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Abstract 22 

 23 

Perception is facilitated by a hierarchy of expectations generated from context and prior knowledge. 24 

In auditory processing, violations of local (within-trial) expectations elicit a mismatch negativity, 25 

while violations of global (across-trial) expectations elicit a later positive component (P300). This 26 

result is taken as evidence of prediction errors ascending through the expectation hierarchy. 27 

However, in language comprehension, there is no evidence that violations of semantic expectations 28 

across local-global levels similarly elicit a sequence of hierarchical error signals – thus drawing into 29 

question the putative link between event-related potentials and prediction errors. We investigated 30 

the neural basis of such hierarchical expectations of semantics in a word-pair priming paradigm. By 31 

manipulating the overall proportion of related or unrelated word-pairs across the task, we created 32 

two global contexts that differentially encouraged strategic use of primes. Across two experiments, 33 

we replicated behavioural evidence of greater priming in the high validity context, reflecting 34 

strategic expectations of upcoming targets based on ‘global’ context. In our pre-registered EEG 35 

analyses, we observed a ‘local’ prediction error ERP effect (i.e. semantic priming) approximately 36 

250ms post-target, which, in exploratory analyses, was followed 100ms later by a signal that 37 

interacted with the global context. However, the later effect behaved in an apredictive manner - i.e. 38 

was most extreme for fulfilled expectations, rather than violations. Our results are consistent with 39 

interpretations of early ERPs as reflections of prediction error and later ERPs as processes related to 40 

conscious access and in support of task demands. 41 

 42 

 43 

 44 

 45 
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Significance statement 46 

 47 

Semantic expectations have been associated with the ERP N400 component, which is modulated by 48 

semantic prediction errors across levels of the hierarchy. However, there is no evidence of a two-49 

stage profile that reflects violations of semantic expectations at a single level of the hierarchy, such 50 

as the MMN and P3b observed in the local-global paradigm, which are elicited by violations of local 51 

and global expectations, respectively. In the present study, we provided evidence of an early ERP 52 

effect that reflects violations of local semantic expectations, followed by an apredictive signal that 53 

interacted with the global context. Thus, these results support the notion of early ERPs as prediction 54 

errors and later ERPs reflecting conscious access and strategic use of context.  55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.01.127936doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.01.127936
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

Introduction 70 

 71 

Predictive coding theory argues that the brain processes information in a hierarchical 72 

probabilistic Bayesian manner (Friston 2005; Knill & Pouget, 2004) by contrasting sensory input with 73 

prior expectations generated from context and the perceiver’s knowledge (Heilbron and Chait, 74 

2018; Clark, 2013). Expectations are sent down from higher levels of the hierarchy and any 75 

subsequent unexplained sensory input is sent back up the hierarchy as prediction error (Heilbron 76 

and Chait, 2018; Friston and Kiebel, 2009; Rao and Ballard, 1999).  77 

Some argue that evoked neural responses (e.g. event-related potentials [ERPs]) reflect 78 

prediction errors (Chennu et al., 2013; Friston, 2005). For example, the Mismatch Negativity 79 

(MMN)is larger in amplitude for stimuli that do not match short-term auditory expectations, relative 80 

to those that do (Heilbron and Chait, 2018). Prediction errors at higher levels of the hierarchy are 81 

investigated in paradigms that introduce violations of expectations formed from the global context 82 

in which stimuli occur. Indeed, generating such expectations involves complex cognition including 83 

working memory and report of conscious expectation (e.g. Bekinschtein et al., 2009). The local-84 

global paradigm (Bekinschtein et al., 2009) elegantly pits local expectation within each trial (i.e. 85 

standard vs deviant pitch tones) against a global expectation built from the context across blocks of 86 

trials. This paradigm elicits an initial MMN to local violations of expectation, and a subsequent 87 

centro-parietal positivity at approximately 300ms post-stimulus (P3b) to global violations of 88 

expectation (see Faugeras et al. 2012; King et al., 2013; El Karoui et al., 2015); thereby, separating 89 

prediction error signals at two levels of an expectation hierarchy that unfold sequentially.  90 

Within the realm of more ecologically valid stimulus processing, speech comprehension is 91 

similarly influenced by expectations at multiple levels of a hierarchy (e.g. Lewis, Bastiaansen, 2015; 92 

Ylinen et al., 2016; Lau et al., 2013; Hutchison, 2007; Kuperberg, Jaeger, 2016). The N400 – a 93 
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negative deflection peaking around 400ms post-stimulus (Kutas, Federmeier, 2011) – is a potential 94 

marker of errors of such semantic expectations (Rabovsky & McRae, 2014). On a local level, the 95 

N400 is larger to words that have not been primed relative to those that have (e.g. larger for DOG 96 

when preceded by Lamp than by Cat; Cruse et al., 2014; Lau et al., 2013; Koivisto & Revonsuo, 2001), 97 

and at a more global level, the N400 is larger to words that are unexpected within a sentential 98 

context (Brothers et al., 2017; Boudewyn, Long & Swaab, 2015; Thornhill, Van Petten 2012; Van 99 

Berkum et al., 1999). Interestingly, unlike the MMN/P3b in auditory processing, semantic prediction 100 

errors appear to be reflected in the magnitude of a single component –the N400– rather than in a 101 

series of components moving through the hierarchy of relative top-down involvement. 102 

One approach to separate prediction error signals at two levels of a semantic expectation 103 

hierarchy is with a prime validity manipulation of a word-pair priming task. Specifically, we can pit 104 

the facilitation of target word processing that comes from presentation of a related prime against a 105 

global context in which it is not efficient for the comprehender to use the prime to predict the target 106 

– i.e. primes rarely followed by related targets (Keefe and Neely, 1990; Hutchison, 2007; Lau et al., 107 

2013(a); Lau et al., 2013(b)). Therefore, as the proportion of related pairs increases within a context, 108 

the prime validity increases (i.e. the prime is more likely to predict the target). If individuals use the 109 

global context of prime validity to modulate their expectations, behavioural facilitation follows. 110 

In ERP studies of prime validity, this hierarchy of local expectations (i.e. the prime 111 

relatedness) and global expectations (i.e. the prime validity) has not been reported to modulate the 112 

amplitudes of two sequential components (Boudewyn, Long & Swaab, 2015; Lau et al., 2013); hence, 113 

there is no evidence of a two-stage profile to semantic expectation violation. Rather than reflecting 114 

error at one level, the N400 (or see Boudewyn, Long & Swaab (2015) for N200 evidence) appears to 115 

account for a combination of errors across levels of the hierarchy. To disentangle these results, here 116 

we report a pre-registered trial-by-trial manipulation of both local and global semantic expectations. 117 
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First, we report a replication of the reaction time facilitation caused by global context as described 118 

by Hutchison (2007). Second, we report the associated electrophysiological markers of expectation 119 

and violation across levels of the hierarchy from a separate group of healthy participants performing 120 

the same task. In accordance with predictive coding, we hypothesised that ERP amplitudes would 121 

reflect violations of expectation at consecutive levels of the hierarchy, with local violations evident 122 

earlier than global violations. 123 

 124 

Materials and Methods 125 

 126 

Experiment 1 – Behavioural study 127 

Participants 128 

 We recruited participants through the Research Participation Scheme website of the 129 

