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Abstract 21 

Bioelectronic medicine is opening new perspectives for the treatment of some major chronic 22 

diseases   through the physical modulation of autonomic nervous system activity.  Being the 23 

main peripheral route for electrical signals between central nervous system and visceral 24 

organs, the vagus nerve (VN) is one of the most promising targets. Closed-loop 25 

neuromodulation would be crucial to increase effectiveness and reduce side effects, but it 26 

depends on the possibility of extracting useful physiological information from VN electrical 27 

activity, which is currently very limited.  28 

Here, we present a new decoding algorithm properly detecting different functional changes 29 

from VN signals. They were recorded using intraneural electrodes in anaesthetized pigs 30 

during cardiovascular and respiratory challenges mimicking increases in arterial blood 31 

pressure, tidal volume and respiratory rate. A novel decoding algorithm was developed 32 

combining discrete wavelet transformation, principal component analysis, and ensemble 33 

learning made of classification trees. It robustly achieved high accuracy levels in identifying 34 

different functional changes and discriminating among them. We also introduced a new 35 

index for the characterization of recording and decoding performance of neural interfaces. 36 

Finally, by combining an anatomically validated hybrid neural model and discrimination 37 

analysis, we provided new evidence suggesting a functional topographical organization of 38 

VN fascicles. This study represents an important step towards the comprehension of VN 39 

signaling, paving the way to the development of effective closed-loop bioelectronic systems.  40 
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Introduction 47 

The autonomic nervous system (ANS) plays a crucial role in the self-governed maintenance 48 

of body homeostasis. In ANS peripheral nerves, afferent and efferent fibres run together, 49 

providing bidirectional communication between specific circuits of the central nervous 50 

system and visceral organs. The artificial modulation of this complex circuitry is the 51 

challenging goal of bioelectronic medicine (BM), a highly promising alternative to some 52 

limited pharmacological tretments1–3. Among the main ANS nerves, the vagus nerve (VN) 53 

represents a privileged target as it modulates vital functions like respiration, circulation and 54 

the digestion4. VN stimulation (VNS) of cervical segments  has shown a great potential for 55 

the treatment of a wide range of pathological conditions such as epilepsy5, chronic heart 56 

failure6, and inflammatory diseases7,8. However, the formidable amount of afferent and 57 

efferent signals that simultaneously cross this VN segment, the numerous VNS side-effects9 58 

and the discovery of VN involvement in the regulation of complex functions like immunity10 59 

or central neuroplasticity11,12 highlight the need for high precision and selectivity. In an ideal 60 

scenario, the therapeutic stimulation or inhibition of VN or any other ANS nerve should be: 61 

a) selectively directed to specific efferent or afferent fibres and b) regulated by a closed-loop 62 

feedback, thus adapting the stimulation to patient-specific conditions13–16. Importantly, the 63 

co-existence of afferent and efferent signals in the VN points to the possibility that the 64 

feedback loop is originated and closed at the same anatomical site. Nonetheless, VNS is 65 

currently applied in an open-loop fashion17,18 and mainly delivered using epineural cuff-like 66 

electrodes, because of their relatively low invasiveness and versatility for chronic 67 

applications19,20.  68 
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The first step for the development of a closed loop modality would be the precise 69 

identification of physiological “states” by processing the autonomic neural signals. Different 70 

strategies have been recently adopted to extract function-specific markers from neural 71 

activity using epineural electrodes3,21–25. Specific neurograms related to the respiratory 72 

cycle21,22 and blood pressure fluctuations3 were recorded from pig VN using bipolar/tripolar 73 

ring cuff electrodes, while decoding strategies and methodological frameworks led to the 74 

identification of cytokine- and hypoglycemia/hyperglycemia-specific neural activity markers 75 

in murine VN and carotid sinus nerve23-25. However, epineural electrodes display a limited 76 

selectivity and can only record the compound activity that provides a global picture of neural 77 

signal trafficking26–28. Therefore, intraneural electrodes have been developed and 78 

successfully employed by us and others to enhance selectivity and increase the signal-to-79 

noise ratio of recordings26,29 in somatic nerves13,16,30,31. Nevertheless, this technology has 80 

received very limited attention for VN applications and only one preliminary study has been 81 

published to date32, which was based on a simple experimental protocol (steady neural 82 

activity) and a limited signal recording capacity (i.e. 4-channel electrode longitudinally 83 

implanted).  84 

Here, we performed the first comprehensive study testing intraneural VN recording to 85 

identify physiological (arterial and respiratory) changes. To this aim, we recorded VN activity 86 

through intraneural multi-channel electrodes in anaesthetized pigs at baseline and during 87 

alterations in blood pressure and respiratory parameters, collectively named “functional 88 

challenges”. To discriminate between baseline condition and functional challenges and to 89 

investigate a possible functional organization of VN fascicles, we developed novel decoding 90 

algorithms and hybrid modeling framework (see next section and Methods).  91 
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Results  92 

Experimental setup and decoding method to classify functional challenges against 93 

baseline   94 

To study the feasibility of decoding relevant physiological states based on VN neural activity, 95 

intrafascicular multichannel electrodes40 were implanted into the cervical VN of 4 96 

anaesthetized and artificially ventilated pigs (p1, ..., p4) (Fig.1 a,b). Neural activity was 97 

recorded at baseline and during functional challenges obtained by infusing the vasopressor 98 

angiotensin II (AngII) to increase baseline blood pressure (BP) by 150% and/or by varying 99 

the ventilator parameters to increase respiratory rate (RR) and/or tidal volume (TV). These 100 

3 functional challenges, named BPC, RRC and TVC, were compared to baseline condition 101 

and among them (Fig.1c and Methods for details). To obtain the desired vasopressor effect, 102 

AngII infusion was maintained for 8.8 ± 0.8 min (n=5) and mean BP increased from 76 ± 2.2 103 

mmHg up to 110 ± 2.6 mmHg (n=5). 104 

A decoding algorithm was developed to process multivariate signals acquired from the multi-105 

channel intraneural electrodes. To extract from the neural activity relevant features encoding 106 

for the functional challenges, we first employed a multi-scale decomposition analysis based 107 

on the discrete wavelet transform33,34 to extract the high frequency component (>1500 Hz) 108 

of our  recordings. Subsequently, we focused on the direction of greatest variance by using 109 

principal components analysis35 (Fig. 1d and Methods for details). Then, an ensemble of 110 

classifiers made on classification trees36,37 was trained and we assessed the classification 111 

performance on the test set using accuracy values (Fig. 1e and Methods for details).   112 
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 113 

