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Abstract 7 

Estimating population abundance is central to population ecology. With increasing concern over 8 

declining insect populations, estimating trends in abundance has become even more urgent. At 9 

the same time, there is an emerging in interest in quantifying phenological patterns, in part 10 

because phenological shifts are one of the most conspicuous signs of climate change. Existing 11 

techniques to fit activity curves (and thus both abundance and phenology) to repeated transect 12 

counts of insects (a common form of data for these taxa) frequently fail for sparse data, and often 13 

require advanced knowledge of statistical computing. These limitations prevent us from 14 

understanding both population trends and phenological shifts, especially in the at-risk species for 15 

which this understanding is most vital. Here we present a method to fit repeated transect count 16 

data with Gaussian curves using linear models, and show how robust abundance and 17 

phenological metrics can be obtained using standard regression tools. We then apply this method 18 

to eight years of Baltimore checkerspot data using generalized linear models (GLMs). This case 19 

study illustrates the ability of our method to fit even years with only a few non-zero survey 20 

counts, and identifies a significant negative relationship between population size and annual 21 

variation in thermal environment (in growing degree days). We believe our new method provides 22 

a key tool to unlock previously-unusable sparse data sets, and may provide a useful middle 23 

ground between ad hoc metrics of abundance and phenology and custom-coded mechanistic 24 

models. 25 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2020.06.01.127910doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.01.127910
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Key words: population dynamics, phenology; climate change; peak abundance; activity period; 26 

first emergence; Gaussian curve; Euphydryas phaeton, growing degree days, general linear 27 

model 28 

 29 

  30 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2020.06.01.127910doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.01.127910
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

Introduction 31 

Ecologists are observing massively elevated extinction rates (Turvey and Crees 2019), 32 

driven in part by direct anthropogenic activities, climate change, and the spread of invasive 33 

species (Pievani 2014).  We are also seeing frequent changes in the phenology of populations, a 34 

“globally coherent fingerprint of climate change” (Parmesan and Yohe 2003). Both of these 35 

patterns are particularly pronounced in insects, for which there are alarming signs of declining 36 

populations for many well-studied taxa (e.g. Thomas et al. 2005, Forister et al. 2010, Potts et al. 37 

2010) and more broadly (e.g. Hallman et al. 2017, van Klink et al. 2020). However, evidence for 38 

global trends is mixed, with other studies showing no overall trends and in some cases 39 

contradicting previous papers that found declines (Wagner et al. 2021). This conflicting literature 40 

highlights the limitations of current tools and data sets (Thomas et al. 2019, Didham et al. 2020).  41 

One key limitation is often the lack of data to estimate trends for individual species or 42 

populations as opposed to broad taxonomic groups or guilds (Wagner et al. 2021), which is 43 

especially problematic for rare or at-risk species. 44 

 One of the common forms of sampling for insect populations are systematic repeated 45 

surveys throughout an activity period, such as “Pollard” transect walks (Pollard 1977), bee bowls 46 

(e.g. Stemkovski et al. 2020), or trap nests (Forrest and Thomson 2011). Historically, the main 47 

goal of these surveys was simply to estimate yearly abundance (e.g. Zonneveld 1991, Pollard and 48 

Yates 1993, Schultz and Hammond 2003). More recently, there has been growing interest in also 49 

estimating phenology from this type of data, starting at least with Sparks and Yates (1997), but 50 

with considerable recent interest (e.g. Stewart et al. 2020, Fric et al. 2020).  Estimating 51 

abundance and phenology from repeated count data seems like it should be easy, yet often 52 

remains a challenge. Initial approaches for estimating abundance involved averaging the counts 53 

of surveys across the activity period (Pollard et al. 1975, Pollard 1977, Thomas 1983, Pollard 54 
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and Yates 1993), which has clear limitations (e.g. requires appropriate estimation of activity 55 

period, appropriate sampling within activity period, and if the same population spreads its 56 

activity across a longer period, the average count will shrink). Initial approaches for estimating 57 

phenology often looked at the first day individuals were observed (e.g. Sparks and Yates 1997), 58 

but this metric can covary with population abundance and sampling effort, so can confound 59 

phenological shifts with other changes (Van Strien et al. 2008, Miller-Rushing et al. 2008, 60 

Inouye et al. 2019).  61 

To improve on these basic approaches, numerous studies have proposed realistic or 62 

highly flexible models (for a list of examples, see Table 1). However, with few exceptions, these 63 

methods were developed or proposed in the context of repeated measures of flowering plants, 64 

where there are often dozens of time points in a year (e.g. Malo 2002, Clark and Thompson 65 

