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Abstract 

In recent years, several hierarchical extensions of well-known learning algorithms have been proposed. 

For example, when stimulus-action mappings vary across time or context, the brain may learn two or 

more stimulus-action mappings in separate modules, and additionally (at a hierarchically higher level) 

learn to appropriately switch between those modules. However, how the brain mechanistically 

coordinates neural communication to implement such hierarchical learning, remains unknown. 

Therefore, the current study tests a recent computational model that proposed how midfrontal theta 

oscillations implement hierarchical learning via the principle of binding by synchrony (Sync model). 

64-channel EEG signal was recorded while 27 subjects performed a probabilistic reversal learning task. 

In line with the Sync model, post-feedback theta power showed a linear relationship with negative 

prediction errors, but not with positive prediction errors. This relationship was especially pronounced 

for subjects with better behavioral fit (measured via AIC) of the Sync model. Also consistent with Sync 

model simulations, theta phase-coupling between midfrontal electrodes and temporo-parietal electrodes 

was stronger after negative feedback. Our data suggest that the brain uses theta power and 

synchronization for flexibly switching between task rule modules, as is useful for example when 

multiple stimulus-action mappings must be retained and used. 

Significance Statement 

Everyday life requires flexibility in switching between several tasks. A key question in understanding 

this ability is how the brain mechanistically coordinates such switches. The current study tests a recent 

computational framework (Sync model) that proposed how midfrontal theta oscillations coordinate 

activity in hierarchically lower task-related areas. In line with predictions of this Sync model, midfrontal 

theta power was stronger when rule switches were most likely (strong negative prediction error), 

especially in subjects who obtained a better model fit. Additionally, also theta phase connectivity 

between midfrontal and task-related areas was increased after negative feedback. Thus, the data 

provided support for the hypothesis that the brain uses theta power and synchronization for flexibly 

switching between tasks.
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Switching between tasks is key to function in a complex and rapidly changing environment. 1 

For instance, when at the pub with friends, behavior is likely guided by different social rules than at 2 

work. However, when the boss suddenly walks into the pub, this might require to flexibly switch 3 

between these two sets of social rules. Importantly, an empirically valid model that explains how the 4 

human brain mechanistically deals with such switches, remains lacking. 5 

In experimental settings, this cognitive flexibility is typically tested in a reversal learning setup 6 

(Izquierdo, Brigman, Radke, Rudebeck, & Holmes, 2017). Here, agents must learn task rules consisting 7 

of collections of stimulus-action mappings. During the task, these rules are regularly reversed. One 8 

popular framework to explain performance during reversal learning tasks is the Rescorla-Wagner model 9 

(RW; Rescorla & Wagner, 1972; Widrow & Hoff, 1960). Here, on every trial, obtained reward is used 10 

to update the value of active stimulus-action mappings. By learning fast, the agent can flexibly deal 11 

with changes in task rules. However, when feedback is probabilistic (e.g., Cools, Clark, Owen, & 12 

Robbins, 2002), this approach experiences difficulties. Specifically, a high learning rate will lead agents 13 

to “chase the noise” introduced by probabilistic feedback. In contrast, a low learning rate increases 14 

robustness against noise, but decreases flexibility on rule switches. Thus, some have proposed that 15 

learning rate should be adaptive (e.g., Bai, Katahira, & Ohira, 2014; Behrens, Woolrich, Walton, & 16 

Rushworth, 2007; Silvetti, Vassena, Abrahamse, & Verguts, 2018). In this adaptive learning rate (ALR) 17 

proposal, agents track rule switches by comparing an estimate of reward probability to the received 18 

reward. Consistently high prediction errors indicate that the underlying rule has changed, and learning 19 

rate should be increased. More fundamentally however, irrespective of learning rate flexibility, both the 20 

RW and ALR framework assume that, on every rule reversal, old information is overwritten. Especially 21 

for more complex problems, this is inefficient; as is demonstrated by the problem of catastrophic 22 

forgetting in artificial neural networks (French, 1999)). 23 

To overcome catastrophic forgetting, separate mapping collections for every task rule may be 24 

stored (Saez, Rigotti, Ostojic, Fusi, & Salzman, 2015; Wilson, Takahashi, Schoenbaum, & Niv, 2014). 25 

However, this poses the agent with a new problem of keeping track which task rule is currently relevant. 26 

Recent fMRI research focusing on this hierarchical approach toward reversal learning has pointed to 27 
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midfrontal cortex as responsible neural structure for keeping track of the current task rule (Wilson et 28 

al., 2014). However, how midfrontal cortex mechanistically coordinates neural communication in 29 

switching between task rules, remains an open question. 30 

This question was recently addressed by a novel computational framework of hierarchical 31 

learning (Verbeke & Verguts, 2019). As proposed in (Wilson et al., 2014), this model retains separate 32 

mappings for every task rule. It keeps track of rule reversals by calculating prediction error. In order to 33 

guide neural communication between areas holding the appropriate mappings, the model relies on 34 

binding by synchrony (BBS; Fries, 2005, 2015; Gray & Singer, 1989; Womelsdorf et al., 2007) in theta 35 

frequency (4-8 Hz). Specifically, midfrontal theta oscillations synchronize neuronal activity along task-36 

relevant pathways. Thus, task-relevant neurons can communicate and learn, while stability is achieved 37 

in currently irrelevant pathways.  38 

The current study empirically tests this model, further on referred to as Sync model (Fig 1B). 39 

For this purpose, the Sync model is fitted on data of subjects performing a probabilistic reversal learning 40 

paradigm, and empirically compared to alternative models (Bai et al., 2014; Rescorla & Wagner, 1972). 41 

Then, Sync model simulations provided several predictions for EEG measured while subjects 42 

performed this task, specifically in theta frequency (model-driven EEG predictions). First, a linear 43 

relationship between midfrontal theta power and negative prediction errors was predicted, especially in 44 

subjects with good behavioral Sync model fit. Second, a peak of midfrontal theta power was predicted 45 

for data locked to rule switches. Third, phase coupling between midfrontal and posterior electrodes was 46 

predicted to be stronger after negative feedback. 47 

Materials and Methods 48 

Materials 49 

The experiment was run on a Dell Optiplex 9010 mini-tower running PsychoPy software 50 

(Peirce et al., 2019). Electrophysiological data were recorded using a BioSemi ActiveTwo system 51 

(BioSemi, Amsterdam, Netherlands) with 64 Ag/AgCl electrodes arranged in the standard international 52 

10–20 electrode mapping (Jasper, 1958), with a posterior CMS-DRL electrode pair. Two reference 53 

electrodes were positioned at the left and right mastoids. Eye movements were registered with a pair of 54 
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electrodes above and below the left eye and two additional electrodes at the outer canthi of both eyes. 55 

EEG signals were recorded at a sampling rate of 1024 Hz. 56 

Models were fitted using the differential evolution method of the SciPy (version 1.4.1) 57 

package in Python (version 3.7.6). Other behavioral analyses were done using R software (R Core 58 

Team, 2017). The electrophysiological data were preprocessed in MATLAB R2016b (The MathWorks 59 