Fig. 1 Schematic representation of the experimental setup and decoding algorithm a,b Recording apparatus 114 

and electrode implantation c Summary of the in vivo protocol and comparisons . d Decoding algorithm. Feature 115 
extraction was performed on raw signals by applying principal component analysis on wavelet details relative 116 
to two different scales. e Decoding performed with ensemble learning based on classification tree combined 117 
with random undersampling and boosting procedure (see Methods) was applied on feature vectors. Decoding 118 
performance was assessed by means of confusion matrices and accuracy level.   119 

 120 
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We tested our decoding algorithm in different scenarios, i.e., considering a progressively 121 

larger number and type of functional challenges. In two pigs (p3 and p4) we also studied the 122 

variation of the decoding performances relative to the positioning of two SELINEs (s1, s2) 123 

and (s3, s4) within the same nerves, thus testing the following combinations: p3-s1, p3-s2 124 

and p4-s3, p4-s4. 125 

 126 

Decoding the response to a single functional challenge 127 

We started with the simplest case in which we sought to discriminate only one of the three 128 

functional challenges against baseline. For baseline vs BPC, we achieved a mean accuracy 129 

level over the different recordings equal to 90.7±5.7% as shown in Fig. 2a (n=5, see 130 

Supplementary Fig. 1a for confusion matrices).  131 

High-level accuracy during increased RRC was also obtained, equal to 89.1±3.9%, as 132 

shown in Fig. 2b (n=4, see also Supplementary Fig. 1b for confusion matrices). 133 

Measurements during TVC yielded more heterogeneous results compared to the other 134 

challenges. In pig p2 that was implanted with TIME t2 (p2-t2), we achieved high accuracy 135 

level equal to 83.5% ([75.8%, 89.5%], Confidence Interval p=0.05, see Fig. 2c and 136 

Supplementary Fig. 1c for confusion matrices). 137 

Moreover, the decoding accuracy during TVC was strongly dependent on the electrode 138 

positioning. In fact, in animals implanted with s1 and s4, i.e. p3-s1 and p4-s4, we obtained 139 

accuracy values statistically not different from chance level (p>0.05, binomial test, see Fig. 140 

2c and Supplementary Fig. 1c for confusion matrices), i.e. 45.7% for p3-s1 ( [36.8%, 54.7%], 141 

Confidence Interval p=0.05) and 52.3% for p4-s4 ( [43.3%, 61.2%], Confidence Interval 142 

p=0.05). In the same animals, but with different electrode positioning, we achieved a high 143 

level of accuracy of 95.5% for p3-s2 ( [90.5%, 98.31%], Confidence Interval p=0.05) and  144 

75% for p4-s3 ([66.6%, 82.2%], Confidence Interval p=0.05, see Fig. 2c and Supplementary 145 
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Fig. 1c for confusion matrices). Interestingly, in this scenario TIMEs and SELINEs performed 146 

similarly. Indeed, if we consider only the maximum accuracies achieved in each animal, thus 147 

neglecting possible confounding effects of electrode positioning, the TIME  t1 in p2 achieved 148 

the maximum accuracy across animals in the case of baseline vs. BPC (Fig 2a), while 149 

SELINE s2 implanted in p3 performed better in the baseline vs. TVC, achieving a maximum 150 

accuracy in the animal p3-s2 (Fig. 2c). No significant differences between maximum 151 

accuracies were found for baseline vs. RRC (see Fig. 2b, p2-t2 vs. p4-s3 and p2-t2 vs p3-152 

s2, p>0.05 Chi square test, Bonferroni correction). 153 

The differences between two levels of RRC and TVC in p2 (from 10 to 15 respiratory 154 

cycles/min and from 400 to 500 ml, respectively) compared to p3 and p4 (from 10 to 20 155 

respiratory cycles/min and from 400 to 800 ml, respectively) did not indicate strong 156 

differences in the decoding performances. In fact, if we compared the maximum accuracies 157 

obtained in a single animal (i.e., to neglect the effect of a possible dependency of electrode 158 

position) only in the case of baseline vs. TVC, the accuracy achieved in p2-t2  was lower  159 

than  the maximum one observed in p3-s2 (Fig.2c ,p<0.05 Chi square test, Bonferroni 160 

correction), while no statistical differences were found (p>0.05 Chi square test, Bonferroni 161 

correction) in the other cases (Fig.2b  p2-t2 vs p3-s4, p2-t2 vs p4-s3, and Fig.2c p2-t2 vs 162 

p4-s3).  163 

Finally, a dependence on electrode position was also observed in pigs p4 and p3 for the 164 

comparisons of baseline vs. BPC (Fig.2a) and baseline vs. RRC (Fig. 2c), respectively. In 165 

fact, the accuracy value for p4-s3 (96%, [92.5%, 98.1%] Confidence Interval p=0.05, Fig.2a) 166 

was greater than p4-s4 (68.5%, [62.2%, 74.3%] Confidence Interval p=0.05, Fig.2a) 167 

(p<0.001 Chi square test, Bonferroni correction). Moreover, in pig p3 implanted with SELINE 168 

s1 and s2, i.e. p3-s1 and p3-s2, we achieved a lower level  of accuracy for p3-s1 (74%, 169 

[66.1%, 80.9%] Confidence Interval p=0.05, Fig.2b) with respect to p3-s2 (93.2%, [87.5%, 170 
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96.8%] Confidence Interval p=0.05,  Fig.2b) (p<0.001 Chi square test, Bonferroni 171 

correction). 172 

 173 

Fig. 2  Decoding accuracy for baseline condition vs. a single functional challenge a,b,c Accuracy  level 174 

together with p=0.05 confidence interval (error bars, Clopper-Pearson method) for the comparison between 175 
baseline and  BPC  (panel a),  RRC (panel b) and TVC (panel c). For all panels, colored bars indicate the 176 
same animal implanted with two different electrodes.  Dashed lines represent chance level. To test statistically 177 
significant differences with respect to chance level in the cases where confidence intervals overlapped with 178 
chance level, a binomial test was used (panel c, animals p3-s1 and p4-s3, p>0.05 binomial test). Statistical 179 
comparisons between animals were assessed by using a Chi square test Bonferroni corrected for multiple 180 
comparisons (*p<0.05, **p<0.01, ***p<0.001). 181 