2011, Malo 2002, Clark and Thompson 2011, Proia et al. 2015, Austen et al. 2014). Perhaps as a 66 

consequence of being developed with such rich data, current methods generally require 67 

considerable data to work. This limitation holds both for the suite of models developed for 68 

flowering plants, the “Zonneveld model” – a mechanistic phenology curve commonly used to 69 

analyze insect counts (Zonneveld 1991, INCA 2002, Haddad et al. 2008) --, and more generic 70 

approaches like generalized additive models (GAMs) (Rothery and Roy 2001, Hodgson et al. 71 

2011,  Newson et al. 2016, Stemkovski et al. 2020).  72 

Ecologists sometimes address the limitations of current analytical techniques by working 73 

only with abundant species, or years for which there are many non-zero survey counts. For 74 

example, in a recent analysis of Ohio butterfly populations using GAMs, Wepprich et al. (2019) 75 

limited their analysis to cases where they had 10 or more surveys in a year.  When fitting 76 

Spanish butterfly populations with Gaussian curves using a Bayesian model, Stewart et al. 77 
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(2020) use only species that were present in at least half of their surveys, with at least 35 78 

individuals observed per year. In their analysis of UK butterfly populations using GAMs, 79 

Hodgson et al. (2011) generally excluded sites where the species was observed in less than half 80 

the surveys. In simulations of data for the rare St. Francis’ satyr butterfly, Haddad et al. (2008) 81 

found that when survey frequency dropped to three times per week, the Zonneveld model 82 

(implemented using INCA (2002)) failed more than 30% of the time.  83 

While ecologists can gain a lot of information by fitting elegant models to rich data sets, 84 

having only tools that require rich data may prevent the analysis of rare species or years of low 85 

abundance, both of which are likely to lead to infrequent non-zero survey counts. Ignoring rare 86 

species in turn can bias our understanding of global trends (Didham et al. 2020), and ignoring 87 

years of low abundance limits our ability to infer population dynamics or carry out population 88 

viability analysis (e.g. Gerber and Demaster 1999, Morris et al. 2002). To make matters worse, 89 

even with considerable data, there is no guarantee that existing methods can be solved 90 

numerically. For example, the Zonneveld model, which has become something of a standard for 91 

Pollard-walk style time series, can run into issues of confounded parameters; it is difficult to tell 92 

if you have a few long-lived butterflies or many short-lived ones, leading the Zonneveld model 93 

to fail (Gross et al. 2007, Table S1). Similarly, Malo (2002) presented an elegant phenological 94 

model based on the exponential sine function, but found that their numerical solvers failed to 95 

find reasonable solutions. They thus had to modify the 5-parameter model to include two 96 

additional parameters per year – defining the beginning and ending of the activity peaks for each 97 

year – which have to be determined ad-hoc by users for each year of data. In some other cases, 98 

Bayesian methods are recommended when data are sparse compared to model complexity.  99 

However, custom-coded Bayesian analyses can fail in ways that are not obvious to non-experts 100 
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(Lele and Dennis 2009, Seaman et al. 2012).  101 

 A final challenge with current analytical methods is that many require substantial 102 

knowledge of computational statistics to implement successfully. There are certainly statistical 103 

ecologists with the skill and experience to write custom-coded hierarchical Bayesian models and 104 

ensure that the resulting estimates are sensible (e.g. Lindén and Mäntyniemi 2011, Chapman et 105 

al. 2015), but they are the minority of ecologists. Of the statistical methods we encountered in 106 

writing this paper, only two (the Zonneveld model and GAMs) have seen much use. Not 107 

coincidentally, these are the two methods with easy-to-use program implementations (INCA 108 

(INCA 2002) and the mgcv package in R (Wood 2017), respectively). In contrast, another seven 109 

methods published in the last 20 years have only been used in subsequent publications a 110 

combined total of six times1 (Table 1), and only one of those was applied to insect data (Belitz et 111 

al. (2020), itself proposing a new method). To date, the majority of the apparent surplus of 112 

analytical tools for repeated count data are not actually being used to study insect abundance or 113 

phenology. 114 

Taken together, it is clear that ecologists lack an accessible, robust statistical tool for 115 

quantifying population abundance and phenology for species, years, or sites with sparse data. In 116 

this paper, we propose an approach to fit such data with Guassian curves using generalized linear 117 

models (GLMs). To illustrate this method, we first outline the algebra behind the procedure, then 118 

demonstrate its application to a 9-year time series of monitoring from a population of Baltimore 119 

checkerspot butterflies (Euphydryas phaeton) in Massachusetts. In the supplements we offer a 120 

detailed explanation of how to implement this approach in the programming language R (R Core 121 