Inc., 2016) using an EEGLAB preprocessing pipeline (Delorme & Makeig, 2004). Also for simulations 60 

of the Sync model MATLAB R2106b was used.  61 

Code and Data Accessibility 62 

All code used to provide the results described in the current paper is provided at 63 

https://github.com/CogComNeuroSci/PieterV_public/tree/master/Reversal_learning. At publication, 64 

also the data will be made freely accessible at https://osf.io/wt36f/. 65 
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 66 

Fig 1. Methods. A: The task. The time course of one trial in the experimental paradigm is shown. Elements 67 

highlighted by a blue rectangle, such as the presented stimulus and feedback, are manipulated on a trial-by-trial 68 

basis. Elements highlighted by the red rectangle are manipulated blockwise. Here, the fixation cross after feedback 69 

was green in one experimental block (half of all trials). In this reporting block, subjects had to press space during 70 

this period if they thought the rule had switched. B: The Sync model. The left diagram represents a schematic 71 

overview of the Sync model. In the lower right corner, a detailed illustration shows how bursts originating in the 72 
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pMFC synchronize task-relevant areas in the Mapping unit (see (Verbeke & Verguts, 2019) for detailed 73 

explanation).  74 

 75 

Experimental Task 76 

Both the model (27 simulations) and human subjects (N = 27) performed a probabilistic 77 

reversal learning task (see Fig 1A). Agents had to learn task rules consisting of two stimulus-action 78 

mappings which were regularly reversed during the task. Every trial started with a centrally presented 79 

white fixation cross for 2 seconds. Then the stimulus was presented for a period of 100 milliseconds. 80 

This stimulus was a centrally presented circular grating with a raised-cosine mask and a size of 7 visual 81 

degrees. The grating was either vertically or horizontally oriented. After stimulus presentation, the 82 

screen turned blank until response. Responses were given by pressing the ‘f’- (left) or ‘j’-key (right) on 83 

an azerty keyboard. In task rule 1, the horizontal stimulus mapped to a left response and the vertical 84 

stimulus to the right response; this was reversed for task rule 2. During the task (480 trials), 15 rule 85 

switches were introduced. These rule switches occurred at random (uniform distribution from 15 to 45 86 

trials after the previous task switch). After response, feedback was presented in the center of the screen. 87 

This feedback consisted of ‘+10 points’ for rewarded trials, ‘+0 points’ for unrewarded trials or 88 

‘Respond faster!’ when response times (RT) were more than 1 second. After feedback, the fixation 89 

cross appeared again for another 2 seconds. Crucially, the experiment was divided into two 90 

experimental blocks (240 trials each). In one block, the reporting block, the post-feedback fixation cross 91 

was presented in green. During this period, subjects were instructed to press the space bar if they thought 92 

the task rule had switched. The purpose of this approach was to obtain an indication of when the subject 93 

reached his or her own ‘Switch threshold’, as happens in the Sync model. This was only done during 94 

one block, so critical changes due to this difference in task structure could be checked. The order of the 95 

two blocks was counterbalanced across subjects. In between blocks, as well as three times within a 96 

block, subjects were allowed a small break. This break could only occur if there was no rule switch 97 

within 10 trials from the break. 98 
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Human Testing Procedure 99 

34 subjects participated in this study, 7 subjects were removed because of either technical 100 

problems with the EEG recording (4) or an inability to give a correct response on more than 2/3 of the 101 

trials (3), resulting in N = 27. Subjects were told they would receive €25 for their participation, with a 102 

possibility to earn up to €3 extra reward depending on their performance.  103 

Before starting the task, the subject had to go through two short practice sessions with gratings 104 

that were tilted 45º to the left or to the right relative to a vertical line. In the first practice session, the 105 

subject performed 30 trials with only one task rule. Here, the goal was to let the subject get acquainted 106 

with the general paradigm and learn a task rule through probabilistic feedback. Subjects were only 107 

allowed to continue to the second practice session if they performed above chance level (50%) and 108 

could report the correct task rule to the experimenter. If not, they performed this practice session again. 109 

In the second practice session, subjects performed 60 trials of the task with 3 rule switches and with the 110 

post-feedback green fixation cross (as in the reporting block). In this session, subjects pressed the space 111 

bar to indicate a task switch and received feedback for each press. The press was considered correct if 112 

subjects responded within 10 trials from the actual rule switch. They were allowed to continue to the 113 

next task if they were able to perform above chance level and had at least 1 correct indication of a rule 114 

switch. After successfully performing both practice sessions, subjects performed 480 trials of the actual 115 

task.  116 

Behavioral Analyses 117 

To check for differences between the reporting block (green fixation cross) and the non-118 

reporting block (see Experimental Task and Fig 1A), paired t-tests were performed for both accuracy 119 

and RT, depending on experimental block. In order to deal with the skewed distribution of RT, the 120 

natural log of RT was used for all analyses. Additionally, trials with too late responses were excluded 121 

for both behavioral and EEG analyses.  122 

Model Analyses 123 

Model formulation 124 
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More extensive analyses of behavioral data were done with a model-based approach. Current 125 

work aims to test the Sync model (Verbeke & Verguts, 2019), but two baseline models were fitted as 126 

well. In the following section, we first provide a conceptual overview, followed by a more detailed 127 

description of all three models. Then, we describe how model fit was evaluated.  128 

An overview of model architecture is provided in Fig 1B. The RW and ALR model are 129 

restricted to only the Mapping unit (with one rule module). The RW model (Rescorla & Wagner, 1972) 130 

had a constant learning rate while the ALR model (Bai et al., 2014), was implemented with an adaptable 131 

learning rate. The Sync model consists of two units, the Mapping and Switch unit. The Mapping unit 132 

contains a classic network with 2 layers (visual input and motor output). Here, weights are adapted with 133 

the RW algorithm (Widrow & Hoff, 1960). In the Sync model, 4 nodes (2 for each response option) at 134 

the motor output layer, are divided in 2 rule modules, one for each task rule. Hence, as in (Wilson et 135 

al., 2014), the Mapping unit holds separate stimulus-action mappings for each task rule. In addition, a 136 

Switch unit forms a hierarchically higher network modeled after primate prefrontal cortex. This Switch 137 

unit keeps track of switches in task rule. Specifically, the Switch unit consists of the lateral frontal 138 

cortex (LFC), posterior medial frontal cortex (pMFC) and anterior midfrontal cortex (aMFC). Here, the 139 

LFC holds pointers (Botvinick et al., 2001) that indicate which rule should be synchronized in the 140 

Mapping unit. Since BBS implements gating, allowing efficient communication between synchronized 141 

nodes and inefficient communication between non-synchronized nodes (Fries, 2005, 2015), the agents’ 142 

behavior will be guided by the synchronized rule. This synchronization process is then executed by the 143 

binding by random bursts principle (Springer & Paulsson, 2006; Verguts, 2017; Zhou, Chen, & Aihara, 144 

2005). In the Sync model, a theta-frequency-paced signal produced in the pMFC is responsible for 145 

sending these bursts (see (Verbeke & Verguts, 2019; Verguts, 2017) for details). The aMFC contains a 146 

neural network (for simplicity not shown in Fig 1B) that is adapted from previous work (Silvetti, 147 

Seurinck, & Verguts, 2011). Here, again RW learning is employed but on a hierarchically higher level. 148 