University of Birmingham, who received credits for their participation. A total of 64 participants 130 

were recruited, with the data of two participants excluded from analysis due to outlying data, as 131 

quantified by the non-recursive procedure for outlier elimination (detailed below; Van Selst, 132 

Jolicoeur, 1994; Hutchison, 2007). Therefore, the final sample consisted of 62 participants (59 133 

female, 3 male; median age: 19, range: 18 – 28). All participants reported to be mono-lingual native 134 

English speakers, right-handed, and with no history of neurological conditions or diagnosis of 135 

dyslexia. All participants gave written informed consent prior to participation in this study, which 136 

was approved by the STEM Ethical Review Committee of the University of Birmingham. 137 

 138 

 139 

 140 

 141 
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Stimuli 142 

 Associated prime-target pairs were selected from the Semantic Priming Project database 143 

(Hutchison et al., 2013) and the experimental design was a replication of the paradigm implemented 144 

by Hutchison (2007). First, all word pairs available in the database (N: 1661) were ordered by For-145 

ward Associative Strength (i.e. the proportion of individuals who spontaneously name the same tar-146 

get after reading the prime word) and the 352 word-pairs with the highest strength were selected 147 

after removal of any specific American English associations (e.g. Clorox-Bleach; Slacks-Pants). 148 

The first 156 word-pairs from this list of 352 word-pairs with the highest forward association 149 

were chosen to be the critical stimuli for statistical analysis. The remaining 196 word-pairs served 150 

as fillers to generate the global context and are not included in the statistical analysis. We divided 151 

all 156 critical word-pairs into two lists (N: 78 word-pairs per list) that were balanced according to 152 

the values from the database (Hutchison et al., 2013) for forward association, length, log HAL fre-153 

quency, and orthographic neighbourhood (all p>.604; all BF10 <.196). In the same way, we divided 154 

the 196 filler word-pairs into two balanced lists (N: 98 word-pairs per list; all p>.284, all BF10<.267). 155 

Thus, we had created two critical related word-pair lists and two filler related word-pair lists. To 156 

create the unrelated word-pair lists, we manually re-paired (within list) all word-pairs in each of the 157 

four lists above (two critical, two fillers) ensuring that unrelated targets were both semantically un-158 

related to their prime and shared no overlapping phonemes with their respective related target. 159 

This resulted in a final set of eight lists: two critical related, two critical unrelated, two filler related, 160 

and two filler unrelated. Each participant was assigned two Critical sets of word-pairs (one related 161 

and one unrelated; 78 word-pairs per list) and two Filler sets (one related and one unrelated; 98 162 

word-pairs per list). Hence, each participant saw all words within the full set of 352 word-pairs ex-163 

actly once, composed of 176 related word-pairs and 176 unrelated word-pairs. 164 
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To create the prime-validity manipulation, first we assigned half of the Critical word-pairs, 165 

including both related and unrelated items, to one colour (yellow or blue), and the other half with 166 

the other colour in an interleaved order. Next, the related filler set was assigned with one colour 167 

(yellow or blue), and the unrelated filler set was assigned with the other colour. Therefore, across 168 

all items seen by each participant, 77.8% of word-pairs presented in one of the two colours were 169 

related, thus giving that colour high prime validity, and 77.8% of word-pairs presented in the other 170 

colour were unrelated, thus giving that colour low prime validity. Importantly, across the entire set 171 

of stimuli that each participant saw, exactly half were related (the other half unrelated) and half 172 

were presented in one colour (the other half in the other colour). However, the probability of a 173 

related target following a prime of one colour was 77.8% and the probability of a related target 174 

following a prime of the other colour was 22.2%. Across participants, the colour assignment of the 175 

high validity primes was counterbalanced (i.e. half of participants saw high prime validity word-pairs 176 

in blue and low prime validity word-pairs in yellow; and the other half saw the opposite colours for 177 

each proportion), and all possible combinations of word lists were used, resulting in 32 permuta-178 

tions. 179 

 180 

Procedure 181 

 The task was presented with Psychtoolbox (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007) 182 

in Matlab (Mathworks, Inc., Natick, Massachusetts). The vocal reaction times (RT) were measured 183 

with a Cedrus SV-1 Voice Key (Cedrus Corporation), with all participants completing four practice 184 

trials under the experimenter´s supervision to adjust the voice key threshold according to the par-185 

ticipant´s speech volume. The trial procedure is shown in Figure 1. Specifically, each trial started 186 

with a central fixation cross on a grey background lasting 600 ms; then, the prime word was dis-187 

played in either yellow or blue, at the centre of the screen for 160 ms; followed by a blank screen 188 
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for 1080ms, and subsequently the target was displayed on the screen; thus, the stimulus onset asyn-189 

chrony (SOA) was 1240ms. The target stayed on the screen until the participant pronounced the 190 

word; then the word disappeared from the screen, which remained blank for 300ms. Afterwards, a 191 

rating for the quality of pronunciation was displayed on the screen with the following questions and 192 

potential responses: How would you rate your pronunciation? 1) Correct pronunciation; 2) Unsure 193 

of pronunciation; 3) Mispronunciation; 4) Accidental voice-key triggering. Participants gave a button 194 

response on the keyboard (1-4) to rate their pronunciation (as per Hutchison, 2007). After the par-195 

ticipant responded, the screen remained blank for 1000ms, before the next trial began. 196 

 197 

Figure 1: Semantic Priming Relatedness Proportion task (Hutchison, 2007). Participants were required to name 198 

the target word aloud and as fast as possible, while their responses were recorded.  199 
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Each participant was tested individually and sat approximately 70 cm away from the com-200 

puter screen. All participants received written information about the study, the instructions and the 201 

consent form. In addition, the instructions were verbally repeated by the experimenter. We in-202 

structed all participants that a coloured uppercase word (either blue or yellow) will be displayed on 203 

the screen and that they must read it silently to themselves; then, a black lowercase word will be 204 

displayed on the screen, and they should pronounce the word aloud, as fast and accurately as pos-205 

sible. Participants were told that the colour of the uppercase word will cue the probability of the 206 

lowercase target being related or unrelated. Half of the participants received the following written 207 

instructions: “If the uppercase word is Blue, it is highly likely that the meaning of the lowercase word 208 

will be related; and if the uppercase word is Yellow, it is highly likely that the meaning of the lower-209 

case word will be unrelated” (as per Hutchison, 2007). The other half of participants received the 210 

same instructions but with the colours flipped.   211 

 After the task, we asked participants to complete a self-report form about the use of strat-212 

egy throughout the task, to determine whether they were using expectations strategically. The form 213 

was composed of three questions and a free text description of the strategy. The questions were 214 

the following: 1) Which colour was highly likely to be related? (Responses: BLUE / YELLOW); 2) Did 215 

you use the colour of the UPPERCASE word (BLUE, YELLOW) as a cue for knowing whether the fol-216 

lowing word was related or unrelated? (Responses: YES / NO); 3) Did you engage in any strategy to 217 

speed up your responses using the colour cue? (Responses: YES / NO); 4) If YES, briefly describe. We 218 

considered participants to have used strategic expectation (i.e. those referred to as the Strategy 219 

group) if they correctly identified the colour that was assigned for the high validity condition (Ques-220 

tion 1), answered YES in questions 2 and 3, and described a strategy in question 4. All other partici-221 

pants were classified into the No Strategy group.  222 

 223 
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Behavioural Data Analyses 224 

