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Abstract:  13 

While attempting to bridge motor control and cognitive science, the nascent field of embodied 14 
cognition has primarily addressed intended, goal-oriented actions. Less explored however, have 15 
been unintended motions. Such movements tend to occur largely beneath awareness, while 16 
contributing to the spontaneous control of redundant degrees of freedom across the body in motion. 17 
We posit that the consequences of such unintended actions implicitly contribute to our autonomous 18 
sense of action ownership and agency. We question whether biorhythmic activities from these 19 
motions are separable from those which intentionally occur. Here we find that fluctuations in the 20 
biorhythmic activities of the nervous systems can unambiguously differentiate across levels of 21 
intent. More important yet, this differentiation is remarkable when we examine the fluctuations in 22 
biorhythmic activity from the autonomic nervous systems. We find that when the action is intended, 23 
the heart signal leads the body kinematics signals; but when the action segment spontaneously 24 
occurs without instructions, the heart signal lags the bodily kinematics signals. We posit that such 25 
differentiation within the nervous system, may be necessary to acquire the sense of action 26 
ownership, which in turn, contributes to the sense of agency. We discuss our results while 27 
considering their potential translational value. 28 

Keywords: embodied cognition, agency, action ownership, network analysis, motor variability, 29 
motor control, voluntary motion, precision medicine  30 

 31 

1. Introduction 32 

The field of embodied cognition (EC) has provided a powerful theoretical framework amenable 33 
to bridge the gap between research probing our mental states and research investigating our physical 34 
actions [1-3]. Indeed, within the framework of EC, the construct of agency conceived as a cognitive 35 
movement phenomenon [4-6], may provide a way to finally connect the disparate fields of cognitive 36 
science and motor control. An important component of agency is action ownership [5, 7, 8], i.e. the 37 
sense that sensory consequences of the actor’s action are intrinsically part of the actor’s inner 38 
sensations. When the actor owns the action, s/he has full control over those sensations that are 39 
internally self-generated and self-monitored by the actor’s brain, and yet extrinsically modulated by 40 
external sensory goals. A critical aspect of this internal-external loop is the identification of the level 41 
of actor’s intent, and its differential contribution to the action’s intended and unintended sensory 42 
consequences. 43 
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 In recent years, a body of knowledge has increased our understanding on the sensory 44 
consequences derived from intentional actions, as such action components deliver an overall sense 45 
of agency [9, 10]. Less explored however, have been parts of the action that are unintended, or that 46 
transpire spontaneously and largely beneath awareness. Such actions’ components exist at the 47 
involuntary and at the autonomic levels of neuromotor control (Figure 1). They do not require explicit 48 
instructions or precisely defined external goals, yet they too contribute to the differentiation of levels 49 
of intent in our actions [11, 12]. More importantly, at the cognitive level of decision making, these 50 
unintended movements contribute to the acquisition of decision accuracy, within the context of motor 51 
learning induced by different cognitive loads [13, 14]. 52 

At the motor control level, autonomous and spontaneous movements are important to develop 53 
a sense of action ownership in the face of motor redundancy [15]. They require the coordination of 54 
many degrees of freedom (DoF) across the body. Thus, as we produce fluid and timely goal-oriented 55 
actions, kinematic synergies self-emerge and dynamically recruit and release the bodily DoFs, 56 
according to task demands [16-18]. Conscious decisions generating movements that attain external 57 
goals take place as the brain interweaves deliberate and spontaneous movement segments. Such 58 
segments in our complex actions gracefully build an ebb and flow of intended actions and sensory 59 
consequences [11]. Some of these sensations that voluntary movements give rise to [19], return to the 60 
brain as intentional feedback, thought to contribute to our internal models of action dynamics [20, 61 
21]. This form of volitionally controlled kinesthetic reafference cumulatively helps us build accurate 62 
predictions of those intended sensory consequences [19], while other unintended movements return 63 
to the brain as spontaneous reafference, providing contextual cues that support motor learning, 64 
motor adaptation and action generalization across different situations [11]. 65 

