cancer sections which is a time-consuming clinical practice 

procedure. Additionally, inter-observer variation among pathologists may contribute 

to inaccurate patient stratification and limit the applications of PD-L1 IHC staining as 

an effective biomarker in clinical procedure10-13.  

Advances in digital pathology and widely available scanner have set the stage for the 

clinical application of machine learning (ML), and make it possible to develop an 

assistive tools of Artificial Intelligences (AI) to improve the pathologic practice14-16. 

Deep convolutional neural network (DCNN) is specialized in digital image analysis 

tasks, and has been successfully applied to diagnostic pathology, including 

histopathological diagnosis17, cancer detection18, cell classification and enumeration19-

20, mutation and microsatellite instability prediction21-23, tumor grading21, and cancer 

prognostication22. Utility of computer-assisted diagnostics showed the improvement 

of quantitative and qualitative pathologic interpretation of IHC staining, such as 

algorithms for IHC scoring of HER2, indicating the enormous potential of AI in 

assisting the pathologist with objective IHC scoring for stratified medicine23. Digital 

pathology technique may show advantages at the quantification analysis of PD-L1 
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IHC status and reproducibility and accuracy for interpretations of PD-L1 IHC scoring 

in a combination with AI and deep learning algorithms, as demonstrated in recent 

studies24-26.  

In this study, we proposed a DCNN-based computational method to predict cancer 

region and calculate tumor proportion score (TPS) of PD-L1 to address those 

challenges focusing on lung adenocarcinoma, which has accounted for the largest 

proportion of patients with lung cancers in China and shows much more difficulties in 

evaluating PD-L1 expression due to its complex morphological patterns28. The aim of 

our study was to set up a generalized model for two different antibodies and explore 

the possibility to build a uniform strategy for antibodies with distinct characteristics.  

 

2. Material and Methods 

2.1 Study design 

Two different antibodies were involved in this study. Firstly, we chose DAKO PD-L1 

22C3 PharmDx assay to build up the standard model for cancer area detection and 

calculate tumor proportion score. SP142 was chosen to tune and generalize a new 

model to expand its application. Finally, we achieved a high performance on both 

22C3 and SP142 dataset for cancer area prediction and TPS calculation. The 

workflow was shown in Fig.1. 

2.2 Dataset 

In this study, 115 slides from 115 patients were used. The information of patients is 

listed in Table.S1. All samples analyzed are unselected series from a collection of 

surgically resected lung adenocarcinomas specimens at Peking University Cancer 

Hospital & Institute from January 2017 to July 2018. This retrospective archival 

material and results did not have any impact on the management of patients. The 

Institute Review Board of Peking University Cancer Hospital & Institute, Key 
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laboratory of Carcinogenesis and Translational Research (Ministry of Education) 

approved the study protocol.  

All the slides were obtained by cutting formalin-fixed, paraffin embedded lung 

adenocarcinoma samples into 4 μm-thick sections. 50 slides were stained with PD-L1 

IHC 22C3 pharmDx assay according to a standard staining protocol using appropriate 

automated staining devices (Dako Autostainer Link 48 platform). 65 slides were 

stained with anti-human PD-L1 rabbit monoclonal antibody (clone SP142, ZSGB-

BIO, Beijing, China) at a working solution and incubated for 15 min at 37 °C on an 

automated staining platform (BOND-MAX, LEICA, Leica Biosystems Newcastle 

Ltd., Newcastle, UK). 

All the slides were scanned by Leica Aperio CS2. We selected 3-5 cancer or stroma 

regions (>1mm2) on each slide (171 regions of 22C3 and 178 regions of SP142). In 

total 224 cancer areas and 123 stroma areas were selected for model building. 

2.3 Manual annotations and tumor proportion scoring estimation 

All the cancer and stroma area in selected regions were annotated by five pathologists 

for 22C3 samples and two pathologists for SP142.  

Pathologists also needed to estimate the TPS for both datasets. TPS was calculated as 

the percentage of survival cancer cells exhibiting partial or complete density of 

membranous staining in NSCLC according to DAKO PD-L1 IHC 22C3 pharmDx 

Interpretation Manual, as the equation below.  

𝑇𝑢𝑚𝑜𝑟 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒(𝑇𝑃𝑆) =
𝑃𝐷 − 𝐿1 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑢𝑚𝑜𝑟 𝑐𝑒𝑙𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑡𝑢𝑚𝑜𝑟 𝑐𝑒𝑙𝑙𝑠
 

Pathologists’ scores were recorded on a 14-point scale representing PD-L1 expression 

as follows: negative or <1%, 1-4%, 5-9%, 10-19%, 20-29%,… 90-94%, 95-98%, 99-

100%, with a range of 10% between 10% and 90% but narrower for both sides. 