To ensure the inclusion of trials pronounced correctly, we only included trials that were 225 

rated by the participants with a correct pronunciation (button press 1); moreover, we eliminated 226 

RTs that were longer than 2500ms and shorter than 1ms (i.e. not correctly triggered by the vocal 227 

onset). As raw reaction times are skewed, some researchers opt to log transform the data, although 228 

this can result in other information about response speed being lost (Lo & Andrews, 2015). Here, 229 

we chose to follow the same procedure as in Hutchison (2007) – namely, the non-recursive 230 

procedure for outlier elimination (Van Selst & Jolicoeur, 1994). Specifically, reaction times that were 231 

more than X standard deviations from the mean were considered to be outliers and were removed, 232 

where the value of X decreases with decreasing sample size (i.e. number of trials in each condition 233 

for that participant) and is anchored at X=2.5 for a sample size of 100. Next, across all participants 234 

we used the same procedure to determine outlier participants and rejected data from two 235 

participants that met the outlier criteria. For the remaining 62 participants, a median of 37 trials 236 

(range: 16-39) contributed to the high related condition; a median of 36 trials (range: 12-39) to the 237 

high unrelated condition; a median of 37 trials (range: 16-39) to the low related condition; and a 238 

median of 36 (range: 15-39) contributed to the low unrelated condition. 239 

All behavioural analyses were conducted in Jasp 0.9.1.0 software (JASP Team, 2018). To test 240 

for an effect of global context on reaction times, we conducted a two-way repeated measures 241 

ANOVA with factors of relatedness (i.e. related vs unrelated targets) and prime validity (i.e. high vs 242 

low prime validity). We also reported equivalent Bayesian Repeated Measures ANOVAs (Van Doorn 243 

et al. 2019; Wagenmakers et al., 2018). We expected individuals to show faster RTs for related 244 

(expected) in contrast with unrelated (unexpected) targets due to local level expectations – i.e. 245 

priming. Furthermore, we expected an interaction, with larger priming effects in a high validity 246 
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context in contrast with a low validity context, reflecting the use of global level context to predict 247 

upcoming stimuli.  248 

As a follow-up analysis, we conducted a three-way ANOVA, with its Bayesian equivalent, to 249 

test for the interaction and the report of strategy vs no strategy (self-report form) as a between-250 

subjects factor. 251 

 252 

Experiment 2 – Behavioural and electrophysiological study 253 

 This study was pre-registered in the Open Science Framework website, details and all codes 254 

described in the paper can be found under the following link: https://osf.io/v35te/. Any deviations 255 

from the pre-registered methods and analyses are specifically stated in the text.  256 

 257 

Participants  258 

We recruited participants through the Research Participation Scheme website and placed 259 

advertisement posters at the University of Birmingham; participants received a monetary 260 

compensation for their participation. We recruited 37 participants, however, since we only 261 

investigated those who reported using a strategy, the final sample only included 22 participants (15 262 

female, 7 male; median age: 21, range: 18 - 30; classified by the same report form as experiment 1). 263 

The inclusion criteria were the same as those for Experiment 1; however, participants were also 264 

required to attend for a structural T1-weighted MRI scan at the University of [name redacted for 265 

double-blind review]; therefore, participants who had any metal parts in their body, were 266 

claustrophobic, or women who were pregnant were excluded from the study, as the scan was 267 

mandatory for participation. All participants gave written informed consent prior to participation in 268 

this study, which was approved by the STEM Ethical Review Committee of the University of 269 

Birmingham. 270 
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We aimed to detect a reaction time interaction of the same magnitude as seen in the 271 

Strategy group of Experiment 1; therefore, we conducted a power analysis to select an appropriate 272 

sample size for this goal. We performed non-parametric power calculations using the data of all 273 

participants of the Strategy group from Experiment 1. Specifically, from the pool of participants of 274 

the Strategy group, we selected with replacement N participants and conducted the same two-way 275 

repeated measures ANOVA 1000 times to test for the reaction time interaction effect. With an N of 276 

22 participants in the Strategy group we achieved 80% power at p<.05 (i.e. 80% of ANOVAs included 277 

a significant interaction). 278 

As we did not know if a participant was in the Strategy group until their self-report form was 279 

completed at the end of the study, we recruited participants until 22 of them were classified as 280 

being in the Strategy group (median age: 21, range: 18-30; 12 in the no-strategy group, median age: 281 

22, range: 19-33). After removal of trials rated as mispronunciations and those considered outliers 282 

according to the non-recursive outlier elimination procedure of Van Selst and Jolicoeur (1994; as 283 

Experiment 1), a median of 28 trials (range: 11-38) contributed to the high related condition; a 284 

median of 29.5 trials (range: 13-38) to the high unrelated condition; a median of 29 trials (range: 12-285 

39) to the low related condition; and a median of 28 (range: 14-37) contributed to the low unrelated 286 

condition.  287 

 288 

Stimuli and procedure  289 

Stimuli and procedure were the same as in Experiment 1, except for the duration of the fixation 290 

cross (increased from 600ms to 750ms to provide more time for an EEG time-frequency baseline).  291 

 292 

 293 

 294 
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EEG recording 295 

The EEG signal was continuously recorded with a 125 channel AntNeuro EEG system (Ant-296 

Neuro b.v., Enschede, Netherlands) at a sampling rate of 500 Hz, with impedances kept below 20 297 

kΩ. We placed the ground electrode on the left mastoid bone and referenced online to CPz. As 298 

participants were required to pronounce words aloud, we also recorded a bipolar EMG signal with 299 

one EMG electrode above the upper lip and the other below the lower lip on the left side of the 300 

mouth; approximately over the superior and inferior Orbicularis Oris muscles (Lapatki, Stegeman & 301 

Jonas, 2003; Drake, Vogl & Mitchell, 2009).  302 

 303 

EMG Pre-processing 304 

As this task involved participants speaking, there were considerable artefacts in the EEG 305 

data around the vocal reaction time that were challenging to remove adequately. We therefore 306 

chose to analyse only the EEG data up to the point of vocal artefact. To minimise artefacts from 307 

additional preparatory muscular activity prior to vocal onset, in our pre-registered methods, we 308 

planned to choose the latest time-point for analysis post-target by identifying when the mouth EMG 309 

signal began to significantly differ between prime validity conditions in a temporal cluster mass ran-310 

domisation test, as implemented in Fieldtrip (Oostenveld et al., 2011). However, this approach re-311 

vealed no significant clusters (smallest cluster p = 0.513), and so did not provide a suitable cut-off 312 

time-point for our analyses. Therefore, in a deviation from the pre-registered plan, we chose our 313 

latest time-point of EEG data to analyse as 150ms prior to the fastest mean RT across conditions (in 314 

this instance High Validity – Related = 532ms; see Kuperberg et al., 2018, for a similar approach). 315 

Our post-target time-window therefore continued to 382ms post-target. From all the trials included 316 

for the statistical analysis only 5.76% of trials had RTs earlier than this time-point, comparable with 317 

previous studies (Kuperberg et al., 2018). 318 
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EEG Pre-Processing Pipeline 319 