Team 2020), and provide simple code to act as a template. The simplicity of Gaussian curves 122 

                                                           
1
 In ecology. The Gaussian mixture model (Proia et al. 2016) has been used several times in publications on highway maintenance and once on 

diagnostics of ventricular septal defects. 
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(defined by only 3 parameters) means that our proposed method can be applied to almost all data 123 

– we find that even three non-zero days of count is sufficient to fit an activity curve (admittedly 124 

one with wide confidence intervals). The familiarity of linear regression and Gaussian curves 125 

(and our example code) make this approach accessible to any ecologist who can run a linear 126 

regression in R.  127 

 128 

 129 

Gaussian curve as a linear model 130 

The basis of our method is that a Gaussian curve has the form 131 

���� � ������������  1 

When a is chosen to make Equation 1 integrate to 1, this is the normal or Gaussian distribution. 132 

Since everything in Equation 1 is a constant except for x, if we multiply it out and define β0, β1, 133 

β2 appropriately in terms of the other constants (see Appendix S1 for the algebra), we can rewrite 134 

the Gaussian curve as 135 

���� � ���	���	����  2 

Here we can see that the terms in the exponent are a quadratic equation. This means that if we 136 

take the natural log of both sides, we are left with a familiar linear model with both a linear and a 137 

quadratic term: 138 

ln��� � β
  β��  β��� 3 

(Note that to produce an appropriate Guassian curve, β1 must be positive and β2 must be 139 

negative; otherwise this equation produces a monotonic or convex curve). Despite our special 140 

use for it, Equation 3 is an ordinary linear model of a quadratic equation, and can be fit with 141 

standard tools for linear models. In the context of phenology, the most straightforward analysis 142 
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would use empirical estimates of abundance or activity (e.g. transect counts of butterflies or 143 

flowers) for dependent variable y, which is distributed following a Gaussian curve in relation to 144 

some measure of time (e.g. day of year) for the independent variable x (Fig. 1A-I).  145 

Fitting a linear model of ln(y) vs. x provides estimates and confidence intervals for β0, β1, 146 

and β2. By reversing the algebra between Equations 1 and 2, we can recover the parameters of 147 

the Gaussian curve (mean µ, variance ��), as well as metrics determined by the gaussian curve 148 

(e.g. area under the curve) that may be useful in interpreting the fitted activity curves (Appendix 149 

S1: Fig. S1). First, µ, the estimated day of peak activity and mean day of activity (these are the 150 

same since the Gaussian curve is symmetrical) can be calculated from the slopes of the linear and 151 

quadratic terms: 152 

� � � ��2�� 4 

The standard deviation of the Gaussian curve, �, is a function of the slope of the quadratic term: 153 

� � �� 12�� 5 

In the case study below, we refer to 2*1.285*� as the activity period. This corresponds to the 154 

range of dates between the 0.1 and the 0.9 quantiles, and so this measures the duration of time 155 

when the middle 80% of observations are estimated to occur (e.g. Jonzén et al. 2006, Michielini 156 

et al. 2020).  157 

The area under the gaussian curve, N, is a population abundance index: 158 

� �  ��� 2�2��� exp ��
 � ���4��� 6 

We use the term “abundance index” because, for constant sampling effort, survival, and 159 

detection probability, N will be proportional to the number of active individuals (e.g. Gross et al. 160 
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2007). However, it is actually a measure of estimated observed activity-days (Dennis et al. 2015, 161 

Wepprich et al. 2019).  162 

We note that here we have focused on a few phenological metrics, including the days of 163 

0.1, 0.5 (e.g. day of peak) and 0.9 quantile. However, because our proposed approach fits a 164 

Guassian curve, from estimated µ and � it is trivial to calculate any characteristics of a Gaussian 165 

curve, including (a) any arbitrary quantiles (e.g. the 0.05 and 0.95 quantiles used in Stemkovski 166 

et al. 2020), (b) the height of the curve (e.g. maximum number of flowers, Miller-Rushing and 167 

Inouye (2009)), or (c) the “observable flight season” (days when the curve exceeds 1, a metric 168 

reflecting the period of likely human detection that parallels first and last observation dates) 169 

(Bonoan et al., in review).  170 

Standard errors of derived parameters such as µ, ��, or � can be estimated using the delta 171 

method (Williams et al. 2002), or by parametric bootstrapping (Dennis 1996). Code for these 172 

analyses is given in Appendices S2 (tutorial as html), S3 (analysis as html) and S4 (data and 173 