 182 

Decoding the response to multiple functional challenges 183 

We increased the complexity of the decoding task by producing two simultaneous functional 184 

challenges in different physiological systems, e.g. BPC plus RRC or TVC, or in the same 185 
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system, namely RRC and TVC. As expected, the highest accuracy levels were achieved 186 

when alterations were simultaneously induced in different systems (Fig. 3a,b and 187 

Supplementary Fig. 2a,b).   188 

The accuracy values for the BPC vs. RRC case were 81.6±7.1% (n=4), as shown in Fig. 3a 189 

and Supplementary Fig. 2a for confusion matrices. Statistical differences between accuracy 190 

values of p4-s3 (81.7%, [76.7%, 86.1%] Confidence Interval p=0.05) and p4-s4 (81.7%, 191 

[57.1%, 68.8%] Confidence Interval p=0.05) indicate dependency on electrode position 192 

(p<0.001 Chi square test, Bonferroni corrected). 193 

Dependency on electrode position was observed also for BPC vs TVC: in the animal 194 

implanted with s4, i.e. p4-s4,  we found a statistically significant  different accuracy level 195 

(54.2%, [48.1%, 60.2%] Confidence Interval p=0.05), than for p4-s3 (83.9%, [78.8%, 88.1%] 196 

Confidence Interval p=0.05) (p<0.001 Chi square test, Bonferroni corrected, see Fig. 3b). 197 

Overall, we obtained a mean over recordings 75.8±8.2% accuracy (n=4), as shown in Fig. 198 

3b and Supplementary Fig. 2b for confusion matrices.  199 

We were also able to reliably decode the two respiratory challenges RRC and TVC when 200 

occurring simultaneously.  We found that in animals p3 and p4 the electrodes s2 and s3 201 

achieved a high level of accuracy, 85.6% ([79.4%, 90.4%] Confidence Interval p=0.05) and 202 

81% ([74.6%,86.4%] Confidence Interval p=0.05), respectively, as shown in Fig. 3c and 203 

Supplementary Fig. 2c. In contrast, in the same animals, the electrodes s1 and s4 implanted 204 

in different positions were only able to reach accuracy values equal to 44.8%([37.5%, 52.3%] 205 

Confidence Interval p=0.05) and 45%([37.2%, 52.8%] Confidence Interval p=0.05) for p3-s1 206 

and p4-s4, respectively, as shown in Fig. 3c and Supplementary Fig. 2c. Moreover, in p1 207 

implanted with TIME t2, we achieved accuracy values equal to 68.9% ([61.2%, 75.9%] 208 

Confidence Interval p=0.05). In this configuration, TIMEs seemed to perform better than 209 

SELINE in two cases, as the maximum accuracy for the cases BPC vs. RRC and BPC vs. 210 
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TVC were obtained by p2-t2 (Fig. 3a,b, p2-t2 vs p3-s1and p2-t2 vs. p4-s3, p<0.001 Chi 211 

square test, Bonferroni correction, respectively). However, the maximum accuracy for TVC 212 

vs. RRC was obtained by SELINE s2 implanted in p3, i.e. p3-s2 (Fig. 3c, p3-s2 vs p2-t2, 213 

p<0.01 Chi square test, Bonferroni correction).  214 

Finally, we studied the most complex scenario of our experimental dataset in which all types 215 

of functional challenges (one cardiovascular and two respiratory) are decoded 216 

simultaneously. As discussed above, also in this case we found that decoding performances 217 

depended on electrode positioning within the same animal p4. The accuracy levels were 218 

73.7% for p4-s3 ([68.5%, 78.5%] Confidence Interval p=0.05) and 45.3% for p4-s4 ([39.7%, 219 

51%] Confidence Interval p=0.05), as shown in Fig. 4a and Fig4c for confusion matrices. 220 

The highest accuracy among animals was obtained by TIME t2 implanted in p2, i.e.  p2-t2, 221 

with a value equal to 87.3% ([83.3%, 90.6%] Confidence Interval p=0.05) (Fig 4a).  222 

Furthermore, to better understand why different accuracy values were obtained in our 223 

datasets, we searched for a possible correlation between the electrode discrimination ability, 224 

i.e. the sensitivity of the recording sites to the specific challenges, and the decoding 225 

performance. Electrode discrimination ability (EDA) was assessed by calculating the percent 226 

activation of each recording site of the electrode with respect to the different functional 227 

challenges (see Methods for details and Supplementary Figures 3 and 4 for a graphical 228 

example). In this way, the ensemble of channels activations forms a discrimination vector 229 

for each functional challenge. Intuitively, the greater the difference between those 230 

discrimination vectors representing different functional challenges, the more discriminative 231 

is the electrode (Supplementary Fig.4b,c for distance matrices). We then calculated the 232 

linear correlation coefficient between EDA and accuracy (Fig. 4b) and found a correlation 233 

value, towards statistical significance, between electrode discrimination properties and 234 
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decoding performance (Fig. 4b Pearson correlation coefficients for accuracy vs. EDA  𝑟 =235 

0.66  and  𝑛 = 4 , 𝑝 = 0.3 ). 236 

 237 

A hybrid model framework to map the functional spatial organization of VN fascicles  238 