We low pass filtered the continuous EEG data at 40Hz using the finite impulse response filter 320 

implemented in EEGLAB (Delorme & Makeig, 2004). Due to our interest in analysing slow-waves (see 321 

below), we performed no high-pass filtering. Next, we segmented the filtered EEG signals into 322 

epochs from 750ms before the onset of the prime up to 382ms post-target (see above for details). 323 

Subsequent artefact rejection proceeded in the following steps based on a combination of methods 324 

described by Nolan et al. (2010) and Mognon et al. (2011).   325 

First, as in the behavioural data analysis, we excluded all trials in which the participant rated 326 

their response as incorrect (i.e. 2, 3, 4 button press) and those that had reaction times that were 327 

classified as outliers in the Non Recursive Procedure for outlier elimination (Selst & Jolicoeur, 1994). 328 

Next, bad channels were identified and removed from the data. We considered a channel to be bad 329 

if its absolute z-score across channels exceeded 3 on any of the following metrics: 1) variance of the 330 

EEG signal across all time-points, 2) mean of the correlations between the channel in question and 331 

all other channels, and 3) the Hurst exponent of the EEG signal (estimated with the discrete second 332 

order derivative from the Matlab function wfbmesti). After removal of bad channels, we identified 333 

and removed trials containing non-stationary artefacts. Specifically, we considered a trial to be bad 334 

if its absolute z-score across trials exceeded 3 on any of the following metrics: 1) the mean across 335 

channels of the voltage range within the trial, 2) the mean across channels of the variance of the 336 

voltages within the trial, and 3) the mean across channels of the difference between the mean volt-337 

age at that channel in the trial in question and the mean voltage at that channel across all trials. 338 

After removal of these individual trials, we conducted an additional check for bad channels, and 339 

removed them, by interrogating the average of the channels across all trials (i.e. the ERP, averaged 340 

across all conditions). Specifically, we considered a channel to be bad in this step if its absolute z-341 

score across channels exceeds 3 on any of the following metrics: 1) the variance of voltages across 342 
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time within the ERP, 2) the median gradient of the signal across time within the ERP, and 3) the 343 

range of voltages across time within the ERP. 344 

To remove stationary artefacts, such as blinks and eye-movements, the pruned EEG data 345 

was subjected to an independent component analysis with the runica function of EEGLAB. The 346 

Matlab toolbox ADJUST (Mognon et al., 2011) subsequently identified which components reflect 347 

artefacts on the basis of their similarity to stereotypical spatio-temporal patterns associated with 348 

blinks, eye-movements, and data discontinuities, and the contribution of these artefact components 349 

was then subtracted from the data. Next, we interpolated the data of any previously removed chan-350 

nels via the spherical interpolation method of EEGLAB and re-referenced the data to the average of 351 

the whole head. 352 

Before proceeding to group-level analyses, single-subject averages for the ERP analysis were 353 

finalised in the following way. First, a robust average was generated for each condition separately, 354 

using the default parameters of SPM12. Robust averaging iteratively down-weights outlier values 355 

by time-point to improve estimation of the mean across trials. As recommended by SPM12, the 356 

resulting ERP was low-pass filtered below 20Hz using a FIR filter (again, with EEGLAB’s pop_newee-357 

gfilt), and the mean of the baseline window (-200 – 0 ms) was subtracted. 358 

Single-subject data for the time-frequency analysis were pre-processed in a similar way. 359 

However, first, we concatenated the individual trials into a matrix of channels x all time-points, and 360 

filtered each channel in two-steps (high-pass then low-pass) to retain the frequency bands of inter-361 

est (i.e. 8-12Hz alpha, and 13-30Hz beta), using EEGLAB’s finite impulse response filter (function: 362 

pop_eegnewfilt). Next, we extracted the squared envelope of the signal (i.e. the squared complex 363 

magnitude of the Hilbert-transformed signal) to provide a time-varying estimate of power within 364 

that frequency band. The resulting time-course was re-segmented into its original epochs and aver-365 

aged within each condition separately using SPM12’s robust averaging procedure. As with the ERP 366 
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analyses, we low-pass filtered the resulting average time-series below 20Hz (EEGLAB’s pop_newee-367 

gfilt). Finally, we converted the power estimates to decibels relative to the mean of the baseline 368 

window (-200 – 0 ms.). 369 

 370 

EEG / MRI co-registration 371 

We recorded the electrode locations of each participant relative to the surface of the head 372 

using a Xensor Electrode Digitizer device and the Visor2 software (AntNeuro b.v., Enschede, 373 

Netherlands). Furthermore, on a separate day, we acquired a T1-weighted anatomical scan of the 374 

head (nose included) of each participant with a 1mm resolution using a 3T Philips Achieva MRI 375 

scanner (32 channel head coil). This T1-weighted anatomical scan was then co-registered with the 376 

digitised electrode locations using Fieldtrip.  377 

 378 

Analyses 379 

Behavioural Data Analysis:  380 

The behavioural analyses are the same as for the Strategy Group in Experiment 1. 381 

 382 

EEG Analysis:  383 

Target ERP, Prime ERP and Prime time frequency analyses:  384 

Time-courses (ERPs / time-frequency) within the time-window of interest (0-1240ms for 385 

primes; 0-382ms for targets) were compared with the cluster mass method of the open-source 386 

Matlab toolbox FieldTrip (Oostenveld et al., 2011). This procedure involves an initial parametric step 387 

followed by a non-parametric control of multiple comparisons (Maris, Oostenveld, 2007). 388 

Specifically, we conducted two-tailed dependent samples t-tests at each spatio-temporal data-point 389 

within our time-window of interest. Spatiotemporally adjacent electrodes (t-values) with p-values  390 
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< 0.05 were then clustered based on their proximity, with the requirement that a cluster must span 391 

more than one time-point and at least 4 neighbouring electrodes, with an electrode’s 392 

neighbourhood containing all electrodes within an approximately 4-cm radius (median: 8, range:2-393 

10). Finally, we summed the t-values at each spatio-temporal point within each cluster. Next, we 394 

estimated the probability under the null hypothesis of observing cluster sum Ts more extreme than 395 

those in the experimental data - i.e. the p-value of each cluster. Specifically, Fieldtrip randomly 396 

shuffles the trial labels between conditions, performs the above spatio-temporal clustering 397 

procedure, and retains the largest cluster sum T. Consequently, the p-value of each cluster observed 398 

in the data is the proportion of the largest clusters observed across 1000 such randomisations that 399 

contain larger cluster sum Ts. As our analyses were two-tailed, we set the family-wise error 400 

corrected cluster alpha to .025. 401 

 402 

Prime slow wave linear fit analyses:  403 

To further test for ERP evidence of expectation formation in response to the prime, we 404 

analysed whether a slow wave differentiates high validity and low validity conditions. For this 405 

comparison we used a least-squares linear fit to the averaged ERPs of each condition (High and Low 406 

validity primes) for each electrode and participant (as per Chennu et al., 2013). Next, the slope 407 

values were compared between conditions with the spatial cluster mass analysis in FieldTrip 408 

(Oostenveld et al., 2011). 409 

 410 

Source estimation analysis:  411 

We constructed individual boundary element head models (BEM; four layers) from subject-412 

specific T1-weighted anatomical scans, by using the ‘dipoli’ method of the Matlab toolbox FieldTrip 413 