More specifically, the aMFC learns an expected reward (V) for the currently used rule module (see 149 

equation (4)). Which rule module is currently used, is extracted from activation in the LFC. The 150 

expected reward is then compared to an external reward signal (Rew; Reward in Fig 1B) in order to 151 
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compute prediction errors. The negative prediction error signal is propagated to both the Accumulator 152 

neuron (within the aMFC neural network) and to pMFC. A single negative prediction error increases 153 

(via bursting) the power of the theta signal in pMFC (bursting connection in Fig 1B; see (Verbeke & 154 

Verguts, 2019) for details). Instead, the Accumulator neuron evaluates the prediction error signal on a 155 

slower time scale, and thus requires multiple prediction errors before activation in the Accumulator 156 

neuron reaches its Switch threshold (see equation (5)). When this happens, it signals the need for a 157 

switch to the LFC. Correspondingly, the LFC will change the signal to the Mapping unit, and 158 

synchronize another rule module. In sum, bursts received by the Mapping unit are the result of a 159 

cooperation between LFC and pMFC. Here, the pMFC determines the intensity of theta bursts while 160 

the LFC determines which task rule in the Mapping unit is susceptible to the bursts. For further details 161 

see (Verbeke & Verguts, 2019). 162 

All nodes in the visual input and motor output layer of the Mapping unit as well as the pMFC 163 

are oscillatory nodes. In line with previous work (Verguts, 2017), oscillatory nodes contain neuronal 164 

triplets. In the pMFC, which executes top-down control by sending bursts, activity oscillates at a theta 165 

(6 Hz) frequency, in line with suggestions of previous empirical work (Cavanagh & Frank, 2014; 166 

Womelsdorf, Johnston, Vinck, & Everling, 2010). Different from our previous modelling work, a theta 167 

frequency was used in the Mapping unit (see Discussion) as well. Since bursts lead to a significant 168 

increase of power, a radius parameter (rmin) is implemented in order to attract power back to baseline 169 

after a burst. Since continuously high pMFC power is computationally suboptimal and empirically 170 

implausible (Holroyd, 2016), power in the pMFC was attracted towards a smaller radius, rmin = .50. How 171 

fast oscillations decay to baseline is determined by a damping parameter (D) which was set to D = .30 172 

in the Mapping unit. Since the pMFC not only receives burst but also sends them, a slower decay D = 173 

.01 was implemented here to allow a sufficient activity window (~ 500 ms/3 theta cycles) for bursts to 174 

be sent. In order to reduce model complexity, no oscillations were used in the LFC and aMFC. For a 175 

full description of model dynamics see (Verbeke & Verguts, 2019). 176 

We turn now to the more detailed descriptions. On every trial, the RW and ALR models 177 

respond with a probability based on the following softmax rule: 178 
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 179 

 𝑝(𝑎) =
𝑒'((,*)/,

∑ 𝑒'((,*.)/, 
(1) 

 180 

in which Q(s,a) is the value of a given stimulus-action pair (s, a). t is the temperature parameter which 181 

determines how strongly the subject explores different actions. On every trial, Q(s,a) is updated based 182 

on the rule: 183 

 184 

 𝑄(𝑠, 𝑎)123 = 𝑄(𝑠, 𝑎)1 + 𝛼 ∗ (𝑅𝑒𝑤 − 𝑄(𝑠, 𝑎)1) (2) 

 185 

in which a is the Mapping learning rate and Rew is the reward received by the agent.  186 

In the ALR model (Bai et al., 2014), the learning rate changes in an adaptive manner. Here, 187 

the Mapping learning rate is updated on every trial by  188 

 189 

 𝛼123 = 𝜂 ∗ ;𝑅𝑒𝑤 − 𝑄(𝑠, 𝑎)1; + (1 − 𝜂) ∗ 𝛼1  (3) 

 190 

in which h determines how strongly the learning rate is influenced by the current difference between 191 

Rew and Q (lower-level prediction error).  192 

The third model is the Sync model. In order to implement BBS, on every trial multiple time 193 

steps were simulated in which oscillations occurred. Here, motor nodes accumulate activation over 194 

time. The motor node with the maximal accumulated activation over time, was considered as the model 195 

response. Values of stimulus action pairs (Q) in each rule module (R) are updated similar to equation 196 

(2). As described above, this model has an additional Switch unit which adds a hierarchical learning 197 

algorithm on top of the RW (fixed learning rate) model in the Mapping unit. This Switch unit evaluates 198 

whether there was a rule switch. More specifically, it learns a value for every rule module by  199 

 200 

 𝑉(𝑅)123 = 𝑉(𝑅)1 + 𝛼>?@> ∗ (𝑅𝑒𝑤 − 𝑉(𝑅)1) (4) 
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 201 

in which ahigh is the higher order Switch learning rate. The absolute difference between the expected 202 

value V(R) in equation (4) and the obtained Rew (i.e., the unsigned prediction error) is accumulated in 203 

the Accumulator neuron (A) via 204 

 205 

𝐴123 = B𝛾 ∗ 𝐴1 +
(1 − 𝛾) ∗ ;𝑅𝑒𝑤 − 𝑉(𝑅)1;																															𝑖𝑓	G𝑅𝑒𝑤 − 𝑉(𝑅)1H < 0	

𝛾 ∗ 𝐴1																																																																																																											𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5) 

 206 

Here, g is the Cumulation parameter which determines how strongly the Accumulation neuron is 207 

affected by a single prediction error. While a low Cumulation parameter causes the agent to strongly 208 

weigh single prediction error and therefore regularly switch between rule modules, a high Cumulation 209 

parameter implements a more conservative approach. Since switches are only required when negative 210 

feedback occurs, the Accumulator neuron is selective for negative prediction errors. When several 211 

negative prediction errors occur in succession, this Accumulator neuron will reach a Switch threshold 212 

which is set to .5, and the model will switch to another rule module (R) in the Mapping unit.  213 

For behavioral data fitting only, the full Sync model was simplified by introducing a hard gating 214 

process between task rules instead of BBS and a response selection mechanism similar to (1). This 215 

allowed to skip the loop of 1500 timesteps every trial, which was needed to simulate oscillations. We 216 

refer to this model as the behavioral Sync (bSync) model. 217 

Model evaluation 218 

For each subject, the goodness of fit of these three models was compared by using three 219 

measures. The log-likelihood (LL) 220 

 221 

 𝐿𝐿 =P𝑎1 ∗ 𝑙𝑛	(𝑝G𝑎1 = 1H)
S

1T3

+ G1 − 𝑎1H ∗ ln	(𝑝G𝑎1 = 0H) (6) 

 222 
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in which p(a) is the probability of the given action (see equation (1)) and J represents the number of 223 

trials. The AIC uses this LL but includes a penalty for the number of parameters (k) that were used in 224 

the model: 225 

 226 

 𝐴𝐼𝐶 = 2 ∗ 𝑘 − 2 ∗ 𝐿𝐿 (7) 

 227 

From this AIC, AIC weights (wAIC) can be derived which allows to make a relative comparison 228 

between the model fit of the three different models. These wAIC values are computed as 229 

  230 

 𝑤𝐴𝐼𝐶 =
𝑒[

3
\	∆^_`a

∑ 𝑒[
3
\	∆^_`ab

cT3

 (8) 