Rmarkdown sources for Appendices S2 and S3). All code was written and run in R version 4.0.0 174 

(R Core Team, 2020). 175 

 176 

Case study 177 

Data set 178 

From 2012-2020, we conducted a capture-recapture study of Baltimore checkerspot 179 

(Euphydryas phaeton) butterflies at a natural area (Williams Conservation Land) in the town of 180 

Harvard MA, USA (Brown and Crone 2016, Brown et al. 2017, Crone 2018). Baltimore 181 

checkerspot is a univoltine species, with one clear flight period of adults per year. Surveys were 182 

conducted by visiting the site 2-3 times a week from mid-June until the population was clearly 183 
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finished for the year; the onset of checkerspot flight at this site is usually in late June or early 184 

July. To illustrate the use of a Gaussian curve to estimate phenological metrics, we converted 185 

capture-recapture data to counts of individual animals handled on each visit to the site. This 186 

monitoring protocol creates a data structure that is similar to traditional “Pollard walk” style 187 

monitoring (Pollard 1977, Pollard and Yates 1993, Wepprich et al. 2019) but differs from Pollard 188 

walks in that the site was searched freely, rather than by walking a fixed route. For comparison 189 

with the Gaussian analyses below, we estimated population size each year using standard open 190 

population capture-recapture models (see supplemental methods). For comparison to existing 191 

methods, we fit our data to the Zonneveld model using INCA (INCA 2002). We chose to 192 

compare with the Zonneveld model because it is also easy to use, and as a 4-parameter model, it 193 

is one of the simplest (and thus most likely to fit our sparse data).  194 

 195 

Methods: 196 

Estimation of phenology metrics: We fit Gaussian curves to these data using generalized 197 

linear models (GLM) with a negative binomial family and log link function, with the number of 198 

butterflies seen on each day as the dependent variable, day of year and day of year squared as 199 

independent variables; we used a single model with interaction terms to allow curves to fit each 200 

year separately, but with shared estimation of the model variance term. After fitting the linear 201 

model, we used equations 4-7 to calculate the estimated mean day of activity, standard deviation 202 

of flight period, population abundance, and peak abundance for each year, and use mean day of 203 

activity and standard deviation of activity to calculate onset (day of 0.1 quantile) and end (day of 204 

0.9 quantile) of activity. For heuristic purposes, we calculated confidence intervals for these 205 

metrics using both the delta method and parametric bootstrapping. To test for asymmetry in 206 
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activity curves (a feature common in some systems and models), we regressed residuals by day 207 

of year using a linear model and then again with a cubic regression spline (using the mgcv 208 

package) (Wood 2017).  209 

Comparison to INCA fits:  We used the INCA program to fit each year of our data (INCA 210 

2002). We carried out this analysis with INCA twice: first we fit INCA using default settings, 211 

putting INCA on a level playing field with the Gaussian method; second, we fit INCA again, 212 

providing an informative prior on mortality rate, defined by the mean and standard error of daily 213 

mortality for the Baltimore Checkerspot (Brown and Crone 2016, their Table 1). Both INCA and 214 

the Gaussian curve produce indices of population abundance rather than complete population 215 

estimates, and these indices are on different scales. As such, we focus on the correlation between 216 

INCA and Gaussian metrics. 217 

Evaluating an environmental driver: After estimating abundance and phenology, a 218 

common next question is to ask whether changes in these population characteristics are 219 

associated with changes in environmental conditions (see, e.g., Roy and Sparks 2000, Forister 220 

and Shapiro 2003, Marra et al. 2005, Jonzén et al. 2006, Miller-Rushing et al. 2008, van Buskirk 221 

et al. 2009, Hodgson et al. 2011, Gordo et al. 2013, Bertin 2015, Cayton et al. 2015, Barton and 222 

Sandercock 2018, Heberling et al. 2019, Oke et al. 2019, Park et al. 2019, Fric et al. 2020, 223 

Horton et al. 2020, Stewart et al. 2020, Stemkovski et al. 2020). It is possible in principle to 224 

simultaneously fit drivers of population or phenological change and parameters themselves (e.g. 225 

Mizel et al. 2019). However, the algebra of converting a Gaussian curve to a linear model does 226 

not enable easy inclusion of covariates of the ecologically meaningful derived metrics such as 227 

onset of activity or peak dates (XXX, unpubl. calculations). One accessible alternative to 228 

custom-coding complex models is a two-step process of first estimating derived parameters (e.g. 229 
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population abundance index) with linear models, then using these derived parameters in 230 

subsequent models (e.g. the approach used in Wepprich et al. (2019), but using GLMs instead of 231 