(Oostenveld et al., 2011). Next, we aligned the electrode locations, that were recorded with Xensor 414 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.01.127936doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.01.127936
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

Electrode Digitizer device, to the surface of the scalp layer that was segmented from the T1-415 

weighted anatomical scan. For reference points, we used the fiducial points and electrode locations 416 

as head shape. We visually checked that the electrode positions and the scalp surface were aligned, 417 

and we manually fixed imperfections. We prepared the EEG data before subjecting it to statistical 418 

analyses, where we balanced the number of trials in each condition, by taking the smallest condition 419 

N as a reference and randomly discarding trials from the other conditions surpassing that N, 420 

resulting in equal datasets.  421 

 422 

ERPs whole brain 423 

For the whole brain ERP source analysis, we used single-trial data that had not been sub-424 

jected to robust averaging, and defined trials as time windows from -382 to 382ms relative to target 425 

onset. This data was then band-pass filtered between 1 and 40Hz using a firws filter as implemented 426 

in Fieldtrip (Oostenveld et al., 2011). Subsequently, relative to the different conditions, data were 427 

divided into seven sets: one containing all trials, one containing only related trials, one only unre-428 

lated trials, one all high-validity related and one all low-validity related trials, one containing all high-429 

validity unrelated and one all low-validity unrelated trials. The sensor covariance matrix was esti-430 

mated for all these sets of data in the time window -382 – 382ms relative to target onset. A common 431 

spatial filter was then computed on the dataset containing all trials using a Linear Constraint Mini-432 

mum Variance (LCMV) beamformer (VanDrongelen, 1996; VanVeen, 1997; Robinson, 1999). Beam-433 

former parameters were chosen including a fixed dipole orientation, a weighted normalisation (to 434 

reduce the center of head bias), as well as a regularisation parameter of 5% to increase the signal 435 

to noise ratio (cf. Popov et al., 2018; Sokoliuk et al., 2019). This common spatial filter served then 436 

for source estimation of the remaining six sets of trials. Subsequently, the dipole moments of the 437 

different source estimates were extracted within the post-stimulus time windows of interest (time 438 
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windows for source estimates of related vs. unrelated trials: 226-280ms; 232-290ms; 306-382ms; 439 

316-350ms; time window to test interaction effect for source estimates of highly related and unre-440 

lated trials and low related and unrelated trials: 316-350ms) and their absolute values averaged 441 

over time to obtain one average source estimation value per grid point (VE) and condition. 442 

To test for significant differences between conditions we conducted five contrasts as men-443 

tioned above; first, an interaction between prime validity (High/Low) and relatedness of the target 444 

(Related/Unrelated) in a time-window from 316 to 350ms; next, we tested the early and late main 445 

effects of relatedness of the target (Related/Unrelated) as observed in the sensor analyses results 446 

(four main effects), in their respective time windows for the early effect (226-280ms and 232-447 

290ms); and the late effect (306-382ms and 316-350ms). Montecarlo Cluster-based permutation 448 

tests were computed as implemented in Fieldtrip (Oostenveld et al., 2011) by using averaged data 449 

over each time-window; moreover, we used an alpha and a cluster alpha level of 0.025 and 1000 450 

permutations. 451 

 452 

Automated Anatomical Labelling (AAL) analysis: 453 

We tested for the post-target interaction, between the relatedness of the target 454 

(related/unrelated) and the validity of the prime (High prime validity/Low prime validity) in five 455 

specific anatomical regions of interest that are defined using the automated anatomical labelling 456 

(AAL) atlas (see Brookes et al., 2016;  Sokoliuk et al., 2019 for similar analyses with MEG and EEG 457 

data). The selected regions are the Left inferior frontal gyrus (LIFG), including pars opercularis, pars 458 

triangularis and pars orbitralis; the posterior Left middle temporal gyrus (LMTG); and posterior Left 459 

superior temporal gyrus (LSTG), as Weber et al. (2016) reported a relatedness proportion interaction 460 

in these regions. In addition, we tested the post-target interaction in the anterior LMTG and anterior 461 

LSTG, as Lau et al. (2014) found differences in the anterior left superior temporal region (LSTG) in 462 
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related vs. unrelated items in a high validity condition. Moreover, as a deviation from our 463 

preregistered analyses, we tested the main effects found in the Related – Unrelated contrast at the 464 

sensor level (ERPs) in the same anatomical regions (more details in results section). To determine 465 

both the anterior and posterior parts of the LMTG and LSTG, we calculated the centre of mass of 466 

each AAL region and selected all virtual electrodes that were anterior or posterior to the centre of 467 

mass. 468 

We aggregated the AAL regions of interest to each participant’s T1-weighted image; next,  469 

for each participant individually, we extracted the average source estimation values of all VEs (from 470 

prior source estimation (cf. ERPs whole brain)) within each AAL region, weighted them according to 471 

their Euclidian distance to the centre of mass of the AAL region (Brookes et al., 2016) and averaged 472 

over VEs within each AAL region of interest. We then conducted paired-sample t-tests between the 473 

post-target conditions (SP-High validity / SP-Low validity) for all AAL regions; and another paired-474 

sample t-test between the relatedness conditions (Related / Unrelated) for each AAL region in four 475 

time windows (226-280ms; 232-290ms; 316-350ms; 306-382ms) from the main effects obtained in 476 

the sensor level ERP analyses (results section). The p-values that we obtained were corrected for 477 

multiple comparisons across AAL regions using False Discovery Rate, FDR (Yekutieli, Benjamini, 478 

1999). Furthermore, to test for evidence for the null hypothesis, we calculated Bayes Factors using 479 

the Bayes equivalent t-test, according to Rouder et al. (2009). 480 

 481 

 482 

 483 

 484 

 485 

 486 
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Results  487 

 488 

Experiment 1 – Behavioural only 489 

In a two-way repeated measures ANOVA, we found a significant interaction between prime 490 

validity and relatedness of the target (F (1, 61) = 13.751, p < 0.001, ηp² = 0.184), which was also 491 

supported by a Bayesian Repeated Measures ANOVA (BFinclusion = 19.25). As shown in Table 1, this 492 

interaction stems from the larger semantic priming effect in the high prime validity context                    493 

(t (61) = -6.525, p < 0.001, Cohen’s d = -0.829, CI = -1.115 -0.537) relative to the low prime validity 494 

context (t (61) = -5.169, p < 0.001, Cohen’s d = -0.656, CI = -0.929 -0.380). Furthermore, reaction 495 

times to unrelated items were markedly similar across contexts (t (61) < .001, p = 0.999, Cohen’s d 496 

< 0.001, CI = -0.249 0.249), while the difference in semantic priming stems from significantly 497 

different reaction times to related items (t (61) = -3.797, p < 0.001, Cohen’s d = -0.482, CI = -0.744 -498 

0.217). 499 

 500 

 501 

            Table 1: Descriptive statistics including Mean RT (ms) and standard deviation of related and unrelated 502 

word-pairs on each validity context, High Prime Validity and Low Prime Validity. Semantic priming effects and 503 

prime validity effect (relatedness proportion effect).   504 

 505 

 506 

Condition Low Validity = 22.2% 
Mean RTs (SD)  