 231 

in which M is the number of models that are compared (3) and  232 

 233 

 ∆𝐴𝐼𝐶c = 𝐴𝐼𝐶c −min	(𝐴𝐼𝐶) (9) 

 234 

Here, min(AIC) is the lowest AIC value out of the three models for that subject. Thus, Equation (8) 235 

results in a wAIC value for each model. The sum of all three wAIC values is 1, and if all three models 236 

fit the data equally well, wAIC equals .33 for all three models. 237 

Simulations 238 

In order to provide hypotheses for EEG data, 27 simulations of the full Sync model were 239 

performed. For all simulations, the same parameter values were used. These parameter values were 240 

sampled from the estimated parameter distributions of the bSync model so that overall accuracy of 241 

model simulations (M = 78.00%, SD = 1.30) closely resembled accuracy of subjects (M = 76.80%, SD 242 

= 4.91). This resulted in a Mapping learning rate (a) of .8, a Switch learning rate (ahigh) of .1 and a 243 

Cumulation parameter (g) of .3. The full Sync model did not use a Temperature (t) parameter but the 244 

synchronization procedure introduces noise which also introduces some randomness in behavior. The 245 
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Switch threshold was always fixed to .5. Since the current model does not provide RTs, a period of 500 246 

ms was used as trial period in which the visual layer received stimulation. Thereafter, 1500 ms of inter-247 

trial interval was simulated in order to provide a post-feedback period that could be analyzed in the 248 

same way as the empirical data. All other aspects of the task, such as the frequency and timing of rule 249 

switches, were the same for the model as for the human subjects. 250 

Power Analyses 251 

Time-frequency decomposition was performed on the excitatory neuron within the neuronal 252 

triplet of the model’s pMFC node in the model. Complex Morlet wavelets were used for frequencies 253 

between 2 and 48 Hz defined in 25 logarithmically spaced steps. For each frequency, between 3 and 8 254 

cycles were used, also defined in 25 logarithmically spaced steps. Power was extracted as the squared 255 

absolute value of the time-frequency decomposed signal. In order to locate activity that was specific to 256 

feedback processing, the difference between power in trials with negative feedback and trials with 257 

positive feedback was computed. For simplicity, we selected the 2.5% most positive values as cluster 258 

of interest. This cluster contained one group of data points in theta frequency and approximately 250-259 

500 ms after feedback. On every trial, the mean power in this cluster was computed and entered in the 260 

consecutive analyses. Since a negative prediction error in the model increases activity of the pMFC, we 261 

performed a linear regression of cluster power with prediction error as the independent variable. To test 262 

our first hypothesis, that this relationship was specific to negative prediction error, a second regression 263 

model was used that also included the interaction between prediction error and reward. The second 264 

hypothesis states that because negative prediction errors are strongest at the moment of a rule switch, a 265 

peak of post-feedback theta power should be found when we lock data to rule switches. To investigate 266 

this, we extracted power from the model cluster in trials within a 31-trial window around the rule switch 267 

(-15 to +15). The time course (one data point for each of the 31 trials) that resulted after averaging over 268 

all (15) rule switches and all (27) simulations, was then used as a regressor in a linear regression with 269 

data from the empirical clusters. 270 

Phase Analyses  271 
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Our third hypothesis stated that phase coupling between pMFC and model nodes in the 272 

Mapping unit was stronger after negative feedback. Specifically, theta power in the model pMFC 273 

increases after negative prediction error. When there is sufficient power in the pMFC, it will increase 274 

synchronization in the Mapping unit (posterior/lateral task-related regions, e.g., pre-motor or visual 275 

areas). For this purpose, the pMFC uses binding by random bursts (Verguts, 2017). Here, the pMFC 276 

will at specific phases, send bursts to the Mapping unit. Thereby it will shift the phase of neurons in the 277 

Mapping unit (see Verbeke & Verguts, 2019 for details). This leads to phase shifts in these lower pre-278 

motor or visual task-related areas, and a short period of phase-alignment between these task-related 279 

areas in the Mapping unit and pMFC. Phase was extracted in all model nodes by taking the angle of the 280 

Hilbert transform of the raw signal. For simplicity the model was implemented without inter-areal 281 

delays. Furthermore, in contrast to analyses on the empirical EEG data (see equation (10)), control for 282 

volume conduction was not needed, so the regular phase locking value (PLV; Lachaux, Rodriguez, 283 

Martinerie, & Varela, 1999) was computed between the model pMFC and the nodes in the motor layer 284 

of the Mapping unit. This PLV was then averaged over all 4 motor nodes and the time period included 285 

in the power cluster (~250-500 ms post feedback).  286 

EEG Analyses 287 

Preprocessing 288 

The data were re-referenced offline to the average of the mastoid electrodes. Breaks or other 289 

offline periods were manually removed. Particularly noisy electrodes were interpolated between 290 

neighboring electrodes on all timesteps. For three subjects one electrode was interpolated, for another 291 

three subjects we had to interpolate two electrodes; because of a bridge, one subject needed interpolation 292 

for five posterior electrodes. Additionally, activity was band-pass filtered between 1 and 48 Hz in order 293 

to remove slow drifts and line noise of 50 Hz. Eyeblinks and other motor-related noise components 294 

were removed through EEGLAB independent component analysis (ICA). After ICA-removal, the data 295 

was epoched, once locked to feedback onset and once to stimulus onset. The epochs based on stimulus 296 

onset were used to extract baseline activation, which was -1500 to -500 ms relative to stimulus onset. 297 

This baseline activity was subtracted from all epochs. After epoching, on average 7.5% of epochs were 298 
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removed by applying an amplitude threshold of -500 to 500 mV and an improbability test with 6 299 

standard deviations for single electrodes and 2 standard deviations for all electrodes, as described in 300 

Makoto’s preprocessing pipeline (Makoto, 2018). Before time-frequency analyses, data was also 301 

downsampled to 512 Hz. 302 

Time-frequency Decomposition  303 

Time-frequency decomposition was based on code from (Cohen, 2014). Similar to model 304 

analyses, complex Morlet wavelets were used for frequencies between 2 and 48 Hz defined in 25 305 

logarithmically spaced steps. For each frequency, between 3 and 8 cycles were used, also defined in 25 306 

logarithmically spaced steps.  307 

Power Computation 308 

A baseline correction was applied to the power estimates for each subject, electrode and 309 

frequency separately, based on the average baseline activity (-1500 ms to -500 ms from stimulus onset) 310 

across all 480 trials. Finally, the baseline-corrected data underwent a decibel conversion. Before final 311 

analyses, also trials with late responses were removed from the data.  312 

Power Cluster Analyses 313 

Similar to model analyses, we were interested in activity selective for feedback. Hence, a 314 

contrast between Z-scored power in trials with negative feedback and trials with positive feedback was 315 

computed. On these values, a non-parametric clustering procedure was applied (Maris & Oostenveld, 316 

2007). The distribution of statistics was computed. On each side of the distribution (two-sided test), the 317 