Median and average TPS of 22C3 assay by five pathologists were taken as a final 

ground truth (GT). TPS of SP142 assay was calculated by two pathologists. The 

inconsistent cases were reviewed by a third consultant pathologist and a consensus of 
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GT was taken subsequently. Time consumed for the whole process was recorded. 

Before this study, all pathologists involved were trained in scoring 22C3 assays by 

protocol. 

2.4 Automated cancer area detection and tumor proportion scoring calculation 

We first built a model based on 22C3 dataset for cancer area segmentation and test its 

performance including precision, sensitivity, specificity, F1-score, IoU and accuracy. 

22C3 dataset was separated into a training set of 40 slides (130 regions, 8467 patches) 

and a test set of 9 slides, 41 regions (one slide was excluded due to poor quality of 

staining). We also test this model on SP142 dataset which contains 178 regions from 

65 slides. After that SP142 dataset, containing a training set of 103 regions, 7008 

patches and a test set of 75 regions, 6655 patches, was used to fine-tune the model and 

evaluate the performance. There are 23 regions without any cancer cells in the 

training set, which helped us get a conservative model. The workflow with details of 

dataset was shown in Fig.S1.  

After cancer areas were detected by our model, we then segmented the cancer cells 

with watershed algorithm using QuPath29 (Version 0.1.2). We used a negative control 

group of 5 slides to determine the 3,3’-Diaminobenzidine (DAB) staining threshold. 

We defined pTPS for TPS estimated by pathologists and mTPS calculated by 

proposed method and will be used and compared below. 

2.5 Statistical analysis 

Data from the experts were compared with calculated scores by our method and the 

Kappa (Cohen’s and Fleiss’) parameters were calculated to validate the agreement 

using Python (Version 3.6). For 22C3, Fleiss’ Kappa was calculated for inter-

pathologist’s agreement, but Cohen’s Kappa was calculated between the median and 

average data of pathologists and the score by proposed method. For SP142 Cohen’s 

Kappa was calculated for both inter-pathologist’s agreement and AI-pathologist’s 

agreement. We chose 1% and 50% as different cutoffs to assess the consistency 

between pathologists and AI method.  
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3. Results 

3.1 Model training and performance testing 

A pilot study was firstly performed to find the concordance of pathologists’ labeling. 

We calculated the intersection over union (IoU) and a high concordance between 3 

random pathologists on 3 random samples and showed the results in Table.S2.  

The performance of models trained with individual 22C3 dataset and fine-tuned with 

SP142 dataset was shown in Table.1. Evaluation on test set of 22C3 dataset showed a 

moderate sensitivity (72.86%) with a high specificity (93.51%), which is the 

performance of High-Specificity Model in Table.1. We trained the model on the same 

training set with different loss function and sample weights and get a balanced model 

with a sensitivity of 93.36% and specificity of 93.97% as shown in Balanced Model 

of Table.1. Based on the performance, we could conclude that our model for cancer 

area segmentation is robust enough (most parameters could reach a number over 90%) 

and it indicates the possibility to be applied on other antibodies.  

3.2 Tumor proportion score of PD-L1 staining 

Comparison of pTPS is shown in Fig.2(a) and a high consistency with each other was 

found in most of the cases for 22C3 dataset.  

The model was applied on the 22C3 test set and SP142 test set to segment the cancer 

areas and calculate the mTPS based on them. We then compared the pTPS and mTPS 

and tried to find out the correlations between them. A highly significant correlation 

was found between average value of pathologists’ interpretations and automated PD-

L1 analysis for both 22C3 dataset (R2=0.9234, p<0.0001) and SP142 dataset 

(R2=0.9098, p<0.0001), and also the median data from pathologists and AI model for 

22C3 dataset (R2=0.9068, p<0.0001). Results were shown in Fig.2(b-d). 

When TPS was categorized using cutoff values of 1% and 50%, the Kappa parameter 

was calculated to test the consistency between multiple results in Table.S3. Results 

showed a high consistency with each other when the cutoff was 50% with a Kappa 
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value from 0.8 to even close to 1 (Kappa range from 0.841-1.000). However, the 

results from AI model and pathologists don’t show high consistency when the cutoff 

was set at 1% (Kappa range from 0.302-0.557)  

3.3 Comparison of processing time for pathologists and AI model 

Average time of review per region was obviously shorter with AI tool than manual 

performance which was shown in Table.S4. The average time reduced to 1.5 

min/region if we run the proposed method on NVIDIA GeForce GTX 1080Ti to 

interpret the mTPS score, comparing with over 2 min/region for a pathologist (range 

2.08-3.12 min/region for 22C3 and 2.98-.3.32 min/region for SP142) which varies 

based on their experience and experts. 