The site-related sensitivity to specific functional challenges indicated a possible functional 239 

spatial organization of VN fascicles, which we explored by combining the information 240 

obtained from histological analysis with simulations of electric potential field and 241 

discrimination properties of the electrodes. 242 

The spatial relationship between VN fascicles and electrode active sites was determined by 243 

histological examination in one animal, p4 (see Methods for details). We reasonably assume 244 

that the overall nerve morphology in terms of fascicular structure and organization is 245 

constant along the implant site, so we morphologically modelled the SELINE active sites on 246 

the same 2D transverse section representation of the VN (Fig. 5 panels a, b, left and middle 247 

figures, for SELINEs s3 and s4 implanted in p4, respectively). 248 

Based on the histological analysis, we constructed a hybrid modeling framework38,39,41 to 249 

understand the spatial distribution of electrical potential fields in the nerve sections of p4-s3 250 

and p4-s4 (see Methods for details). In Supplementary Figures 5 and 6 (panel b), 251 

isopotential electric field lines corresponding to each nerve section and 3 different recording 252 

sites are shown (p4-s3 and p4-s4, respectively). Using the Helmholtz reciprocity theorem41, 253 

these potential values quantify the recording capability of a given active site  favored by the 254 

specific position of a fascicle located inside the nerve42. Since we were interested in the 255 

global electrical activity of fascicles, we employed a mean field approach by averaging the 256 

potential values within a given fascicle (Supplementary Figures 5 and 6 panel c, left) for 257 

nerve section p4-s3 and p4-s4, respectively. 258 
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 259 

Fig. 3  Decoding accuracy for baseline condition vs. two functional challenges. Accuracy level together with 260 

confidence intervals (error bars, Clopper-Pearson method) for the comparison between baseline and BPC vs 261 
RRC (panel a), BPC vs TVC (panel b), RRC vs TVC (panel c). For all panels, colored bars indicate the same 262 
animal implanted with two different electrodes.  Dashed lines represent chance level. Statistical comparisons 263 
between animals were assessed by using a Chi square test Bonferroni corrected for multiple comparisons 264 
(*p<0.05,**p<0.01,***p<0.001).265 
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                                                                                                                                           266 
Fig. 4 Decoding accuracy for baseline condition vs. 3 functional challenges and relation between electrode 267 

discrimination ability and decoding performances. a Accuracy level together with confidence intervals (error 268 
bars, Clopper-Pearson method) for the comparison between baseline and BPC, TVC and RRC. Colored bars 269 
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indicate the same animal implanted with two different electrodes. Dashed lines represent chance levels. 270 
Statistical comparisons between animals were assessed by using a Chi square test Bonferroni corrected for 271 
multiple comparisons (*p<0.05, **p<0.01, ***p<0.001). b Linear relationship between electrode discrimination 272 
ability and accuracy level, linear correlation coefficient is reported. c Confusion matrices for all the recordings. 273 

  274 

To quantitatively characterize the association of a given fascicle with a specific functional 275 

challenge, we weighted the discrimination index of each active site with the mean field 276 

generated by that fascicle recorded from that active site.  We then averaged data obtained 277 

from all recording sites and normalized the average to the total mean field, thus obtaining 278 

what we called Discriminative Field Potential (DFP, see Methods for details). In this way, we 279 

developed for the first time a quantitative measure characterizing how a fascicle is related 280 

to a given functional challenge. This measure could be considered the equivalent, for 281 

recording, of the selectivity index20,38 quantifying the stimulation ability on an electrode to 282 

elicit the activation of targeted fibres. 283 

DFP patterns related to baseline condition and functional challenges were obtained for each 284 

nerve section p4-s3 and p4-s4, as shown in Figure 5 a,b, right  panels, respectively, and 285 

Supplementary Figures 5 and 6 panel c bottom, respectively. Interestingly, for both nerve 286 

sections p4-s3 and p4-s4, the baseline condition exhibited a balanced DFP pattern where 287 

each fascicle is activated in the same manner. On the contrary, DFP magnitude was higher 288 

and differences between DFP patterns within each nerve were more pronounced in p4-s3 289 

than in p4-s4 as shown in Figure 5 a,b, right panels, respectively, and Supplementary 290 

Figures 5 and 6 panel c bottom, respectively. We quantified them by calculating the root 291 

mean square level of the Euclidean distance among the DFP values of each fascicle for 292 

each possible comparison between functional challenges (mean discriminative distance). 293 

We found a statistically significant higher mean discriminative distance of the nerve in p4-294 

s3 with respect to p4-s4 (p=0.003 unpaired t-test, n=6 all possible functional challenges 295 

combination). This was consistent with the higher effectiveness of decoding based on p4-296 

s3 recordings.   297 
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 298 

Fig. 5 Schematic description of the two SELINE (s3 and s4) implantation in the VN of p4 and hybrid model 299 
simulations of fascicles activation at baseline and in response to functional challenges. a,b SELINE s3 and s4 300 
(left panels a,b, respectively) are represented on a VN histological section (central panels a,b respectively). 301 
DFP patterns of activity during baseline and each functional challenge (left panels). c Mean Discriminative 302 
Distance between DFP patterns (p=0.003 unpaired t-test n=6, p>0.05 Kolmogorov-Smirnov). 303 
 304 

 305 

 306 
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Discussion 307 

Bioelectronic medicine may lead to revolutionary treatments for an ample variety of 308 

diseases. However, therapeutic neuromodulatory interventions must be very precise, both 309 

spatially, activating specific nerve fibres to avoid side effects, and temporally, i.e., operating 310 

in closed-loop to mimic the natural conditions. Therefore, it is necessary to utilize neural 311 

interfaces to selectively stimulate ANS nerves (spatial precision) and to decode signals 312 

triggered by specific functional changes, so that the stimulation is activated only when 313 

necessary (temporal precision) and subjected to a feedback control.  314 

The present study provides the first evidence that signals recorded with intraneural 315 

electrodes in pig VN can be reliably used to detect functional changes in the cardiovascular 316 

and/or respiratory system.  317 

We perturbed the homeostasis of one of both systems with functional challenges that were 318 

expected to enhance the activity of aortic baroreceptors and/or lung stretch receptors. 319 