High Validity = 77.8% 
Mean RTs (SD) 

Prime Validity Effect 

Unrelated 508ms (76ms) 508ms (75ms)  

Related 493ms (73ms) 472ms (76ms)  

Priming Effect 15ms (32ms) 36ms (54ms) 21ms (60ms) 
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Of 62 participants, 32 were classified in the “No-Strategy” group and 30 were classified in 507 

the “Strategy” group. A post-hoc mixed design ANOVA with two within factors (Relatedness of 508 

Target; Validity of the prime) and one between subjects factor (Strategy; No-strategy) revealed a 509 

significant Target * Prime Validity * Strategy interaction (F (1, 60) = 7.537, p =0.008, ηp² = 0.112,       510 

BFinclusion = 3.203), reflecting the apparent presence of a prime validity effect when participants 511 

reported using the prime strategically (F (1, 29) = 20.388, p < 0.001, ηp² = 0.413; BFinclusion = 34.67) 512 

but absence of a prime validity effect when participants reported no strategy (F (1, 31) = 0.860, p = 513 

0.361, ηp² = 0.027; BFinclusion = 0.393; Figure 2). The No strategy group, however, did exhibit a 514 

significant semantic priming effect by showing faster responses in the related relative to unrelated 515 

items (F (1, 31) = 21.656, p < 0.001, ηp² = 0.411; inclusion BFinclusion = 4994.57).  516 

Figure 2: Mean RTs: Prime Validity (High / Low), Relatedness of the target (Related / Unrelated). Interaction 517 

(p < 0.001) between the validity of the prime and the relatedness of the target in the group of participants that 518 

reported the use of a conscious strategy (right), and no interaction (p = 0.361) in the group of participants that 519 

did not report a conscious strategy (left). 520 

 521 
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Experiment 2 522 

 523 

Behavioural Results 524 

These results were qualitatively consistent with those we observed in Experiment 1. A two-525 

way repeated measures ANOVA analysis showed a significant interaction between prime validity 526 

and relatedness of the target (F(1, 21) = 9.071, p = 0.007, ηp² = 0.302), while the Bayesian Repeated 527 

Measures ANOVA analysis showed anecdotal evidence for the interaction (BFinclusion = 2.519). The 528 

interaction was driven by a larger semantic priming effect in the high prime validity context                    529 

(t (21) = -4.254, p < 0.001, Cohen’s d = -0.907, CI = -1.398 -0.400) than in the low prime validity 530 

context (t (21) = -2.046, p = 0.054, Cohen’s d = -0.436, CI = -0.869 0.007), see table 2. There was no 531 

significant difference between the reaction times to unrelated items across contexts (t (21) = 0.731, 532 

p = 0.473, Cohen’s d = 0.156, CI = -0.266 0.575) as opposed to a significant difference between 533 

related items across contexts (t (21) = -2.719, p = 0.013, Cohen’s d = -0.580, CI = -1.027 -0.121).  534 

 535 

         536 

 537 

       Table 2: Descriptive statistics including Mean RT (ms) and standard deviation of related and   unrelated word 538 

pairs on each validity context, High Prime Validity and Low Prime Validity. Semantic priming effects and prime 539 

validity effect (relatedness proportion effect).   540 

 541 

 542 

Condition Low Validity = 22.2% 
Mean RTs (SD)  

High Validity = 77.8% 
Mean RTs (SD) 

Prime Validity Effect 

Unrelated 576ms (92ms) 582ms (87ms)  

Related 560ms (107ms) 532ms (110ms)  

Priming Effect 16ms (54ms) 50ms (69ms) 34ms (95ms) 
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EEG Results – Sensor Level 543 

Prime analyses: ERPs, time frequency and slow wave linear fit analyses 544 

 As the global context was instantiated by the prime words, we sought to also investigate 545 

potential electrophysiological markers of expectation setting (rather than post-target prediction 546 

errors). However, none of our pre-registered analyses in the prime time-window (0-1240ms after 547 

prime onset) revealed evidence of markers of expectation in response to the prime. Specifically, 548 

there were no effects in analysis of the ERPs (smallest cluster p = 0.233), the slow wave linear fit 549 

analysis (no clusters formed), or the alpha-beta time-frequency analysis (smallest cluster p = 0.136). 550 

 Therefore, in exploratory analyses, we focused the time-window of interest for the ERP 551 

analysis on the peak of the global field power (530-1240ms), however this also revealed no 552 

significant difference between the high and low validity contexts (smallest cluster p = 0.139). 553 

Similarly, we used the window of interest for the alpha-beta time-frequency analysis to the peak of 554 

the global field power (602-1240ms), which also yielded no significant difference between 555 

conditions (no clusters formed). Moreover, as alpha-beta frequency bands include a wide range of 556 

frequencies we analysed them separately. However, the time-frequency analysis in the Alpha band 557 

(8-12Hz) showed no significant differences between conditions in the 0-1240ms time window 558 

(smallest cluster p = 0.121), nor in the 530-1240ms time window (smallest cluster p = 0.08). The 559 

same was true for the Beta band (13-30Hz; 0-1240ms cluster p = 0.312; 530-1240ms cluster p = 560 

0.197). Together, these analyses suggested no apparent electrophysiological markers of pre-target 561 

expectation formation in our data.  562 

 563 

 564 

 565 

 566 
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Target Results: ERPs 567 

 In our pre-registered interaction contrast in the latency range from 0 to 382ms post-568 

stimulus, the cluster-based permutation analysis yielded no clusters. However, in pre-registered 569 

analyses of main effects in the same latency range, we found four significant main effects of 570 

relatedness of the target (i.e. unrelated versus related targets; see Figure 3). The clusters in our data 571 

occurred in two distinct periods within the time window as shown in Figure 3. Specifically, two 572 

clusters reflected a left fronto-temporal dipolar effect of relatedness (Panels A & B in Figure 3) at 573 

approximately 250ms post-stimulus (negative cluster: 226 – 280ms, p = 0.019; positive cluster: 232 574 

– 290ms, p = 0.009), and two clusters reflected a later parieto-occipital dipolar effect of relatedness 575 

(Panels C & D in Figure 3) at approximately 350ms post-stimulus (negative cluster: 316 – 350ms, p = 576 

0.021; positive cluster: 306 – 382ms, p = 0.004). The early effects showed a predictive signal as in 577 

both clusters the voltage exhibited more extreme values for unrelated than related items. On the 578 

contrary, the later effects showed signs of an apredictive signal, especially in Panel D, as the voltage 579 

within the cluster had more extreme values for the related relative to the unrelated items.  580 
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 581 

Figure 3: Four main effects from the cluster-based permutation analyses, which contrasted the voltage 582 

difference between related and unrelated word-pairs from 0-382ms post-stimulus. ERP scalp topographies 583 

revealed two dipolar effects; first, an early fronto-temporal effect at approximately 250ms (A and B); then, a 584 

later parieto-occipital effect at around 340ms (C and D). ERP plots show data (mean and shaded 95% 585 

confidence interval) from the electrode where the effect was maximal, with the cluster period highlighted in 586 

grey. 587 
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As an exploratory analysis, and to increase power to detect a potential interaction effect, 588 

we tested for the interaction within each of the main effect clusters by averaging per condition and 589 

participant across all channels and time points within each main effect cluster. With this approach, 590 

the later negative cluster (C in Figure 3) showed a significant interaction (F (1, 21) = 6.679, p = 0.017, 591 