One informative aspect of this ebb and flow of intent and spontaneity in our actions is the 66 
fundamental differences that emerge in the geometric features of the positional trajectories that the 67 
moving body describes [22-24]. When the motions are intended, geometric invariants derived from 68 
these trajectories emerge and remain robust to changes in speed dynamics [16, 23-27]. In contrast, 69 
trajectories from unintended motions produce different signatures of motor variability bound to 70 
return to the brain as spontaneous feedback. These internal sensations help us define contextual 71 
variations emerging from external environmental cues [11, 12]. These may include for example, 72 
changes in visual and auditory inputs, such as shifts in lighting conditions, or modulations in sound 73 
and music [12, 28]. The geometry of these spontaneous movements’ trajectories dramatically changes 74 
with fluctuations in the movements’ dynamics. Changes in speed [16, 23-27] or mass [12] affect their 75 
motor variability in fundamentally different ways (if we compare the signatures of variability derived 76 
from the spontaneous samples to those derived from deliberately staging the same movement 77 
trajectories [12, 25].) More importantly, the fluctuations in the motor variability of these spontaneous 78 
motions can forecast symptoms of Parkinson’s disease before the onset of high severity [29, 30]. They 79 
have also aided in evoking the sense of action ownership and agency in young pre-verbal children 80 
[31]. For these reasons, here we posit that deliberate and spontaneous segments of complex actions 81 
ought to differentially contribute to our sense of action ownership and to our overall sense of agency. 82 
To examine this proposition, we follow a phylogenetically orderly taxonomy of the nervous systems’ 83 
maturation (Figure 1B) and examine all levels of neuromotor control – from autonomic to deliberate 84 
– necessary to coordinate voluntary motions (Figure 1A). 85 

More specifically, since autonomic systems are vital to our survival and wellbeing, they may 86 
remain impervious to subtle distinctions between deliberate and spontaneous motions that take place 87 
across the body, as the end effector completes goal-directed actions. Here we explore the interplay 88 
between autonomic signals and voluntary motor control in actions that integrate deliberate and 89 
spontaneous motions across the body. We use a new unifying statistical framework for 90 
individualized behavioral analyses and network connectivity analyses and offer a quantitative 91 
account of how these movement classes contribute to the overall embodied sense of agency. 92 
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 93 

Figure 1. Defining quantitative aspects of agency for the study of embodied cognition (A) 94 
Phylogenetically orderly taxonomy of nervous system functions involving different levels of 95 
voluntary control (intent) ranging from deliberate to spontaneous movement segments, to 96 
involuntary motions and autonomic control. Multi-layered signals contributing from each of these 97 
layers are proposed to differentially contribute to the sense of action ownership and to the overall 98 
sense of agency via sensory consequences preceded by different levels of intent. (B) Contributions of 99 
the central and peripheral nervous systems, including the autonomic nervous system (ANS), can be 100 
tracked in a closed loop that helps the autonomous realization of intended thoughts into physical 101 
actions under volitional control. (C) Network connectivity analyses of kinematics and heart 102 
biorhythmic signals encompassing these levels of control enable the study of agency through objective 103 
quantitative methods. 104 

2. Materials and Methods 105 

2.1. Experimental Design 106 

2.1.1. Participants  107 

Nine undergraduate students (2 males and 7 females) between the ages of 18 and 22 years were 108 
recruited from the Rutgers human subject pool system. Two were left-handed and seven were right-109 
handed, and all had normal or corrected-to-normal vision. All participants received credit for their 110 
participation, and provided informed consent, which was approved by the Rutgers University 111 
Institutional Review Board. The study took place at the Sensory Motor Integration lab at Rutgers 112 
University.  113 

During the experiment, movement kinematics and heart signals were recorded from each 114 
participant. However, one participant’s recording had too much noise (i.e., inaccurate sensor position 115 
with error larger than 10cm), so we excluded this participant’s data in the analysis. For that reason, 116 
eight participants’ motor and heart signals were analyzed. 117 