Electrical signals departing from those receptors run along afferent fibres of the VN,  carrying 320 

to the CNS information on blood pressure changes and lung inflation state43. Although 321 

induced with pharmacological and mechanical stimuli, these hemodynamic and respiratory 322 

alterations mimic very common pathophysiological conditions such as hypertension, 323 

tachypnea, and polypnea.  Exploiting our previous experience with somatic nerves31 and 324 

differently from previous studies3,21,23,24,32 that employed  spike sorting methods23,24 or 325 

extracted neural profiles correlated with specific physiological variables3,21,32, we considered 326 

the whole high frequency components of our signals processed with a novel advanced 327 

machine learning approach. This method proved successful in achieving high-level accuracy 328 

for the decoding of the functional challenges. In such regard, the pig VN is ideal for the 329 

development of clinically relevant technologies. The fascicular organization of pig VN is the 330 

closest to the complexity of human VN intraneural morphology compared to other species 331 
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commonly utilized in experimental research44. For instance, other studies have shown the 332 

possibility to decode different functional challenges in the murine VN23,24, which, 333 

unfortunately, contains less fibres which are not subdivided  in fascicles.  334 

To the best of our knowledge,  prior studies in pig VN3,21,32 did not demonstrate the possibility 335 

to decode  multiple functional challenges.  While cuff3,21 and intraneural32 electrodes  in pigs  336 

proved effective  in extrapolating neural markers of blood pressure and respiratory activity, 337 

no decoding analysis for the identification of mixed functional challenges was attempted. 338 

Moreover, the recordings with cuff electrodes3,21 were not obtained  during the same 339 

experimental session. 340 

In this study we exploited intraneural (TIMEs and SELINEs) electrodes, which are conceived 341 

to be transversally or obliquely inserted into the nerve, allowing spatially selective stimulation 342 

and recording from different fascicles innervating distinct peripheral targets45,46.Our results 343 

show that the quality of decoding performances depends  on the electrode position. This 344 

could be due to the different functional role of fascicles adjacent to the recording sites and 345 

prompts the hypothesis of a specific spatial segregation of vagal fibres traversed by specific 346 

signals. Therefore, to map a possible spatial functional organization of VN fascicles, we 347 

employed a hybrid modeling framework based on histological analysis combined with 348 

electrodes discrimination ability properties. We assumed that the discrimination of a given 349 

functional challenge in a specific recording site is higher when the local fibres are activated 350 

by that specific stimulus and the local recording capability is high. Based on this assumption, 351 

we developed a novel quantitative measure called Discriminative Field Potential (DFP), 352 

obtaining distinct spatial configurations of discriminative patterns generated by fascicles 353 

during the various functional challenges. It is important to note that the good reliability of 354 

DFP patterns resulted from the use of intraneural electrodes, which potentially provide a 355 

more accurate recording of the fascicles neural activity compared to epineural electrodes. 356 
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Moreover, placing a large number of active sites along the intraneural implant would 357 

augment the interfaces with fascicles, thus reducing the number of implanted electrodes29. 358 

The present findings strongly suggest that multi-contact electrodes positioning is of crucial 359 

importance for bioelectronic applications in a complex nerve such as the VN.  In our opinion, 360 

the development of an anatomical and electrophysiological in silico model of the VN would 361 

be extremely useful to guide electrodes implantation and positioning and to overcome the 362 

present limitations. In this regard, the pig VN represents an excellent model, given its 363 

marked fasciculation, which likely reflects an equivalent high spatial segregation of fibres 364 

innervating different peripheral sites. 365 

 366 

Limitations and future directions. The present study was performed in an acute 367 

experimental preparation and it is known that anesthesia exerts important effects on neural 368 

activity and other physiological systems. For this reason, our next step will consist of 369 

validating the implantation of intraneural electrodes for VN chronic recordings in non-370 

anesthetized animals. Moreover, our results seem to indicate that TIMEs could perform 371 

better than SELINE, but more experiments are necessary to confirm these results.  Finally, 372 

another important step will be its implementation and validation of online signal analysis, 373 

necessary for closed-loop VNS protocols.  374 

 375 

Conclusions. The present results are an important step towards more precise 376 

neuromodulation protocols based on the knowledge of specific patterns of neural activations 377 

recordable in VN under physiological and pathological conditions. Advanced closed-loop 378 

and spatially selective VNS could improve the treatment of pathological conditions by 379 

selectively activating functionally specialized fibre fascicles, thus preventing the numerous 380 

side-effects caused by the current technology.  381 
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The importance of understanding VN signals extends beyond VNS and closed-loop 382 

applications. Being the biggest peripheral crossroad of signals between the CNS and 383 

visceral organs, a sensitive and reliable technology for detection and decoding of VN activity 384 

could serve for the diagnosis of pathophysiological conditions otherwise difficult to detect. 385 

Deciphering the “vagal language” will also help clarifying the mechanisms by which VNS 386 

exerts its curative effects and gaining deeper insights in the VN regulation of specific 387 

physiological processes.   388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 
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Materials and methods  406 

 407 

Animals. This study was conducted in four castrated male farm pigs (Sus Scrofa 408 

Domesticus) 3-4-month old and weighing 28-30 kg. The animals were housed in the 409 

vivarium at room temperature (24°C) and fasted overnight before anesthesia with free 410 

access to water. All animal handling and experimental procedures were performed 411 

according to European Community guidelines (EC Council Directive 2010/63) and the Italian 412 

legislation on animal experimentation (Decreto Legislativo D.Lgs 26/2014).  413 

 414 

Anesthesia and monitoring of physiological parameters. On the day of the experiment, 415 

pigs were anesthetized and prepared for surgery as previously described by us47. They were 416 

sedated with a cocktail of 4 mg/kg tiletamine hydrochloride and 4 mg/kg zolazepam 417 

hydrochloride injected intramuscularly, intubated and mechanically ventilated. The 418 

respiratory frequency was fixed to 10 respiratory cycles per minute and the tidal volume (TV) 419 

to 400 ml. The combination of these respiratory parameters resulted in PaO2 > 100 mmHg, 420 