1% most extreme values were entered into the clustering analysis. From these, we clustered adjacent 318 

neighbors in the channel, frequency and time domains. To calculate our cluster-level statistic, we 319 

multiplied the number of items (i.e., (channel, frequency, time) points) in the cluster with the largest 320 

statistic of that cluster. A significance threshold of 5% was imposed on the subsequent non-parametric 321 

permutation test with 1000 iterations. Clusters that survived this permutation test were taken into the 322 

consecutive analyses. As an exploratory analysis, we also extracted mean cluster statistics for each 323 

subject, and ran a Spearman rank correlation of these statistics with wAIC of the bSync model obtained 324 

in the behavioral model fitting procedure.  325 
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Midfrontal Theta Power and Prediction Error 326 

The Sync model uniquely yields specific EEG predictions, to which we now turn. To test the 327 

first model-driven EEG hypothesis of a relation between theta power and prediction errors, we first 328 

extracted a measure of prediction error for every subject on every trial by simulating the bSync model. 329 

This measure of prediction error was then used in a linear mixed effects models as a predictor for the 330 

mean Z-scored power of every cluster that was selective for feedback. Here, a random intercept for 331 

every subject was included and a fixed slope. Because the Sync model predicted different relationships 332 

for positive prediction errors and negative prediction errors, also the interaction between prediction 333 

errors and reward was tested. Additionally, in order to explore whether the wAIC influenced the 334 

interaction between prediction errors and reward, also a three-way interaction between prediction error, 335 

reward and wAIC was tested. More specifically, three regression models were fitted: One in which only 336 

prediction error was included as regressor, one in which both prediction error and the interaction 337 

between prediction error and reward were included, and finally a third model in which the main effect, 338 

the two-way interaction, and an extra three-way interaction between prediction error, reward and wAIC 339 

was included. These regression models were then compared via ANOVA.  340 

Rule Switch Locking 341 

A second model-driven EEG hypothesis considers theta power locked to the moment of a rule 342 

switch. For this analysis, EEG data of 31 trials around the rule switch (-15 to +15 trials, including the 343 

rule switch trial itself) were extracted. On these trials, the mean power for every cluster selective for 344 

feedback was computed. This data was then again averaged over all switches, giving us a trial-to-trial 345 

time course of mean cluster-power from -15 trials before rule switch to 15 trials after rule switch for 346 

every subject. On each time point, a 99.84% confidence interval (CI) was computed based on a 347 

Bonferroni correction for multiple comparisons (100-(5/31)). This confidence interval was compared 348 

to a baseline power. Baseline power was computed based on the mean power in this cluster, averaged 349 

over all trials that were more than 15 trials removed from the rule switch.  350 

As the rule switch trial, we considered both the actual rule switch and the subjective indication 351 

of a rule switch. Hence, power close to a rule switch was compared with the mean power of trials that 352 
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were far from the rule switch. When the confidence interval did not include the baseline value, power 353 

on this trial was considered as significantly deviating from baseline. Additionally, we aimed to 354 

investigate the similarity between the data pattern predicted by the model and the empirical data. For 355 

this purpose, data from the model simulations (see above for details) was used as a linear regressor for 356 

the empirical data. Also for this hypothesis, an extra analysis was performed to investigate whether 357 

wAIC had an influence on the observed effect. Here, we extracted subject data on trials of which cluster 358 

power significantly deviated from baseline and used this data as a dependent variable in a linear 359 

regression with wAIC. 360 

Midfrontal-posterior Phase-coupling Analyses 361 

For the third model-driven EEG hypothesis, we considered all midline electrodes (10) as seed 362 

and other electrodes (54) as receiver in the phase connectivity analyses. Because we were interested in 363 

phase-locking related to rule modules conveying the correct response, all data was lateralized with 364 

respect to the correct response. All data ipsi-lateral to the correct response was brought to the left 365 

electrodes; all contra-lateral data was brought to the right electrodes. The iPLV (Bruña, Maestú, & 366 

Pereda, 2018) was computed between all midline electrodes and all lateral electrodes for every time 367 

point in the feedback-locked data. This iPLV measure was computed by the following equation 368 

 369 

 𝑖𝑃𝐿𝑉 = |	
1
𝑛
P𝐼𝑚(𝑒[?(∆ij))	
k

lT3

| (10) 

 370 

which computes the average phase angle (j) difference over trials (t). By only looking at the imaginary 371 

(Im) part of this phase angle difference, phase differences of zero are eliminated. Hence volume 372 

conduction effects are excluded, because such volume conduction effects are represented in zero-phase 373 

differences (Bruña et al., 2018; Nolte et al., 2004). Again, a non-parametric cluster algorithm was 374 

performed on the contrast between iPLV for trials with negative versus positive feedback. For this 375 

analysis, only data of one midline electrode was used. More specifically, we checked on which of the 376 

10 midline electrodes the mean contrast in the theta frequency (4-8 Hz) reached a maximum. This was 377 
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in the FCz electrode, hence only iPLV between FCz and all lateral electrodes were entered in the 378 

clustering algorithm. As for power, an exploratory analysis was performed in which we extracted mean 379 

cluster statistics for each subject, and ran a Spearman rank correlation of these statistics with wAIC of 380 

the bSync model obtained in the model fitting procedure.  381 

Results 382 

Behavioral Data 383 

A paired t-test confirmed that there were no significant differences between the experiment 384 

block in which subjects had to indicate when a task switch happened or when they did not have to 385 

indicate this (see Materials and Methods for details), neither in accuracy (t(26) = .029, p = .977), nor in 386 

RT (t(26) = -1.290, p = .208). 387 

Model Analyses 388 

The distribution of all fitted parameter values for each model is given in Fig 2A. Simulations 389 

of the models with these parameter values allowed us to estimate a learning curve that illustrates how 390 

accuracy increases after rule switches (Fig 2B). Goodness of fit measures are summarized in Table 1. 391 

Here, log-likelihood was highest (best) for the bSync model, lowest for the ALR model, with the RW 392 

model in between. When a penalty for model complexity was applied (AIC, wAIC), the RW and bSync 393 

models performed approximately equal. Importantly, wAIC results indicated significant differences 394 

across individuals. As illustrated in Fig 2C, subjects could be roughly divided into three groups based 395 

on the wAIC of the bSync model. In one group (8 subjects), the wAIC were significantly smaller (better) 396 

for the bSync model (M =. 12, SD = .026) than for the RW model (M = .78, SD = .027). A second group 397 

(7 subjects) showed wAIC values that were approximately equally strong for the bSync (M = .44, SD = 398 

.036) as for the RW model (M = .50, SD = .032). In a third group (12 subjects), the bSync model showed 399 

wAIC that were significantly higher for the bSync model (M = .64, SD =. 027) than for the RW model 400 

(M = .32, SD = .026).  401 

Model Mean LL SD LL Mean AIC SD AIC Mean wAIC SD wAIC 

RW -208.08 .07 420.16 .13 .51 .20 

ALR -209.31 .05 424.63 .10 .05 .02 

bSync -206.35 1.11 420.70 2.22 .44 .22 
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Table 1. Goodness of fit measures. Results of log-likelihood (LL), AIC and wAIC computations over subjects 402 

are shown for each of three models. For LL and wAIC, high values indicate a better fit, while for AIC a low value 403 

indicates a good fit.  404 

 405 

Three parameters of the bSync model showed a significant correlation with wAIC (Fig 2D). 406 

These parameters were the Switch learning rate (rho = -.761, p < .001), the Cumulation parameter (rho 407 