ηp²= 0.241), reflecting a larger voltage difference between the related and unrelated targets in a 592 

high validity context with respect to a low validity context (other clusters p = 0.396; 0.110; 0.273). 593 

Bayesian equivalent analyses considered this to be anecdotal evidence for the alternative 594 

hypothesis (BFinclusion= 1.505), see Figure 4. 595 
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Figure 4: Exploratory analysis to test for the interaction between the four conditions ((HR – HU) – (LR – LU)). 596 

The ERP plot in panel A shows the mean of electrodes (19 electrodes) within the 316-350ms cluster found in 597 

the main effect analysis (Figure 3, C). Panel B shows the mean for each condition within the same time-window 598 

that was analysed with repeated measures ANOVA showing a significant voltage interaction (p = 0.017) with 599 

a larger difference in voltage between related and unrelated items in high validity context than low validity 600 

context. Panel C shows the significant RT interaction (p = 0.007) presented in Table 2. In this experiment 601 

participant’s behaviour (RT; Panel C) showed the same pattern as their ERP responses (Panel B).  602 

 603 

Source Estimate Analyses  604 

Our pre-registered analyses included whole-brain interaction and main effect contrasts 605 

within the time-windows of significant clusters at the sensor level. However, this approach returned 606 

no significant clusters at the source level (interaction smallest cluster p = 0.147; main effect smallest 607 

cluster p=.067). Furthermore, our preregistered source analyses included regions of interest from 608 

the following AAL regions: Left inferior frontal gyrus (LIFG); Left middle temporal gyrus (LMTG); Left 609 

superior temporal gyrus (LSTG). However, none of these regions exhibited significant interaction 610 

effects or main effects (all FDR corrected p-values > 0.05).  611 

Consequently, for a qualitative visualisation of the source estimates, here we plot the 612 

whole-brain thresholded t-values (p<.05) of the source estimate contrasts, uncorrected for multiple 613 

comparisons. Specifically, we plot these t-values for the early main effect (Figure 3A&B) and the late 614 

main effect (Figure 3C&D) in time windows selected to be entirely within the significant dipolar 615 

sensor level clusters (early: 232-280ms; late: 316-350), see Figure 5. The thresholded t-values 616 

showed the peak of activity at the Right Middle and Superior Fontal Gyri for the early effect; and 617 

the activity peak at the Right Supplementary Motor Area for the late effect, as shown in Figure 5.  618 

 619 

 620 
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Figure 5: Thresholded t-values (p<.05) of the ERP source estimates over two distinct time windows that 621 

corresponded to the early and late ERP effects reported above in Figure 3. In the Figure, the upper panel shows 622 

the difference between related and unrelated targets in the early time window (232-280ms), and the lower 623 

panel indicates the same difference in a later time window (316-350ms) (thresholded t-values, p < 0.025).  624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 
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Discussion   632 

 Predictive coding theory posits that the brain generates expectations about upcoming 633 

stimuli at varying levels of complexity – from low-level expectations about stimulus properties 634 

through to higher-level conceptual expectations. Here, we investigated the behavioural and 635 

electrophysiological correlates of such expectations and their violations at two levels of a semantic 636 

expectation hierarchy (local and global). First, on the behavioural level, participants of two separate 637 

experiments showed evidence of speeded reaction times in related trials relative to unrelated trials, 638 

consistent with a local expectation generated about target word identity on the basis of the prime 639 

identity. Furthermore, participants generated a more conceptually complex expectation based on 640 

the global context (i.e. prime validity) to exhibit greater behavioural facilitation in the high prime 641 

validity context than the low prime validity context (Boudewyn, Long, and Swaab, 2015). 642 

Importantly, only those individuals who reported conscious strategic expectation showed evidence 643 

of behavioural facilitation given by the global context, while those individuals who did not report a 644 

conscious strategy only exhibited facilitation as a result of the local context. Together, these 645 

behavioural data are consistent with a dissociation between a local expectation about the identity 646 

of the target generated by the prime, and a global expectation about the relatedness of the target 647 

that necessitates reportable, effortful, and strategic application of expectation. Moreover, the 648 

present data provides evidence for a successful replication of the behavioural effect elicited by the 649 

same paradigm as implemented by Hutchison (2007), who also found that the magnitude of the 650 

global facilitatory effect was modulated by the level of attentional control (i.e. weaker effect in 651 

individuals with lower attentional control; Hutchison, 2007). Similarly, our results suggested that 652 

only individuals that reported applying an effortful conscious strategy showed the global context 653 

effect as mentioned above.  654 

 655 
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 Consistent with this two-stage expectation profile, the ERPs in response to the target words 656 

also exhibited a two-stage profile, with an early effect modulated by local expectation (around 657 

250ms) and a later effect modulated by global expectation (around 350ms). These results are 658 

broadly consistent with the two-stage profile observed in the auditory oddball local – global 659 

paradigm (Bekinschtein et al., 2009), which includes an MMN in an early stage reflecting errors of 660 

the local context of the stimuli and a P3b response to errors of the global context given by blocks 661 

across the task.  662 

Furthermore, the early effect in the present experiment showed more extreme amplitudes 663 

for unexpected targets relative to expected targets, consistent with a prediction error signal, such 664 

as the MMN to unexpected/deviant items observed across levels of stimulus awareness (Chennu et 665 

al., 2013; Bekinschtein et al., 2009; Faugueras et al., 2012; El Karoui et al. 2014). Moreover, the scalp 666 

topography of the early effect has a fronto-central peak, which is consistent with the MMN (Chennu 667 

et al., 2013; Bekinschtein et al., 2009; Faugueras et al., 2012), although, its latency is a little longer 668 

than seen in some of these previous papers. Additionally, in our source estimation analyses, the 669 

early effect was localised to the middle frontal gyrus (Figure 5), whereas in another study the local 670 

MMN effect was localised to the temporal parietal junction and prefrontal cortex (Chennu et al., 671 

2013), indicating not entirely overlapping neurocognitive processes. Nevertheless, as we observed 672 

behavioural semantic priming (as tracked by the early effect) even for participants who were not 673 

making strategic expectations, and due to the shared common features with the MMN (i.e. more 674 

extreme for errors and with a fronto-central focus), we consider the early effect to be consistent 675 

with an error of local expectation – i.e. expectation based on the identity of the prime, rather than 676 

the prime validity. Indeed, the MMN is elicited even by individuals who are not actively attending 677 

to the stimuli (Bekinschtein et al., 2009). 678 

 679 
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 The late effect, however, was the opposite of what would be expected for a prediction error 680 

signal – i.e. its amplitude was more extreme for expected targets compared to unexpected targets. 681 

This apredictive pattern is not readily explained by prediction error accounts without appeal to 682 

precision-weighting, in which a prediction error is weighted by the system’s confidence in the signal 683 

(Chennu et al., 2013; Friston, 2005). Under precision-weighting, all possible patterns of prediction 684 

error signals on the scalp are possible, including apredictive patterns as we observed here, as 685 

precision may vary freely across task conditions (Kok et al., 2011). For example, Barascud et al. 686 