2.1.2. Sensor Devices 118 

Motion capture system (kinematics data): Fifteen electromagnetic sensors sampling at a frequency of 119 
240 Hz (Polhemus Liberty, Colchester, VT) were attached to the participant’s upper body in the 120 
following locations: center of the forehead, thoracic vertebrate T7, right and left scapula, right and 121 
left upper arm, right and left forearm, non-dominant hand, and the dominant hand’s index finger . 122 
These sensors were secured with sports bands to allow unrestricted movement during the recordings. 123 
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Motor signals were recorded in real-time by Motion Monitor (Innovative Sports Training Inc., 124 
Chicago, IL) software, where the participant’s body was constructed by a biomechanical model, and 125 
movement data were preprocessed by an embedded filtering algorithm of the software, providing 126 
the position and kinematics of each sensor.   127 

Electrocardiogram (heart data): Three sensors of electrocardiogram (ECG) from a wireless Nexus-10 128 
device (Mind Media BV, The Netherlands) and Nexus 10 software Biotrace (Version 2015B) were used 129 
to record heart activity. At a sampling rate of 256Hz, the sensors were placed across the chest 130 
according to a standardized lead II method. 131 

2.1.3. Experimental procedure 132 

Participants sat at a desk facing an iPad tablet (Apple, Cupertino, CA), which was used to 133 
display stimuli during the experiment, and participants responded by touching the tablet screen. The 134 
tablet display was controlled with an in-house developed MATLAB (Release 2015b, The MathWorks, 135 
Inc., Natick, Massachusetts, United States) program and TeamViewer application (Germany). 136 

As shown in Figure 2, for each trial, the participant was presented with a circle on the tablet 137 
screen. This circle served as a prompt for the participant to touch the tablet screen within five seconds. 138 
After the touch, either 100ms, 400ms, or 700ms elapsed, and the participant heard a tone at 1000Hz 139 
for 100ms. Then, on the tablet screen, the participant was presented with a sliding scale, ranging from 140 
0 to 1 (second), to indicate how long he/she perceived the time elapsed between the touch and the 141 
tone. The response was to be made within five seconds upon the display of the sliding scale. The five 142 
seconds time-window was considered enough for the participant to provide a response, as it took 143 
approximately 1 s to touch the screen and retract the hand back to its original position. There was a 144 
total of three conditions – control, low cognitive load, high cognitive load - and each condition 145 
consisted of 60 trials. In the control condition, the participant simply performed each trial with no 146 
additional task; under the low cognitive load condition, the participant performed each trial while 147 
repeatedly counting forward 1 through 5; under the high cognitive load condition, they counted 148 
backwards from 400 subtracting by 3 while they performed each trial. Participants counted forward 149 
and backward at their own comfortable pace, and they took breaks in between each condition. The 150 
experiment set up took about 30 minutes, and the recording took about 40 minutes. 151 

2.2. Statistical Analysis Overview 152 

2.2.1. Preprocessing 153 

In this study, we extracted the kinematics (i.e., linear speed, angular acceleration) and heart data 154 
during time segments when the participant made a pointing motion towards the circle presented on 155 
the tablet screen; and combined them across the three conditions. As a result, we analyzed the 156 
kinematics and heart data recorded while the participant made 180 pointing motions (less any trials 157 
that were deemed noisy; the most trials we excluded per participant due to instrumentation noise 158 
were 12 trials).  159 

To analyze the ECG and kinematics data in tandem, we up-sampled the kinematics data from 160 
240Hz to 256Hz using piecewise cubic spline interpolation. Note, the ECG signals were not 161 
synchronized with the kinematics data but were manually time stamped at the start and end of each 162 
experimental condition. For that matter, we expect a presence of lag between the two modes of signals 163 
– kinematics and ECG – but the lag would not exceed 1 second.  164 

To exclude effects of muscle motion from the ECG heart data, we bandpass filtered the data with 165 
Butterworth IIR for 5-30Hz at 2nd order. This filter was effective in identifying QRS complexes and 166 
extracting R-peaks in previous studies [13, 32]. Here, the filter excluded the dominant frequency 167 
range where typical kinematics signals are present (see Appendix Figure A1). We performed our 168 
analyses using both filtered and non-filtered EKG data and found similar trends and patterns. 169 
However, the paper only presents the results from using the filtered data, as it is a better reflection of 170 
the heart activity. 171 
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2.2.2. Data analysis structure  172 