= -.708, p < .001), and the Temperature parameter (rho = -.497, p = .008). There was no significant 408 

correlation with the Mapping learning rate (rho = -.145, p = .468). Additionally, a correlation test 409 

between accuracy and wAIC revealed that the bSync model fitted significantly better for subjects with 410 

a lower accuracy (rho = -.510, p = .007).  411 
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 412 

Fig 2. Model comparison. A: Parameter distributions. Distributions of fitted parameter values are shown for 413 

each model. B: Learning curve fit. Black dots represent the mean accuracy data over all subjects. The error bars 414 

show the 95% confidence intervals. The red line illustrates the mean Likelihood of data that was simulated with 415 

the fitted parameter values. The shade represents the 95% confidence interval. C: wAIC groups. This figure 416 

illustrates how wAIC values can be roughly divided in three groups (colors). D: Correlation plots. Correlations 417 

are shown between wAIC of the bSync model and all parameters of the bSync model. In the lower middle plot, 418 

also the correlation between wAIC and task accuracy is shown.  419 

 420 
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EEG and Model Data 421 

Power Cluster Analyses 422 

Cluster analysis on post-feedback power revealed three significant clusters that were selective 423 

for feedback processing (Fig 3). All three clusters appeared between 0 and 750 ms from feedback onset. 424 

As was predicted by the Sync model (Fig 3A), one of these clusters was in the theta frequency range (~ 425 

4-8 Hz) and located on midfrontal electrodes (Fig 3B, D). This theta cluster showed more power when 426 

feedback was negative than when it was positive. Additionally, we found two clusters located on the 427 

posterior channels. One of these clusters was in the delta frequency (< 4 Hz; Fig 3B, E), the other cluster 428 

was located in the alpha-frequency range (~ 8-15 Hz; Fig 3B, C). Both the delta and alpha cluster 429 

showed less power for negative feedback than for positive feedback. No correlation between the power 430 

contrast of a cluster and subjects’ wAIC for the bSync reached significance.  431 

 432 

Fig 3. Power results. A-B: Time-Frequency plots of contrast (Negative – Positive feedback). Significant clusters 433 

are indicated by the black contour line. A: Contrast of power in the model pMFC. B: Contrast for Z-scored power 434 

in the human data, averaged over all 64 electrodes. C-E: topographical plots of clusters found in the human data. 435 

Crosses indicate channels where the cluster statistic reached significance. 436 

 437 

Midfrontal Theta Power and Prediction Error 438 

We next consider the first of three model-driven EEG hypotheses. We first perform statistical 439 

analysis on the Sync-model simulated data (Fig. 4A). Theta power in the Sync model data was best 440 
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predicted by the regression model that included an interaction between reward and prediction error (F(1, 441 

11980) = 22133, p < .001). Hence, there was a significant main effect of prediction error (F(1, 11980) 442 

= 742962, p < .001, b = -4.99) and a significant interaction of prediction error and reward (F(1, 11980) 443 

= 22133, p < .001, b = 4.48). Thus, as predicted, the model cluster showed a negative linear relationship 444 

with negative prediction error, and no linear relationship with positive prediction error (Fig 4A).  445 

For power in the empirical theta cluster, the regression model including the interaction 446 

between prediction error and reward fitted significantly better than the regression model with only 447 

prediction error as regressor (c2 (1, N = 27) = 110, p < .001). Additionally, the regression model 448 

including the three-way interaction between prediction error, reward and wAIC fitted significantly 449 

better than the regression model with only the two-way interaction (c2 (2, N = 27) = 20.74, p < .001). 450 

Here, all effects reached significance. Hence, there was a main effect of prediction error (c2 (1, N = 27) 451 

= 1299, p < .001, b = -.79) and an interaction of prediction error with reward (c2 (1, N = 27) = 110, p < 452 

.001, b = .65). Additionally, there was a significant interaction between prediction error, reward and 453 

wAIC (c2 (2, N = 27) = 20.900, p < .001). As can be observed in Fig 4B these results indicated a 454 

significant negative linear relationship between power and negative prediction error, which was 455 

stronger for subjects with a high wAIC (i.e., better behavioral fit of the Sync model); and an absence of 456 

linear relationship between power and positive prediction error which did not differ significantly for 457 

wAIC (Fig 4B). Interestingly, the three-way interaction was significant in the unrewarded (negative 458 

prediction error) trials (b = -.89, p < .001) but did not reach significance in the rewarded (positive 459 

prediction error) trials (b = .44, p = .077).  460 

For exploratory purposes, we investigated the same regression models in the delta and alpha 461 

clusters. In the delta cluster, the difference in regression model fit between the regression models 462 

without and with the prediction error-reward interaction term did not reach significance (c2 (1, N = 27) 463 

= 3.490, p = .062). However, the regression model that also included the three-way interaction between 464 

prediction error, reward and wAIC fitted significantly better than the regression model with no 465 
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interaction terms (c2 (3, N = 27) = 9.27, p = .026). Here, the main effect of prediction error was 466 

significant (c2 (1, N = 27) = 580, p < .001, b = .45). The interaction between prediction error and reward 467 

did not reach significance (c2 (1, N = 27) = 3.490, p = .062, b = -.07). Also the three-way interaction 468 

term did not reach significance (c2 (2, N = 27) = 5.830, p = .054). However, if the interaction was 469 

considered separately for rewarded trials (b = .61, p = .018) and unrewarded trials (b = -.50, p = .033), 470 

both reached significance. As can be observed in Fig 4C, this meant that there was a positive linear 471 

relationship between power and prediction error for both positive and negative prediction error (Fig 472 

4D). For subjects with low wAIC, the slope in unrewarded trials seemed similar to the one in rewarded 473 

trials, while for subjects with high wAIC, an inverse effect of the theta cluster was observed in which 474 

there was a flat(ter) slope in unrewarded trials but a steeper slope in rewarded trials.  475 

In the alpha cluster, the regression model with the two-way interaction term showed a 476 

significantly better fit than the regression model without interaction (c2 (1, N = 27) = 224, p < .001). 477 

When the three-way interaction was added, it did not lead to a significantly better regression model (c2 478 

(2, N = 27) = .35, p = .841). Here, a significant main effect of prediction error (c2 (1, N = 27) = 142, p 479 

< .001, b = .85) and a significant interaction between prediction error and reward (c2 (1, N = 27) = 226, 480 

p < .001, b = -1.38) were observed. The three-way interaction between prediction error, reward and 481 

wAIC was not significant (c2 (2, N = 27) = .360, p = .833). As is shown in Fig 4D, power in the alpha 482 

cluster exhibited a positive linear relationship for negative prediction error but a negative linear 483 

relationship with positive prediction error. These effects did not differ with respect to wAIC.  484 
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 485 

Fig 4. Result of linear regression between power and prediction error (PE) in all clusters. Lines indicate 486 

slopes and the shades represent 95% confidence intervals. The Model cluster (A) aimed to predict empirical data 487 

from the theta cluster (B).  488 

 489 

Rule Switch Locking 490 

For the second model-driven EEG hypothesis, power from the data clusters was extracted in 491 

trials within a 31-trial window from the rule switch (-15 to +15). In all clusters, one trial was observed 492 

that significantly deviated from baseline power. In the theta cluster (Fig 5A), only the exact trial of the 493 

rule switch (0) was significant above baseline (CI99.84 [-2.059, .256], baseline = -2.340). Linear 494 

regression of the data time course (across 31 trials) on the Sync model time course showed a significant 495 

effect (F(1, 835) = 20.510, p < .001, R2
adj = .023, b = .31). In the delta cluster (Fig 5B), only the exact 496 

trial of the rule switch (0) was significantly below baseline (CI99.84 [-2.450, -1.265], baseline = -497 