 

4. Discussion 

In this study, we endeavored to develop a deep learning method that enables cancer 

region detection and effectively scoring TPS of PD-L1 expression with a concrete 

value on PD-L1 IHC slides of DAKO 22C3 and SP142.  

In recent years, it has been demonstrated that AI and deep learning-based methods 

could solve complex tasks in digital pathology image analysis of IHC profile to 

improve the reproducibility and accuracy15. However, previous studies didn’t make 

their effort to set up a generalized model or strategy to cover multiple antibodies, 

which could be accomplished with transfer learning. Transfer learning is a new 

frequently-used method to cover characteristics from different objects in one single 

model27. The model was trained based on the pre-trained model and could combine 

the properties of different dataset together. It provides us the access to build up a 

robust model for antibodies with distinct characteristics.  

In our study, we first built a model for cancer area segmentation on 22C3 dataset and 

tested its performance. According to the Blueprint PD-L1 IHC Assay Comparison 

Project, SP142 showed largest inconsistency with other tested antibodies due to its 
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poor tumor-specificity7. The clone SP142 in our study was even poorer in tumor 

specificity compared with Ventana, which was used to explore the generalization 

ability of our model trained by 22C3 dataset. What’s more, we applied the transfer 

learning27 to combine characteristics from different antibodies and increase the 

robustness further. A similar performance was obtained for both SP142 and 22C3 

dataset by transfer learning model, confirming that the model could be 

interchangeable among antibodies by a small addition on training set. 

There are still some limitations in our study. First of all, the pTPS results for WSI 

with very low percentage of positive cancer cells didn’t reach a high consistency 

among pathologists, and the current AI system seems to be less capable for this type 

of images, which led to a relatively low concordance between pathologists and AI 

method. The scattered immune cells which may show PD-L1 positive and intermixed 

in tumor nests cannot be easily recognized both by AI and pathologists. Last but not 

the least, although an excellent agreement between the values of TPS by experts and 

proposed method was achieved, it doesn’t mean that our current AI method can 

absolutely replace manual diagnosis. Due to limitation of training dataset, the model 

could detect all the cancer types in complex clinical practice, especially for rare lung 

cancer types. In the future, a multi-institutional project might be built up to co-

generate a more robust model for estimation. 

In conclusion, we proposed a deep learning model for automated cancer cell detection 

and assessment of PD-L1 expression across 22C3 and SP142 antibody in lung 

adenocarcinoma. It proves that advances in AI tools for immune biomarker researches 

are useful for cancer immunotherapy and might be an effective way to address the 

challenges associated with PD-L1 assessment in future clinical routines. 
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Fig.1 A general workflow of automated lung adenocarcinoma detection and 

automated TPS estimated in this study with 22C3 dataset to train and test the model, 

and SP142 dataset to tune the model. 
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Fig.2 (a) Comparison of interpreted TPS from five pathologists for 22C3 dataset 

including the median and mean data. (b) Agreement of mean data of five pathologists 

and AI model for 22C3 dataset; (c) Agreement of median data of five pathologists and 

AI model for 22C3 dataset; (d) Agreement of mean data of two pathologists and AI 

model for SP142 dataset;  
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Table.1 Performance of cancer area detection model. We calculated several parameters 

(precision, recall, specificity, F1-score, IoU and accuracy) to determine the performance of 

first model (trained with training set of 22C3 dataset) on test set of 22C3 dataset and SP142 

dataset, and second model (tuned with training set of SP142 dataset) on test set of SP142 

dataset.  

 Precision Sensitivity Specificity F1-score IoU Accuracy 

High-specificity 

model 

22C3 92.84% 74.79% 80.15% 70.36% 91.08% 96.19% 

SP142 81.19% 39.13% 96.84% 43.12% 33.15% 88.26% 

SP142 tuned 91.69% 61.82% 70.64% 60.54% 88.26% 99.17% 

Balanced model 

22C3 90.09% 93.36% 93.97% 91.15% 84.49% 94.00% 

SP142 83.54% 86.26% 86.24% 82.63% 74.15% 88.52% 

SP142 tuned 90.63% 92.80% 89.25% 91.22% 84.34% 92.80% 
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