We used the rationale in Figure 1 to structure our analyses, with a focus of two main axes 173 
denoting the level of motor intent and awareness that the brain may have during complex tasks 174 
(Figure 3A). More precisely, one axis explores possible differentiations between time segments of the 175 
pointing movements that are deliberately aimed at an external target (forward/high motor intent) vs. 176 
segments that are consequential to the deliberate ones (backward/low motor intent). The latter may 177 
occur when the hand retracts back to rest, or when after touching the target the person transitions the 178 
hand in route to another goal-directed motion. These segments have been studied in our lab across 179 
very complex motions in sports (boxing, tennis) and in the performing arts (ballet, salsa dancing). We 180 
have coined them spontaneous movements and discovered that they have precise signatures that 181 
distinguish them from the deliberate ones. For this reason, we hypothesized here that these 182 
spontaneous motions would have different stochastic signatures or be differentially expressed in 183 
relation to the deliberate ones. 184 

 185 

Figure 2. Experimental assay and instrumentation setup (A) Experimental procedure. In a single 186 
trial, the participant was presented with a display screen as shown on the top panel. During the first 187 
5 seconds, the participant was presented with a circle as a prompt to touch the circle on the screen. 188 
After the touch, the participant heard a tone. The duration between the touch and the tone was 189 
randomly set to be 100ms, 400ms, or 700ms. In the next 5 seconds, the participant was presented with 190 
a sliding scale, where s/he indicated how long the time was perceived to have elapsed between the 191 
touch and the tone, by touching the corresponding number on the scale. For each trial, the participant 192 
made two pointing gesture – one to touch the circle and another to indicate their time estimation on 193 
the sliding scale. Such pointing gesture was composed of a forward reaching segment (red) and a 194 
backward retracting segment (blue), as shown in the bottom panel. (B) Motion capture sensor 195 
positions. The sensors were attached on the following body parts: center of the forehead, thoracic 196 
vertebrate T7, right and left scapula, right and left upper arm, right and left forearm, non-dominant 197 
hand, and the dominant hand’s index finger. (C) Snapshot of the experiment. During the experiment, 198 
the participant was seated in front of the tablet screen to perform the tasks, and wired sensors were 199 
secured with athletic tape. 200 

The other axis explores possible contributions of body parts that are not directly related to the 201 
end effector (the dominant hand) performing the pointing task. We reasoned that there may be higher 202 
motor intent devoted to the performing (dominant) hand of the participant than to the non-dominant 203 
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side of the body. Furthermore, we explored how other body parts (also co-registered within the 204 
sensors’ network) contributed to the overall performance of this task.  205 

These two axes were explored at the voluntary level of motor control interleaving deliberate 206 
goal-directed (forward) actions and spontaneous (backward) segments of the full pointing loop. We 207 
also included in our analyses the autonomic level of control in the taxonomy of Figure 1A. And to 208 
that end, we co-registered the heart activity and incorporated it into the bodily kinematics activity 209 
(Figure 3B). We next explain how to overcome challenges in sensors’ data fusion from disparate 210 
systems along with new approaches to analyze these multi-modal data. 211 

 212 

Figure 3. Overview of analytics pipeline. (A) Behavioral assay to quantify ranges of motor intent 213 
along two axes to highlight externally and internally defined goals.  Along the former, motions are 214 
classified across time based on the end-effector’s movement, ranging from backward-spontaneous 215 
(lower motor intent) to forward-deliberate (higher motor intent) motions. Along the other axis, 216 
motions are classified across locations of the body, based on the proximity to the end-effector, from 217 
non-dominant side of the body parts (lower motor intent) to the dominant side including the end-218 
effector (higher motor intent). Note, the two axes are not necessarily orthogonal as the schematics 219 
imply. (B) Two types of network analyses were made. Within the kinematics network, kinematics 220 
data served to compare patterns of variability from movement segments of higher level of intent 221 
(deliberately aimed at the goal) and movement segments with lower level of intent (spontaneous 222 
retractions of the hand to rest, without instructions), including as well comparison of patterns from 223 
the dominant and non-dominant parts of the body. Within the kinematics-heart network, a similar 224 
comparison was made, with a layer of autonomic function added, using signals from the EKG sensors. 225 
(C) For the spatial domain of connectivity analysis, raw biophysical data (biorhythms) co-registered 226 
from multiple layers of the peripheral and autonomic nervous systems were converted to MMS, and 227 
used to compute pairwise similarity/synchronicity metrics to build adjacency matrices to represent 228 
weighted / undirected graphs. For the temporal domain, the raw biophysical data were directly used 229 
to build adjacency matrices. For both domains, with the obtained adjacency matrices, network 230 
connectivity analyses combined with non-linear dynamical systems approaches were used to identify 231 
self-emerging kinematic synergies and various indexes to enable objective quantification of the 232 
embodied cognition phenomena. 233 