1.201). Linear regression of the data time course on the Sync model time course revealed a significant 498 

correlation (F(1, 835) = 7.360, p = .007, R2
adj = .008, b = -.18). For the alpha cluster (Fig 5C), again one 499 

trial was significantly below baseline (CI99.84 [-6.275, -3.603], baseline = -3.584). Notably, this was 500 

the trial after the rule switch (+1). Moreover, when data was locked to the moment where subjects 501 

indicated the rule switch (Fig 5D), alpha power reaches a minimum at this exact moment (CI99.84 [-502 
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7.675, -3.686], baseline = -3.584). Also in the alpha cluster, the linear regression of the power on the 503 

Sync model pattern reached significance with a negative slope (F(1, 835) = 32.720, p < .001, R2
adj = 504 

.037, b = -.65).  505 

 506 

Fig 5. Power locked to rule switch. Black lines show the mean power. Error bars show the 99.84% confidence 507 

interval (Bonferroni correction). The horizontal blue dashed line represents baseline power and the vertical green 508 

dotted line indicates the moment of the rule switch. The red line visualizes the result of linear regression between 509 

the Sync model and human data. A-C show data locked to the moment of the actual rule switch. D shows data of 510 

the alpha cluster locked to the moment when subjects indicated they noticed the task switch.  511 

 512 

Power at the peak trials (0 for theta and delta, +1 for alpha) was extracted and added to a linear 513 

regression with wAIC as predictor. This revealed no significant effects for the theta (F(1, 25) = .004, p 514 

= .948, R2
adj = -.040, b = -.10) or delta cluster (F(1, 25) = .680, p = .417, R2 

adj = -.012, b = .66). However, 515 

the effect of wAIC did reach significance in the alpha cluster (F(1, 25) = 7.220, p = .013, R2
adj = .193, b 516 

= 4.17). Fig 6 sheds light on how activity in the alpha cluster differed depending on wAIC. For 517 

illustrative purposes, subjects were divided in three groups of low, middle and high wAIC. For each 518 

group, the data pattern of alpha activity was plotted, once locked to the real rule switch and once locked 519 
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to the indication of a rule switch (Fig 6). Here, it is observed that the alpha pattern is mainly driven by 520 

subjects that have a low wAIC (i.e., good fit) for the bSync model.  521 

 522 

Fig 6. Power locked to rule switch for different wAIC. Data patterns are shown for different wAIC values 523 

(colored lines). The horizontal black dashed line shows the baseline power over all subjects and the vertical green 524 

dotted line indicates the moment of the rule switch (A) or indication of rule switch (B). 525 

 526 

Midfrontal-posterior Phase-coupling Analyses 527 

We next turn to our third model-driven EEG analysis concerning an increase of phase 528 

coupling between midfrontal and posterior electrodes after negative feedback. As previously described, 529 

this coupling is induced by bursts that are sent from pMFC to posterior areas in the Mapping unit. Since 530 

pMFC power is stronger after negative feedback, also the number of bursts and the amount of phase-531 

coupling is increased.  532 

Here, non-parametric cluster analyses on the phase-locking data (phase-locking with 533 

midfrontal electrodes; Fig 7) revealed six significant clusters that were selective for feedback (for details 534 

see Materials and Methods). These clusters were located in the theta (4; Fig 7A, B, C) or delta (2; Fig 535 

7A, B, D) frequency band. In the theta frequency band, two clusters were located at temporal electrodes; 536 

two other clusters were located on more lateral/anterior frontal electrodes. In the delta frequency band, 537 

both clusters were located on posterior electrodes. In line with the results of Sync model simulations 538 

(Fig 7E), the theta clusters showed an increase in phase-locking after negative feedback. This was the 539 

case for both the ipsilateral and contralateral electrodes. The delta clusters show the inverse pattern of 540 

the theta cluster. Here, phase-locking was stronger after positive feedback than after negative feedback 541 

in both the ipsi- and contralateral cluster. As in the power analyses, we also explored whether the phase-542 
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locking contrast in each cluster correlated with the subjects’ wAIC for the bSync model. None of these 543 

correlations reached significance.  544 

 545 

Fig 7. Phase-locking results. A-B: Time-Frequency plots of contrast (Negative – Positive feedback). Significant 546 

clusters are indicated by the black or white contour line. The black line represents posterior clusters in C and D 547 

while the white line represent the frontal clusters in C. A: Contrast of iPLV averaged over all ipsi-lateral 548 

electrodes. B: Contrast of iPLV averaged over all contra-lateral electrodes. C-D: Topographical plots of clusters. 549 

Data was averaged over all time points and frequencies that were included in the respective contours of A and B. 550 

Channels where cluster statistic reached significance are marked by crosses or dots. The left channels (crosses) 551 

present ipsi-lateral electrodes and the right channels (dots) present contra-lateral electrodes. Again, the white color 552 

was used to distinguish the frontal clusters from the temporal clusters. 553 

 554 

Discussion 555 

The current study aimed to gain insight in neural mechanisms that allow humans to flexibly 556 

adapt to changes in the environment. For this purpose, 27 healthy human subjects were tested on a 557 

probabilistic reversal learning task while EEG was recorded. On behavioral level, three models of 558 

increasing hierarchical complexity were compared. A first model, the RW model, updated the value of 559 

stimulus-action mappings on a trial-by-trial basis with a fixed learning rate. In a second model, the ALR 560 

model, this approach was extended by employing an adaptable learning rate, allowing the ALR model 561 

to be flexible in adapting to rule switches (fast learning rate) but to also be robust to noise evoked by 562 
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probabilistic feedback (slow learning rate). The third, Sync, model implemented modularity to retain 563 

task-specific mappings. It employs hierarchical learning to determine when to switch between rule 564 

modules. This approach obviates the need to relearn mappings on each rule switch. No evidence was 565 

found for the ALR model, while for some people the RW fit best, and for others the Sync model.  566 

Simulations of the Sync model allowed formulation and testing of three model-driven EEG 567 

hypotheses. The first hypothesis considers the relation between midfrontal theta power and prediction 568 

errors. In the Sync model, prediction errors are used to evaluate how much control should be exerted. 569 

Here, the level of control is represented by theta power in pMFC. Since only negative prediction errors 570 

inform about possible rule switches, the Sync model increased control after negative prediction errors 571 

but not after positive prediction errors. Empirical data supported this hypothesis. A linear relationship 572 

between prediction error and power in the theta cluster was observed for unrewarded trials (negative 573 

prediction error) but not for rewarded trials (positive prediction error). Moreover, this effect was 574 

stronger for subjects that fitted better with the Sync model. Since prediction errors are strongest at the 575 

moment of a rule switch, a second model-driven hypothesis stated that theta power would peak at rule 576 

switches. Again, this hypothesis was supported by empirical data. Moreover, simulated power 577 

significantly predicted power in the empirical theta cluster. In a third model-driven hypothesis, the Sync 578 

model predicted that phase connectivity would be increased after negative feedback. Here, six 579 

significant clusters were found. Four of them were in theta frequency range and showed the pattern 580 

predicted by the Sync model. Two of these clusters were located on posterior-temporal electrodes, 581 

which is roughly in line with our prediction of motor and visual areas.  582 

Several hypotheses remain to be tested. First, as was briefly mentioned in the Materials and 583 