GAMs for the first step). To account for uncertainty in derived parameters, it is straightforward 232 

to use parameteric bootstrapping.  233 

To illustrate this approach, we compared yearly estimates of the day of mean activity, 234 

flight period, and population abundance to temperature. Determining the most appropriate 235 

metrics to capture environmental drivers of population dynamics or phenology is an open 236 

question in ecology, and beyond the scope of this study. We instead chose to demonstrate the 237 

principles with growing degree days (GDD), a common measure of thermal environment that has 238 

been found to predict plant and insect phenology (e.g. Hodgson et al. 2011, Cayton et al. 2015). 239 

We used a developmental threshold of 10 degrees as in Cayton et al. (2015), and calculated GDD 240 

over the period from January 1 through July 1 of each year to represent the time before most 241 

butterflies eclosed (for details, see Appendix S1). For each population metric (abundance, mean 242 

day of activity, flight period), we fit a simple linear regression with GDD as the predictor. We 243 

also calculated 95% confidence intervals for the slope using parametric bootstrapping, and the 244 

proportion of p values that were less than 0.05 among these bootstrapped model fits.  245 

 246 

Results: 247 

Estimation of phenology metrics: For this univoltine butterfly population, the Gaussian 248 

curve provides a visually satisfying fit, with the model reasonably fitting years with many 249 

surveys (Fig. 1 A-F) and those with few (2018-2020, Fig. 1G-I). We found no overall indication 250 

of asymmetry in activity when fitting our residuals with a linear model (slope = 0.085, p=0.57), 251 

and our fitted cubic spline showed no notable deviations from a linear model (estimated degrees 252 
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of freedom for the smoothing term was 1, suggesting a straight line is the best fit). Estimates of 253 

our three metrics (Abundance index, flight period, and day of peak activity) were generally very 254 

precise, with notable exceptions for 2019 and 2020, years with only a few non-zero survey 255 

counts (Figs. 2A-C).  We also see a strong correspondence between our abundance index and 256 

population estimates from the capture-recapture study (R2 = 0.94) (Fig. 3A). These data also 257 

demonstrate the bias of first and last dates of observations in relation to population size (Fig. 3C-258 

D); compared to 0.1 and 0.9 quantiles estimated from annual Gaussian curves, years with smaller 259 

populations had later first observations and earlier last observations.  260 

 Comparison to INCA fits:  Without independent estimates of mortality, INCA fit only 3 261 

of the 9 years of data (Table S1). Using published mortality estimates (Brown and Crone 2016) 262 

as an informative prior probability distribution, INCA was able to fit more years of data (7 of the 263 

9), but still failed to fit 2019 and 2020. For the years in which the informed INCA model fit, 264 

there was a very strong correspondence between the informed INCA fit and the Gaussian fit, 265 

with an R-squared of 0.996 (population abundance indices) and 0.883 (day of peak activity) (Fig. 266 

3B).   267 

Evaluating an environmental driver: Temperature had a strong association with 268 

population abundance index, with warmer years associated with smaller population indices 269 

(estimate slope: -2.12; bootstrapped 95% CI of slope of N vs GDD: [-2.3087, -2.0598]; across 270 

our bootstraps, this was almost always significant (p<0.05 in 99.6% of bootstraps) (Fig. 3D)). 271 

Mean day of activity was consistently earlier in warmer years (estimated slope: -0.004; 272 

bootstrapped 95% CI of slope of µ  vs. GDD: [-0.0065, -0.0024]), but it was rarely statistically 273 

significant (p<0.05 only 6 out of 10,000 times) (Fig. 3E). Temperature was not associated with 274 

differences in flight period (estimated slope: -0.002; bootstrapped 95% CI of � vs. GDD: [-275 
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0.0023, 0.0007], p<0.05 0 of 10,000 times) (Fig 3F).  276 

 277 

Discussion 278 

In this paper, we show how a Gaussian curve can be fit to insect count data using familiar 279 

methods for linear models, and that it allows us to estimate abundance and phenology even for 280 

years of sparse data where other methods can fail. We hope this approach provides a much-281 

needed tool for ecologists trying to study insect decline or the phenology and dynamics for at-282 

risk species (or species that have sparse count data for other reasons). There is a particular need 283 

for tools like this given the growing interest in documenting and understanding insect decline; 284 

our ability to do so is in large part limited by available data and methods (Didham et al. 2020). 285 

We are not the first to use Gaussian curves to fit count data (e.g. Lindén and Mäntyniemi 2011, 286 