2.2.3. Challenges of multilayered data with non-linear dynamics and non-normally distributed 234 
parameters 235 

Disparate physical units: Different instruments to assess biorhythms from different layers of the 236 
nervous systems (i.e., kinematics vs. EKG) output biosignals with different physical units (e.g. m/s 237 
from the kinematics speed, mV from the EKG). This poses a challenge to integrate these signals and 238 
examine their interrelations across these layers.  239 
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Allometric effects: Another issue is that when examining such data from different participants with 240 
different anatomical sizes, allometric effects may confound our results. This is so because e.g. the 241 
speed ranges that a person attains depend on the length of the arm. Longer arms tend to broaden the 242 
ranges of speed and contribute to the distribution of speed values that the person attains in any given 243 
experiment. As such, we need to account for these possible allometric effects.  244 

Assumption of normality: Another related matter to the ranges of speed and their distributions is 245 
that they vary from person to person according to multiple factors (e.g. age, body mass, sex, fitness, 246 
etc.) [32]. These variations result in probability distributions with heavy tails, which are incompatible 247 
with common assumptions of normality in the literature. When the effects of the task, or the inherent 248 
motor noise in the system, are such that most values related to the speed distribute more densely 249 
toward the left of the frequency histogram (e.g. in autism exponentially distributed maximum speed 250 
amplitude is common [33]), assuming normality may incur in spurious results. This is so, because 251 
speed ranges from 0 to some limiting value for each person (the maximum speed that the person can 252 
reach before damaging the joints). As such, when one obtains the mean +/- two standard deviation 253 
values to approximate standard error bars (which is very common in the motor control literature) 254 
while summarizing the statistical features of the data, the data may fall in the negative speed ranges 255 
(which is physically absurd). 256 

Assessing similarity in probability space: Going beyond significant hypothesis testing models, one 257 
may need to assess the differences between probability distributions. To that end, one may need a 258 
proper similarity metric. Yet, when our data represents points in probability space, and the 259 
distributions are not symmetric, it is challenging to assess their similarity in a consistently proper 260 
way. Measures like the Fisher information metric are designed to compare symmetric distributions 261 
and the Kullback-Leibler divergence is computed asymmetrically between distributions (one-sided). 262 
We would like to have a proper (two-sided) distance metric to assess change and its rate when points 263 
are related to non-symmetric continuous probability density functions, or to their discrete 264 
approximations. 265 

Degrees of freedom across intent levels of motor control: Multiple locations of the grid of sensors, co-266 
registering biorhythms from different nervous systems, contribute differently to the overall behavior 267 
of the system. Some may be more directly related to action success, while others may provide 268 
support. Separating the bodily region within a kinematics-heart network can be challenging because 269 
of the non-linear dynamics of the interactive systems. Yet, most methods assume or impose local 270 
linearities to model such phenomena. Here we propose to approach this problem by treating the grid 271 
of sensors as a dynamically evolving weighted interconnected network, whereby we track self-272 
emerging modules informing us of spontaneous synergies and connectivity patterns. 273 