PaCO2 < 40 mmHg and arterial blood pH in the range of 7.4-7.45. Arterial blood gases 421 

analysis was repeated at least every 30 min. A pulse oximeter was applied on the tongue to 422 

continuously monitor arterial oxygen saturation, which was stably above 96% for the 423 

duration of the experiment. Inhalatory anesthesia was maintained with a mixture of 1-1,5% 424 

isoflurane dissolved in 79% air and 21% oxygen. The respiratory pressure was recorded by 425 

connecting the airflow of the ventilator to a pressure transducer. Electrocardiogram (ECG), 426 

heart rate, and arterial blood pressure were constantly monitored. Aortic blood pressure was 427 

recorded using a solid-state pressure transducer catheter (Millar, SPR-100) inserted in the 428 

left femoral artery with the tip positioned in the abdominal aorta. This catheter was also used 429 

to withdraw arterial blood for blood gas analysis. Glycemia was checked every 30 min and 430 
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before each recording session to assess the stability of plasma glucose levels above 100 431 

mg/100 ml. The main ear vein was cannulated for the intravenous administration of all the 432 

drugs.  433 

  434 

Surgical preparation and electrode implantations.  The 4 pigs were named p1, p2, p3 435 

and p4. To isolate the cervical VN, a midline cervical incision was made from the level of the 436 

larynx to the sternum, as previously described by us48. After identifying the neurovascular 437 

bundle of the neck (common carotid artery, internal jugular vein and VN), the left (n = 3) and 438 

right (n = 1) cervical VNs were delicately separated from the common carotid artery by blunt 439 

dissection, 3-4 cm above and below the cricoid cartilage. The sympathetic trunk, attached 440 

dorsally to the VN, was gently detached and pulled apart. In animals p1 and p2, the left VN 441 

was implanted in correspondence of the cricoid cartilage with a transverse intrafascicular 442 

multichannel electrode (TIME) endowed with 10 active sites, following the same procedures 443 

described by Badia et al49. In p3 and p4, the left and right VNs, respectively, were implanted 444 

with 2 self-opening intraneural peripheral interfaces (SELINEs) endowed with 7-16 active 445 

sites. SELINEs implantation followed the same procedures described by Cutrone et al46. All 446 

the intraneural electrodes were inserted obliquely, forming a 45° angle with the longitudinal 447 

axis of the nerve, except for 2 SELINEs, one in p3 and one in p4, that were inserted along 448 

the transverse axis. In all the experiments, the ground electrode was inserted under the skin 449 

of the left elbow of the animal.  450 

  451 

Tissue isolation and histology. At the end of the experiment, the anesthetized pigs were 452 

euthanized by an intravenous injection of saturated KCl solution. Intraneural electrodes were 453 

left in place and the VN was cut 3 cm above and below the insertion site and gently placed 454 

on a dedicated support to avoid twisting. The VN samples were then fixed in 4% 455 
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paraformaldehyde for 18-20 hours, rinsed in PBS, dehydrated in a series of progressively 456 

more concentrated solutions of ethanol/xylol and finally embedded in paraffin wax. 457 

Transverse sections (10 μm thick) were cut, deparaffinized, rehydrated, processed for 458 

routine hematoxylin and eosin and mounted in silane-coated slides. Images were captured 459 

with 5x magnification by a Leica DMRB microscope equipped with the DFC480 digital 460 

camera (Leica Microsystems, Cambridge, UK). Sections at the level of the implanted 461 

electrodes were aligned and manually segmented to study the electrode–nerve interaction. 462 

The nerve was cross-sectioned for the entire length of the implants, with the two SELINEs 463 

fixed in site, and stained with hematoxylin and eosin. Light microscopy observations of VN 464 

sections showed the fascicular structure of the nerve and holes caused by the electrode 465 

insertion, with SELINE polyimide strips preserved in a few slices. No macroscopic and 466 

microscopic signs of hemorrhages were found. 467 

 468 

In vivo recording of VN activity. Neural recordings started at least 30 min after electrode 469 

implantation to allow for stabilization of the nerve and of physiological parameters. The 470 

neural signals were first acquired over 5 minutes at baseline, followed by recording sessions 471 

in which physiological parameters were altered (functional challenges).  The baseline 472 

condition was defined as the time BP and heart rate were found stable for at least 30 min 473 

after completion of electrodes implantation. At baseline, RR and TV were fixed at 10 474 

respiratory cycles per minute and 400 ml, respectively. The functional challenges consisted 475 

of 1) increase in mean arterial BP up to 150% of the baseline value obtained with an 476 

intravenous infusion of Ang II (Sigma Aldrich), a vasopressor with rapidly reversible 477 

effects50, at 80 ng/kg/min 2) increase in TV from 400 to 500 in p2 and 800 ml in p3 and p4 478 

for 2 minutes and 3) increase in RR from 10  to 15 in p2 and 20 in p3 and p4 respiratory 479 

cycles/min. These challenges were produced in random order and each one was followed 480 
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by a recovery period of at least five minutes to let the physiological parameters return to 481 

baseline values. These functional challenges and the related physiological parameters 482 

affected were  in the same range of the ones used by Sevcencu et al.21 and  proved suitable 483 

for neural VN recordings in anesthetized pigs. In addition, they did not interfere significantly 484 

with the stability of other variables like BP, heart rate or blood gases partial pressures. 485 

Glycemia and blood gases were checked before and after the completion of each functional 486 

challenge.  487 

 488 

Data acquisition and decoding algorithm. VN raw multichannel signals were acquired at 489 

a frequency sampling of 24.4 kHz, high pass filtered at 5 Hz and digitally amplified (RZ5D 490 

BioAmp Processor, Pz5, Tucker-Davis Technologies Inc., TDT, USA). Each channel of the 491 

raw recordings was segmented by using a 1 sec-temporal window and rescaled to zero 492 

mean and unitary standard deviation. Discrete wavelet transform33,34, at a maximum level 493 

equal to 4, was applied on the segmented portions of each channel by using a symlet 7 494 

wavelet function13,33,34. Approximation coefficients relative to frequencies ⪅ 1500 Hz were 495 

discarded in the subsequent analysis. Principal component analysis on the multivariate 496 

wavelet details was applied independently on two different scales35 relative to frequency 497 

ranges of ≅1500-3000 Hz and 3000-6000 Hz, respectively. The first three principal 498 

components were retained to build a feature vector for the classification algorithm.  The 499 

entire dataset was randomly split in 70 % for the train set and the remaining 30% was used 500 

as test set. Ensemble of classifiers were built using a classification tree36,37. To deal with 501 

class imbalance problems, random undersampling techniques combined with boosting 502 

algorithms were adopted (RUSBoost)37,51. To achieve higher ensemble accuracy, we set 503 

the maximal depth of the decision tree equal to the number of the element in the train set. 504 
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We set the learning rate and the number of cycles to 0.1 and 1000, respectively, in order to 505 

achieve higher accuracy as well.  506 

Classification performance was assessed on the test set by calculating accuracy of the 507 

corresponding confusion matrices. The accuracy level was calculated by considering the 508 

number of correct predictions divided by the total number of elements in the test set. 509 