Dennis et al. 2015, Oke et al. 2019, Stewart et al. 2020), but past implementations have required 287 

custom coding and more advanced knowledge of statistical computing. 288 

The combination of a simple mathematical form (3 parameters) and the robust fitting 289 

algorithms associated with linear models allows Gaussian models to estimate phenology and 290 

abundance even in years with relatively few observations (see, e.g., Fig 1H). Recent studies of 291 

butterfly (Hodgson et al. 2011, Wepprich et al. 2019, Stewart et al. 2020) and bee (Stemkovski et 292 

al. 2020) populations have generally been restricted to relatively abundant species by the needs 293 

of their more data-hungry methods. These more flexible analytical tools like GAMs provide 294 

more detailed information about activity curves, but at the cost of requiring sufficient data to 295 

differentiate between the many possible shapes those more flexible curves can take. In contrast, 296 

while the Guassian curve is constrained in shape and cannot capture complex activity curves, we 297 

are consistently able to fit curves with only 3 non-zero surveys (XXX unpubl. simulations). Our 298 
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goal is not to replace existing tools, which often provide more detailed information than a 299 

Guassian curve can, like capturing multimodality (e.g. GAMs) or measuring asymmetry and 300 

linking it to biological processes (e.g. the Zonneveld model). Rather, we want to “unlock” data 301 

sets which were previously unusable either because the observations were too sparse for other 302 

methods, or interested parties did not have the computational statistics background needed to fit 303 

more complex models. We explain and demonstrate this method assuming a simple data 304 

structure (e.g. multiple years, but one species and one site). With hierarchical data (e.g. multiple 305 

sites, multiple species), this method can be expanded upon to fit separate curves for statistical 306 

unit (e.g. each year of each site) (Bonoan et al., in review). 307 

Comparing fits and estimates of the Baltimore checkerspot butterfly using our Gaussian 308 

method, the INCA implementation of the Zonneveld model, and capture-recapture tools 309 

demonstrate the value of our approach. Without outside information, the INCA model fit only 310 

one third of our 9 years of data, and even with the inclusion of an independent estimate of 311 

mortality rates, INCA failed to fit the two years with the lowest estimated abundance (Table S1). 312 

However, for years when we could fit the data using the Zonneveld/INCA model informed by 313 

independent estimates of mortality, we see a very strong correspondence between INCA and 314 

Gaussian estimates of population abundance indices (R^2 = 0.99) (Fig. 3B), suggesting that our 315 

proposed method is a useful and comparable alternative to INCA when data are sparse. We also 316 

see a tight correlation between the abundance index of the Gaussian model, and capture-317 

recapture estimates of population size calculated separately from the same data (Fig. 3A), which 318 

suggests that abundance estimates are unbiased. This correlation compares favorably with other 319 

methods of fitting transect data; Haddad et al. (2008) found no correlation between mark-320 

recapture estimates of population size and population size estimated using the Zonneveld model. 321 
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However, the fact that we find a 1:1 match of N (an index that reflects longevity as well as 322 

abundance) and capture-recapture estimates is likely coincidental. By chance, our capture 323 

probability during surveys was ≈ 0.15 (XXX and YYY unpubl.), and the apparent survival of 324 

Baltimore checkerspot butterflies at our site is 0.844/day (Brown and Crone 2016); these values 325 

mean that in our example, the capture probability - by chance - exactly cancelled out the fact that 326 

N is actually in units of “butterfly days”.  327 

While it is becoming increasingly rare, objectively problematic metrics for phenological 328 

patterns such as first or last observations are still used by at least some ecologists (e.g. Fric et al. 329 

2020, Colom et al. 2020). For many types of data sets, observations of first and last events are 330 

known to be biased, as the day of first or last observation depends in part on population size and 331 

detectability (Van Strien et al. 2008, Miller-Rushing et al. 2008, Inouye et al. 2019). Of course, 332 

sometimes data limitations constrain analysis to only use first or last metrics, especially when 333 

comparing with historic data sets (e.g. Heberling et al. 2019). However, in many cases ecologists 334 

have much more complete data, and should not be limited to using problematic phenological 335 

metrics. This point has been made thoroughly in other studies; as expected, for the Baltimore 336 

Checkerspot we see consistent biases in first and last date observed based on population size 337 

(Fig. 3C-D). As an alternative to problematic metrics, fitting Gaussian curves may be a 338 

reasonable first step for many ecologists interested in describing phenology. Early and late 339 

quantiles (e.g. 0.1 and 0.9, as in Jonzén et al. (2006) and Michielini et al. (2020), or 0.05 and 340 