(2016) reported a larger MEG signal for auditory stimuli that become predictable, relative to stimuli 687 

that are entirely unpredictable – i.e. an apredictive pattern – that they linked to up-weighting of the 688 

expected stimuli by precision (Heilbron, Chait, 2018). Within predictive coding, attention is one 689 

specific mechanism that is thought to increase precision (Hohwy, 2012). Therefore, under a 690 

predictive coding framework, one can appeal to varying levels of attention across task conditions. 691 

Therefore, we could post-hoc theorise that our late apredictive effect reflects individuals paying 692 

greater attention to the high validity trials as they have a high level of predictability and paying 693 

greater attention to related targets than unrelated targets, as the former fulfil their expectations. 694 

Therefore, the relative levels of attention across conditions could interact to generate this 695 

apredictive effect. Indeed, consistent with this, 59% of our participants (13/22) self-reported that 696 

their strategy was to generate an expectation in the high validity condition only (i.e. “I was trying to 697 

guess next word if previous was blue”; where blue was high validity condition).  698 

An alternative interpretation stems from evaluation of our behavioural data. When 699 

comparing the behavioural reaction time interaction with the ERP voltage interaction (Table 2 and 700 

Figure 4, respectively), both show the same pattern: namely, that the interaction is driven by 701 

expected items in a high validity context, showing more extreme values with respect to the other 702 

three conditions. This similarity in behaviour and ERP effects suggest that our late ‘error’ effect may 703 
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simply reflect processing in service of behaviour, whereby sensory signals are routed to goal-driven 704 

analogous motor behaviour (Zylberberg et al., 2010). Our late apredictive ERP pattern may therefore 705 

not reflect a precision-weighted global prediction error, but more simply the result of the brain 706 

routing the incoming information into appropriate behaviour. Under this interpretation, our results 707 

are therefore also consistent with interpretations of early ERPs as reflections of prediction error and 708 

later ERPs as processes related to conscious access and in support of task demands (e.g. Dehaene & 709 

Christen, 2011; Rohaut et al., 2015). 710 

 It is possible that other later error signals were also evident in the neural response during 711 

our task, including those traditionally linked to the N400 (i.e. peaking approximately 400ms post-712 

target). However, we limited our analyses to the 0 to 382ms time-window post-target so as to avoid 713 

muscle artefact created by the pronunciation responses. We chose to use a pronunciation task as 714 

our aim was to observe the behavioural effect produced by the manipulation of both the local 715 

(relatedness) and global context (prime validity) as implemented by Hutchison (2007). Nevertheless, 716 

tasks that don’t produce large muscular artefacts, such as a lexical decision task (LDT) in which 717 

individuals only produce motor responses on filler trials, would allow for analysis of the N400 time-718 

window. However, as argued by Hutchison (2007), participants can complete an LDT with a 719 

semantic-matching strategy, meaning that after seeing the target they can verify whether it is 720 

related to the prime, which could bias their responses as only words can be related and non-words 721 

would be, by their nature, unrelated (Hutchison, 2007). Additionally, as we provided a global context 722 

by manipulating the proportion of related items across the task, individuals could bias their 723 

responses using the validity cue (Keefe & Neely, 1990); for example, primes that were presented in 724 

blue (high validity context) were more likely to be related (80%). Therefore, when seeing a blue 725 

prime, individuals could judge their response (word/non-word) solely based on the prime, in this 726 

case a ‘word’ as most of the word-pairs are related. Instead, using a pronunciation task allows for a 727 
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purer measure of expectation, with the caveat of limiting the time-window of artefact-free EEG for 728 

analysis.    729 

 A recent prediction error view on language-related ERPs proposes that the N400 has similar 730 

properties to the MMN, as they both are modulated by the predictability of stimuli (i.e. increased 731 

ERP amplitude as a prediction-error response) but that their relative latencies indicate prediction-732 

error processing at different levels of stimulus complexity (Bornkessel-Schlesewsky & Schlesewsky, 733 

2019). In our findings, both consecutive effects could be similarly interpreted as reflecting different 734 

levels of complexity of precision-weighted prediction error processing across a semantic hierarchy. 735 

However, as noted above, appeal to precision-weighting problematically allows for post-hoc 736 

explanations of all possible ERP patterns (Bowman, Filetti & Olivers, 2013).  737 

Regarding the source estimation analyses, the early effect was localised to the middle 738 

frontal gyrus, which has been previously associated with semantic categorization when compared 739 

with passive listening (Noesselt, Shah, Jäncke, 2003). Furthermore, the ERP source estimation 740 

analysis for the late effect was localised to the supplementary motor area, consistent with the above 741 

interpretation that the late interaction reflects goal-driven routing toward action. Indeed, this area 742 

has been linked to speech motor control, verbal working memory, and predictive top-down 743 

mechanisms in speech perception (Hertrich, Dietrich, & Ackermann, 2016). However, neither of 744 

these two regions were part of our pre-registered hypotheses. Therefore, these source estimates 745 

should be interpreted with caution, and future studies with this paradigm will wish to replicate these 746 

sources.  747 

In our pre-registered analyses, we also hypothesised that we would observe 748 

electrophysiological markers of differential expectations generated by the high and low validity 749 

primes, prior to the onset of the target. Specifically, we expected these differential expectations to 750 

be reflected in the ERPs, including the slope of a putative slow wave (Chennu et al., 2013), and/or 751 
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in the power of the EEG in the alpha/beta bands, as these have been previously associated with the 752 

precision of expectations (Bauer, Stenner, Friston & Dolan, 2014). However, we found no evidence 753 

of any differences in these measures between high and low validity primes prior to target onset. 754 

One interpretation is that our specific measures were simply not sensitive enough to detect the 755 

differential expectations in these conditions. Indeed, we powered our study to detect the post-756 

target behavioural effect specifically. An alternative interpretation is that expectations were, in fact, 757 

not different between the two conditions. Indeed, under predictive coding, the brain is considered 758 

to optimize the difference between its expectations and sensory input by updating its internal model 759 

(Friston, 2010); hence, it is possible that the optimal means of minimising prediction error in this 760 

task is to always predict the related target, regardless of the prime validity. For example, even if one 761 

were to consciously expect that an upcoming target will be unrelated (as in a low validity trial), it is 762 

simply not possible to accurately predict the identity of that target, as the range of possible 763 

unrelated target words is considerable. Therefore, even though predicting the identity of a specific 764 

related target had only a ~22% probability of being correct in a low validity context, it was still more 765 

likely than predicting any one of the vast arrays of potential unrelated target words. Future 766 

inspection of participants’ meta-cognition in relation to their specific expectations following prime 767 

presentation will help speak to this interpretation.  768 

 769 

Conclusions 770 

In conclusion, we here reported ERP evidence of hierarchical matching of semantic 771 

expectations to incoming speech. Lower lever expectations based on the local context (i.e. the prime 772 

identity) elicited an early and predictive pattern that matches with prediction error accounts. Higher 773 

level expectations generated from the global context required awareness of the global rule and the 774 

use of a reportable strategy, and were associated with an apredictive pattern that can be 775 
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interpreted within a precision-weighted prediction error account, or may reflect the routing of 776 

sensory signals and their expectations into task-directed behaviour.  777 

 778 

 779 

 780 
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