Confidence intervals for accuracy values were computed by using Clopper-Pearson method. 510 

Chance level was estimated as the proportion of the class with the majority of elements with 511 

respect to the total number of elements. 512 

Data were analyzed off-line in MATLAB (The MathWorks, Inc.). 513 

 514 

Discrimination analysis and decoding-discrimination relationship. Similarly to previous 515 

studies20, we built a discrimination channel index to understand the discrimination ability of 516 

the electrodes and consequentially a possible relation with decoding performances. To this 517 

aim, we calculated the percentage of activation for each channel relative to the different 518 

functional challenges as described below.  519 

For each challenge, each signal was reconstructed using the wavelet details at the same 520 

scale previously used for the decoding algorithm: 521 

𝑥𝑠(𝑡) ≈ ∑ ∑ 𝑑𝑠,𝑗[𝑘] ∗ 𝜓𝑗𝑘(𝑡)

𝑘

2

𝑗=1

 522 

 where 𝑑𝑠,𝑗[𝑘] are the wavelet details at scale 𝑗 of the recording site 𝑠,  and 𝜓𝑗𝑘(𝑡) is the 523 

wavelet function (see Supplementary Figure 3a,b for a graphical example). The  524 

reconstructed signals from each recording sites  (𝑋 = {𝑥𝑠} , 𝑖 = 1, . . . , 𝑆) were segmented 525 

using a temporal window of T=1 sec and rescaled to zero mean and unitary standard 526 

deviation obtaining a number of signal’s blocks  𝑁𝑏𝑙𝑜𝑐𝑘,  i.e. 𝑋 = (𝑋(1), … , 𝑋(𝑁𝑏𝑙𝑜𝑐𝑘)). For 527 

each block of the signals, we calculated the first three principal component coefficients 528 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2020. ; https://doi.org/10.1101/2020.06.01.127050doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.01.127050
http://creativecommons.org/licenses/by-nd/4.0/


(loadings), i.e. 𝑃𝑖𝑝𝑐𝑎(𝑖𝑏𝑙𝑜𝑐𝑘) with  𝑖𝑝𝑐𝑎 = 1,2,3 𝑎𝑛𝑑 𝑖𝑏𝑙𝑜𝑐𝑘 = 1, … , 𝑁𝑏𝑙𝑜𝑐𝑘. We thus identified for 529 

each principal component the higher outliers relative to loadings’ absolute values. Outliers 530 

were identified using a threshold of three scaled mean absolute deviation from the median 531 

(see Supplementary Figure 3c, right panel for a graphical example). When an outlier was 532 

identified in a portion of the signal, a value equal to unity was assigned to the corresponding 533 

channel (‘channel activated’) and zero otherwise, i.e. we defined an indicator for each 534 

channel 𝑠 and block 𝑖𝑏𝑙𝑜𝑐𝑘 : 535 

    536 

𝐼𝑠

𝑖𝑝𝑐𝑎(𝑖𝑏𝑙𝑜𝑐𝑘) = {
1    𝑖𝑓 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑜𝑓 𝑖𝑝𝑐𝑎 𝑤. 𝑟. 𝑡. 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑠 𝑖𝑠 𝑜𝑢𝑡𝑙𝑖𝑒𝑟

0                                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 537 

 538 

For each channel, the resulting percentage of activation relative to a principal component 539 

𝜇𝑠

𝑖𝑝𝑐𝑎
, is equal to the number of times in which the channel was activated divided by the total 540 

number of portions of the signal, i.e. 541 

𝜇𝑠

𝑖𝑝𝑐𝑎 =  
∑ 𝐼𝑠

𝑖𝑝𝑐𝑎(𝑖𝑏𝑙𝑜𝑐𝑘)𝑁𝑏𝑙𝑜𝑐𝑘
𝑖𝑏𝑙𝑜𝑐𝑘=1 

𝑁𝑏𝑙𝑜𝑐𝑘
 542 

The percentage of activation of each channel was quantified as the mean over the 543 

percentage of activation of the channel in each principal component (see Supplementary 544 

Figure 3c left panel) 𝜇𝑠 =  
∑ 𝜇𝑠

𝑖𝑝𝑐𝑎3
𝑖𝑝𝑐𝑎=1 

3
. 545 

Similarly to Raspopovic et. al20, given the percentage of activation for each channel, we 546 

defined a discrimination index for each channel as the difference between the percentage 547 

of activation of the considered channel and the mean percentage of activation over the 548 

remaining channels, i.e.  549 
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𝐷𝑠 =  𝜇𝑠 −  
1

𝑁𝑠 − 1
∑ 𝜇𝑙

𝑁𝑠

𝑠=1,𝑖≠𝑙

. 550 

Thus, discrimination vectors with entries made  of channels’ discrimination indices were 551 

obtained among the different functional challenges, i.e.  𝐷𝑐 = {𝐷𝑐,𝑠} with 𝑐 =552 

{𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 𝐵𝑃𝐶, 𝑇𝑉𝐶, 𝑅𝑅𝐶} 𝑎𝑛𝑑 𝑠 = 1, … , 𝑆. The difference between two generic 553 

discrimination vectors  was obtained by considering the root mean square level of the 554 

Euclidean distance (see Supplementary Figure 4a).   555 

Electrode discrimination ability was computed by considering the mean over all the six 556 

possible combination distances between the distinct discrimination vectors (see 557 

Supplementary Figure 4a).  Finally, a linear correlation coefficient was calculated between 558 

the electrode discrimination ability and the decoding performance (accuracy) and the least-559 

squares line was plotted.   560 

 561 

Hybrid modelling of the recording process and Discriminative Field Potentials. To 562 

understand the distribution of the electrical field potential within a nerve, we employed the 563 

hybrid modeling framework as described in 38,39,41. Histological sections were manually 564 

segmented by defining the contours of the epineural compartment (the whole nerve section 565 

contour) and of the fascicles. Such contours were imported in MATLAB as closed polylines. 566 