0.95 as in Stemkovski et al. 2020) can easily be calculated from estimated µ and σ, and are 341 

unbiased analogs to represent the early and late parts of the activity season (cf. Bonoan et al., in 342 

review). 343 

We demonstrated how our approach can be used to link population-level patterns with 344 
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environmental (or other) drivers. In doing so, we found a significant negative relationship 345 

between growing degree day (GDD) and abundance indices, and a non-significant pattern of 346 

earlier activity in warmer years that was consistent across bootstraps. These results are largely 347 

consistent with the patterns found in other studies. Warmer temperatures have led to earlier 348 

activity for butterfly species in the UK (MacGregor et al. 2019), Spain (Stefanescu et al. 2003, 349 

Stewart et al. 2020), and Ohio (Cayton et al. 2015), and studies have found that in recent decades 350 

butterflies have advanced their phenology in the UK (MacGregor et al. 2019) and across the 351 

northern hemisphere (Parmesan 2007). The relationship between temperature and abundance 352 

across studies is more complicated. Studies have found warmer temperatures leading to higher 353 

population abundance in most butterfly species in the UK (Roy et al. 2001) and a mixture of 354 

butterfly abundance responses to temperature in Spain (Stewart et al. 2020). In contrast, Isaac et 355 

al. (2011) found butterfly density in England was generally lower in regions with higher 356 

temperatures, and Colom et al. (2020) found warmer summers were associated with smaller 357 

butterfly populations on the Spanish island of Menorca. In Massachusetts USA, butterfly 358 

populations near their species’ northern range limits are generally increasing, and populations 359 

near their species southern range limits are generally decreasing (Breed et al. 2012, Michielini et 360 

al. 2020). 361 

Gaussian curves are only well-suited to represent data that is unimodal and approximately 362 

symmetric. For many phenological events, the assumption of symmetry may be a reasonable 363 

approximation (see Fig 1, and Stewart et al. 2020), although this is of course a hypothesis that 364 

could be explored depending on the goals of an analysis (in our analysis of Baltimore 365 

checkerspot, residuals did not indicate skew). Multimodal distributions may be more 366 

problematic. For multivoltine insects, Generalized Additive Models (GAMs) (e.g. Knudsen et al. 367 
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2007, Moussus et al. 2009, Hodgson et al. 2011, Newson et al. 2016, Stemkovski et al. 2020) 368 

have been used to capture changes in phenology over time. Although they are not described by a 369 

parametric equation, features like the onset (0.1 quantile) or end (0.9 quantile) can be extracted 370 

from GAMs numerically (cf. Stemkovski et al. 2020). Another approach to evaluating 371 

phenological events without assuming a particular distribution is quantile regression (Cade and 372 

Noon 2003, Koenker 2019), which has been used in several studies of bird migration (e.g. Gordo 373 

et al. 2013, Barton and Sandercock 2018), and occasionally for Lepidoptera (Gimesi et al. 2012, 374 

Michielini et al. 2020). Like GAMs and GLMs, quantile regression shares the property of 375 

drawing on well-established and well-validated statistical approaches, rather than developing 376 

new ones.  377 

Understanding trends in abundance has long been a goal of both population ecology and 378 

conservation management, and this has become all the more urgent with observed and suspected 379 

population declines in a wide range of species, particularly insects. Similarly, because 380 

phenological shifts are one of the most conspicuous signs of climate change, there is growing 381 

interest in their causes and consequences. We expect that the widespread interest in abundance 382 

and phenology will continue to lead to a growing number of new methods for interpreting 383 

patterns in count data. At the same time, not every new method is guaranteed to work for all (or 384 

even most) data, and custom-coding for every question can be error-prone, time consuming, and 385 

intimidating to many ecologists. We encourage ecologists to be aware of well-established 386 

existing methods, and provide the linearized Gaussian model as a simple tool for unlocking 387 

previously-inaccessible sparse data sets.  388 
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Figure 1: Gaussian model fitted to Baltimore checkerspot butterfly data. Points show raw data, 629 

blue lines show best-fitting Gaussian curve, dashed gray lines show +/- 1 standard error. For 630 

comparability, day of month for axis labels in this and other figures is based on a 365 day year 631 

(excludes leap days). Note the different scales on the y-axes.  632 

Figure 2: Fitted population metrics: (A-C) abundance index (A), mean day of activity (B), flight 633 

period (C) across years (sequentially). Bars show +/- 1 standard error, calculated using the delta 634 

method (black) or parametric bootstrapping (blue). (D-F) Comparison of same population 635 

metrics with the Growing Degree Days (GDD) on July 10 for each year. Solid and dashed black 636 

lines show best-fitting model for significant (solid) and non-significant (dashed) linear 637 

regression. In all panels, parametric bootstrap standard errors are based on 0.16 and 0.84 638 

quantiles of bootstrap samples (quantiles corresponding to +/- 1 standard error). 639 