Methods section, previous modeling work used a gamma frequency in the Mapping unit instead of a 584 

theta frequency. This frequency was currently changed because empirical work provides strong 585 

evidence for within-frequency (theta-theta) coupling (Cavanagh, Cohen, & Allen, 2009; Clouter, 586 

Shapiro, & Hanslmayr, 2017; Nigbur, Cohen, Ridderinkhof, & Stürmer, 2011) during cognitive tasks, 587 

in addition to cross-frequency coupling. We thus also studied within-frequency coupling empirically. 588 

Nevertheless, future work, using MEG or more invasive measurements, should also study the role of 589 
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cross-frequency (theta-gamma) coupling. Second, the limited spatial resolution of EEG did not allow 590 

testing the prediction that different task rules are implemented by synchronizing different task-relevant 591 

modules. 592 

Several extensions can be made to the model as well. For instance, while for the reversal 593 

learning task of the current study it was sufficient to use prediction error to determine when to make a 594 

binary switch, a more sophisticated approach might apply in everyday life, where contextual cues allow 595 

navigating a vast map of tasks and rules. One way to address this issue is by adding second level 596 

(contextual) features which allow the LFC to (learn to) infer which of multiple task modules should be 597 

synchronized. Additionally, scalability of the Sync model is limited by how modularity was 598 

implemented in the Mapping unit. Here, none of the task rule 1 mappings are shared with task rule 2. 599 

Such a strict division of task mappings is optimal when those mappings are orthogonal. However, when 600 

some (but not all) of the mappings can be generalized between tasks, the current approach does not 601 

allow agents to transfer knowledge across contexts. As has been addressed in previous work (Collins 602 

& Frank, 2013; Gershman, Blei, & Niv, 2010), a more sustainable way is to construct modules of 603 

mappings that are shared between tasks. Instead of having to learn each new task from scratch, this 604 

approach allows agents to transfer knowledge from one task to another. Future work should explore 605 

whether these more complex hierarchical learning algorithms can be integrated in the Sync model. 606 

Since the current task did not contain (contextual) cues to infer the appropriate mappings, the 607 

Sync model relied on prediction errors to estimate the hidden state (task rule) of the environment. This 608 

is in line with previous ideas that reinforcement learning and more specifically prediction errors 609 

signaled by dopamine are used to infer so called belief states (Gershman & Uchida, 2019; Starkweather, 610 

Babayan, Uchida, & Gershman, 2017; Wilson et al., 2014). Instead, non-hierarchical models (such as 611 

RW and ALR) only use prediction errors to adjust value of lower-level mappings.  612 

Building on suggestions of previous work (Piray, Dezfouli, Heskes, Frank, & Daw, 2019), 613 

current study illustrated how individual differences in model fit can be leveraged to address cognitive 614 

questions. Here, three groups could be distinguished. One group of subjects aligned with the RW model, 615 

a second group aligned with the Sync model and in a third group, no distinction could be made between 616 
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the RW and Sync model. Interestingly, subjects with lower accuracy fitted better with the Sync model. 617 

This is consistent with previous work (Verbeke & Verguts, 2019) which illustrated that modularity as 618 

employed by the Sync model is only beneficial if the learning problem is sufficiently complex. 619 

Furthermore, despite previous work showing a good behavioral fit of ALR-type models (Bai et al., 620 

2014; Behrens et al., 2007; Silvetti, Seurinck, & Verguts, 2013), fit of the ALR model in the current 621 

study was consistently low over all subjects. Crucially, previous studies typically included long stable 622 

trial blocks in which the task rule did not change. In these periods it was beneficial to decrease learning 623 

rate. In contrast, the current task applied frequent rule switches in rapid succession, favoring tonically 624 

high learning rates. Thus, future work should investigate whether subjects flexibly employ the RW, 625 

Sync or ALR framework depending on the structure and complexity of the task. 626 

The Sync model implements modularity via neural oscillations between task-relevant areas. 627 

This concords with a growing interest in the function of neural oscillations for a wide variety of 628 

cognitive functions, such as visual attention (e.g., Gray & Singer, 1989; Han, Lee, & Choi, 2019; 629 

Jensen, Bonnefond, & VanRullen, 2012), working memory (e.g., Hsieh, Ekstrom, & Ranganath, 2011; 630 

Hsieh & Ranganath, 2014; Lisman & Idiart, 1995), cognitive control (e.g., Cavanagh & Frank, 2014; 631 

Oehrn et al., 2014) and declarative learning (Ergo, De Loof, & Verguts, 2020). According to the BBS 632 

hypothesis (Fries, 2005, 2015), all these cognitive functions require in some way the binding of several 633 

stimuli, dimensions or features. Current work described how oscillations, and more specifically 634 

synchronization, might be relevant in hierarchical learning. Here, BBS is employed to flexibly bind 635 

mappings that are relevant for a certain task rule. 636 

On anatomical-functional level, current work builds on suggestions from previous work that 637 

pMFC closely cooperates with LFC (Cavanagh, Frank, Klein, & Allen, 2010; Kondo, Osaka, & Osaka, 638 

2004; Mac Donald, Cohen, Stenger, & Carter, 2000) to exert hierarchical control over lower-level motor 639 

processes (Alexander & Brown, 2015; Badre & Nee, 2018; Holroyd & McClure, 2015; Koechlin, Ody, 640 

& Kouneiher, 2003). In the Sync model, LFC signals which rule modules should be synchronized. This 641 

is in line with previous theoretical work describing LFC as containing task demands (Botvinick et al., 642 

2001) and empirical work that found strong communication between LFC and pMFC in cognitive tasks 643 

(Cavanagh et al., 2010; Kondo et al., 2004; Mac Donald et al., 2000). Also in line with previous 644 
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empirical work (Boorman, Behrens, Woolrich, & Rushworth, 2009; Wilson et al., 2014), the model 645 

aMFC is responsible for keeping track of the relevant task rule. Additionally, consistent with previous 646 

fMRI work (e.g., Aben, Calderon, den Bussche, & Verguts, 2020; Hare, Schultz, Camerer, O’Doherty, 647 

& Rangel, 2011), the current study also found increased coupling between midfrontal cortex and task-648 

related areas when more control was needed (negative feedback). Importantly, while this fMRI work 649 

showed detailed networks of connectivity, current study described how this connectivity works at 650 

algorithmic level. 651 

To sum up, we have demonstrated how the brain might employ synchronization in order to 652 

bind task-relevant areas for hierarchical and efficient task processing. To achieve this, we used a 653 

combination of EEG, computational modelling, individual differences, and behavioral analysis. We 654 

believe that such an approach might reveal how and whether more complicated tasks can be 655 

implemented via synchronization as well, in which contexts, and in which individuals. 656 
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