Fascicle polylines were substituted with ellipses having the same surface area as the 567 

fascicles, center of the fascicle centroid, axis length ratio and orientation were deduced from 568 

the minimum (area) bounding rectangle of each fascicle. The perineurial sheath for each 569 

fascicle was defined as a layer with width equal to 0.03 times the effective diameter 570 

(diameter of the equivalent circle) of the fascicle52. A 3D extrusion of the given nerve section 571 

was defined in COMSOL (through MATLAB LiveLink for COMSOL) and it was included in a 572 

saline bath whose external surface was grounded (simulation of zero potential at infinity 39). 573 
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A point current source was defined corresponding to each electrode active site center. To 574 

obtain the potential field on the nerve section (up to a multiplicative scaling factor, i.e. 575 

linearity assumption), we simulated the stimulation from all given sites with an adimensional 576 

current (one at the time and unitary). Indeed, thanks to the Helmholtz reciprocity theorem, 577 

the value of the potential field due to a unitary current injected by an active site corresponds 578 

to the impedance that relates the intensity of a current source with the resulting potential 579 

field recorded at the site surface. This means that a higher electrical field in a point in space 580 

P leads to a higher amplitude of the recorded electrical activity of a fibre located in P 42. 581 

Given the knowledge of the electric field potential generated from a fascicle and the 582 

corresponding recording capability of a given recording site, we wanted to link this 583 

information to the discrimination properties of the recording site. To this aim, we defined a 584 

measure, that we called Discriminative Field Potential (DFP), by weighting the recording 585 

capabilities of a recording site s from a given fascicles F together with the discrimination 586 

properties of the recording site s related to a functional challenge c, i.e. 587 

𝐷𝐹𝑃𝑐,𝐹 =  
∑ 𝐷𝑐,𝑠

𝑆
𝑠=1 𝜑𝑠,𝐹

∑ 𝜑𝑠,𝐹
𝑆
𝑠=1

 588 

 where 𝐷𝑐,𝑠  is the discrimination ability to a functional challenge c and recording site s, and 589 

𝜑𝑠,𝐹 is the mean field inside a fascicle F recorded from a site s (calculated by averaging 590 

isopotential values of the potential field inside the fascicle) . Since the 𝜑𝑠,𝐹 measures how 591 

a site s is capable of recording from a given fascicle, and 𝐷𝑐,𝑠 measures how site s records 592 

better the activity related to a functional challenge c with respect to the other sites, then the 593 

𝐷𝐹𝑃𝑐,𝐹 is a quantity measuring how a fascicle is related to a given functional challenge. 594 
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Similarly to the calculation of electrode discrimination ability, to quantify the discrimination 595 

ability of the whole nerve section, we computed the root mean square level of the Euclidean 596 

distance of the 𝐷𝐹𝑃 values in the fascicle space. We thus calculated the mean 597 

discrimination distance by considering the mean over all the six possible combinations of 598 

functional challenges. 599 

Statistical analysis.  Unless otherwise stated, data are expressed as mean ± s.e.m. 600 

Statistical significance between accuracies were assessed by means of Chi square test 601 

Bonferroni corrected for multiple comparisons. Confidence intervals for the accuracy values 602 

were calculated using the Clopper-Pearson method. Statistical significance of accuracy 603 

values with respect to chance level was assessed by using the binomial test. Statistical 604 

significance between the discrimination ability of nerve sections was assessed by using two-605 

tailed unpaired t-test at a significance threshold equal to 0.05. To test for normality of data 606 

distribution a Kolmogorov-Smirnov test was used on each population of data. Statistical 607 

analysis was performed with MATLAB (The MathWorks, Inc.). 608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 
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Supplementary Information:  772 

Simultaneous decoding of cardiovascular and respiratory 773 

functional changes from pig intraneural vagus nerve signals  774 

 775 

Supplementary Figure 1. Confusion matrices between baseline condition against one 776 

functional challenge a,b,c.  Comparison between baseline and  BPC  (panel a),  RRC (panel b), 777 

TVC (panel c).  778 

 779 

Supplementary Figure 2. Confusion matrices between baseline condition against two 780 

functional challenges a,b,c Comparison between baseline and  BPC-RRC  (panel a),  BPC-TVC 781 

(panel b), RRC-TVC (panel c).  782 

 783 

Supplementary Figure 3. Discrimination analysis method. a Raw recording. b Signal in the 784 

frequency band 1500-6000 Hz reconstructed throughout wavelet details used in the decoding 785 

algorithm (segmented in a temporal window of 1 sec). c Estimation of channels discrimination index. 786 

Right panel, outlier detection on PCA loadings for the different functional challenges. Left panel, 787 

schematic representation of the active sites in the electrode p4-s3 and percentage of activation level 788 

estimation in single channels.  789 

 790 

 791 

 792 
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Supplementary Figure 4. Estimation of electrode discrimination ability and RMS level 793 

distance matrices examples. a Estimation of electrode discrimination ability. Left panel, 3D 794 

graphical visualization example of discrimination index channel vectors for TVC and BPC challenges 795 

(green and yellow vectors, respectively). Middle panel, root mean square level distance matrix. Right 796 

panel, estimation of electrode discrimination ability by averaging over all possible (n=6) combination 797 

comparison of functional challenge. 798 

b,c  RMS level distance matrices in the electrode discrimination space for the comparison among 799 

baseline condition and the functional challenges (TVC, RRC, BPC)  in two electrodes placed in 800 

different animals (p2-t2 and p3-s1) and two electrodes in the same animal (p4-s3 and p4-s4), 801 

respectively.  802 

 803 

Supplementary Figure 5 and 6. Discriminative Field Potential (DFP) estimation in pig p4e1 804 

and p4e2, respectively. a Nerve cross-section and implanted electrode. The intraneural fascicles 805 

numerical are labeled with numbers i=1,…,Nfascicles. b Isopotential Electric field lines for three different 806 

recording sites. c DFP estimation procedure. Left panel, fascicle mean field for each site. Right 807 

panel, selectivity index for each site across the different functional challenges. Bottom panel, DFP 808 

values in each fascicle across the different functional challenges. 809 
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Supplementary Figure 1 820 
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Supplementary Figure 2821 
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Supplementary Figure 3823 
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Supplementary Figure 4 826 
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Supplementary Figure 5 828 
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Supplementary Figure 6 839 
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