Figure 3: Comparing derived estimates from GLM approach to other commonly used 640 

approaches (A) Comparison of GLM estimated abundance index to mark-recapture estimates. 641 

Black lines show +/- 1 standard error of each metric, dashed line shows best-fitting curve (R^2 = 642 

0.94). (B) Comparing CLM estimated abundance index with INCA estimated abundance index 643 

(INCA is an implementation of the Zonneveld model) (R^2 = 0.99). (C-D) Comparison of 644 

quantile-based estimates of onset (C) and end (D) of activity to day of first (C) and last (D) 645 

observation for each year, with point size scaled by GLM estimated population index (square-646 

root scale). Black lines show a 1:1 line going through the mean of observed values. As expected, 647 

years with smaller population sizes show less extreme observations (i.e., points above (C) and 648 

below (D) the 1:1 line). 649 

Table 1: Summary of ad-hoc literature review on statistical methods for fitting activity curves to 650 

repeated count data, looking to see how often the proposed methods have actually been used. 651 
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Note that there were a few non-English publications citing these methods papers which we were 652 

unable to evaluate.  In addition to these methods, Generalized Additive Models (GAMs) have 653 

been widely used in a variety of phenological studies and one older method (Zonneveld et al. 654 

1991) is widely used by some insect ecologists (see discussion in main text).  We also did not 655 

include custom-coded (typically Bayesian) approaches that would need substantial recoding of 656 

the method to be applied to a new data set. 657 

Table S1: Comparing ability of GLM and INCA models to fit the Baltimore checkerspot data. 658 

“Non-zero counts” represents the number of survey days in that year with at least one butterfly 659 

observed; “Gaussian fits?” shows whether or not our GLM approach fit the data”; “INCA fits?” 660 

shows whether or not the Zonneveld method implemented in the INCA program fit the data 661 

(using default settings); “INCA+ fits?” shows the same results, but when INCA is given 662 

mortality information independently determined from Brown and Crone 2016. We see that INCA 663 

struggles to fit much of our data, INCA+ fits most of our data, and the GLM approach fits all of 664 

our data. 665 

 666 

  667 
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Figure 1. 668 
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Figure 2 671 

672 
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Figure 3 675 
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Table 1 678 

Method Publication System Description Used in 
Generalized 
epsilon-skew-
Gaussian 

Clark and 
Thompson 2011 

plants 5-parameter function - imagine a 
Gaussian flexible enough to have skew. 

Yule and Bronstein 
2018 (plants), Weis et 
al. 2014 (plants). 

Gaussian 
mixture models 

Proia et al. 2015 plants Gaussian mixture models 0  

Principle 
coordinate 
analysis 

Austen et al. 
2014 

plants Take matrix of open flowers on date 
(col) per plant (row). Calculate 
difference between entries as a new 
coordinate system.  Now summarize 
that with a PCoA, kind of like we 
would with a PCA. From this, calculate 
Chord distance and Komogorov-
Smirnov distances. 

0 

Weibull Pearse et al. 
2017 

plants 
(presence/
absence) 

Note: implemented in the phest 
package 

Taylor 2019 (methods-
testing paper), Belitz et 
al. 2020 (although not 
really - builds on 
weibull distribution, 
but distinct method) 
(plants, monarch 
butterflies)  

survival 
modeling 

Elmendorf et al. 
2019 

plants 
(presence/
absence) 
 

hierarchical survival models. Seems 
good for presence/absence of 
phenological state 

0 

Weibull-based 
percentile metric 

Belitz et al. 
2020 

flowers, 
monarchs 

Using weibull distribution for any 
quantile. R package phenesse.  

0, but not a fair 
comparison – very 
recently published.  

Exponential Sine Malo 2002 Flowers Exponential Sine. Forrest and Thomson 
2011 (only used to 
estimate flower data on 
missing dates for two 
plant species); 
Herrer`ias-Diego 2006 
(using a simplified 
version that is 
symmetrical) (plants) 
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Table S1 682 

Year Non-zero counts INCA fit? INCA+ fit? Gaussian fit? 

2012 23 No Yes Yes 
2013 20 Yes Yes Yes 
2014 20 No Yes Yes 
2015 18 No Yes Yes 
2016 15 No Yes Yes 
2017 11 Yes Yes Yes 
2018 6 Yes Yes Yes 
2019 5 No No Yes 
2020 4 No No Yes 
 683 
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