2.2.4. Some solutions to the Challenges 274 

New data type for disparate physical units: We have created a data type called the micro-movement 275 
spikes (MMS), which is a unitless, standardized waveform derived from the moment to moment 276 
fluctuations in the raw data peaks’ amplitude and / or timing. This data type extracts the fluctuations 277 
in amplitude and/or timing of any waveform with peaks and valleys (e.g. time series of speed values 278 
or kinematic related values derived from them). To that end, we obtain the empirically estimated 279 
moments from the peaks in the raw waveform. We then build a new waveform that can be 280 
normalized according to various criteria. This new waveform is then unitless and refers to a relative 281 
quantity (rather than to an absolute quantity). 282 

Data standardization to account for allometric effects: The Anthropology and Paleontology literature 283 
has several solutions to address comparative data that may come from different bone sizes across e.g. 284 
different humanoids [34, 35]. Equation (1) provides an example of standardization to scale values 285 
derived from any waveform with peaks and valleys, which can be derived e.g. from data series with 286 
different physical units, from effectors of different sizes: 287 
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𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑𝑃𝑒𝑎𝑘 =
𝐿𝑜𝑐𝑎𝑙𝑃𝑒𝑎𝑘

𝐿𝑜𝑐𝑎𝑙𝑃𝑒𝑎𝑘+𝐴𝑣𝑟𝑔𝑚𝑖𝑛−𝑡𝑜−𝑚𝑖𝑛
     (1) 288 

The standardized quantities are in the real-valued [0,1] interval. They are coined MMS 289 
amplitudes and treated as a continuous random process. We have characterized several complex 290 
behaviors from various layers of the nervous systems using the MMS, and expressed them in two 291 
forms: (1) without preserving the original frames of the data, i.e. just focusing on the MMS amplitude 292 
fluctuations and (2) conserving the original frames, in which case, we would 0-pad those that are not 293 
spikes, or preserve their values as additional gross data contributing to the phenomena in question. 294 
Either way, these fluctuations ought not be averaged out by assumptions of normality. Whereas in 295 
the extant literature these fluctuations are considered noise, or superfluous, here we treat them as 296 
important signal. 297 

Distribution-free approach to counter current assumption of normality: We do not assume normality 298 
in the data. Instead, we gather enough data to empirically estimate the best family of probability 299 
distributions that fits the data. To that end, we here use maximum likelihood estimation (MLE) with 300 
95% confidence intervals and seek the best continuous family that fits our data. 301 

Distance metric to assess similarity in probability space: We here introduce the use of the Earth 302 
Mover’s Distance Metric (EMD) [36-39] to approximate (using the frequency histograms of the MMS 303 
amplitudes) the stochastic shifts in probability space that occur for different movement types. This is 304 
an appropriate similarity metric that allows us to examine the extent to which different levels of 305 
motor control change the stochastic patterns. We briefly describe it below: 306 

The EMD, also known as the Kantarovich-Wasserstein distance [40], measures the distance 307 
between two discrete probability distributions. Given two discrete distributions P = {(p1,wp1), … 308 
(pm,wpm)} [13, 14], where pi is the cluster representative and wpi is the weight of the cluster; and Q = 309 
{(p1,wp1), … (pn,wpn)}, EMD computes how much mass is needed to transform one distribution into 310 
another. Defining D [dij] as the ground distance matrix, where dij is the ground distance between 311 
clusters pi and qj, and F = [fij] with fij as the flow between pi and qj; EMD is computed by minimizing 312 
the overall cost of such:  313 

Work (P,Z,F) = ∑ ∑ 𝑑𝑖𝑗𝑓𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1  314 

As there are infinite ways to do this, the following constraints are imposed to yield EMD values:  315 

𝑓𝑖𝑗  ≥ 0  1≤i≤m, 1≤j≤n  316 

∑ 𝑓𝑖𝑗 ≤  𝑤𝑝𝑖

𝑛

𝑗=1

1 ≤ 𝑖 ≤ 𝑚  317 

∑ 𝑓𝑖𝑗 ≤  𝑤𝑞𝑖

𝑚

𝑗=1

1 ≤ 𝑗 ≤ 𝑛  318 

∑ ∑ 𝑓𝑖𝑗
𝑛
𝑗=1  𝑚

𝑖=1 = min (∑ 𝑤𝑝𝑖

𝑚
𝑖=1 , ∑ 𝑤𝑞𝑗

𝑛
𝑗=1 )   319 

EMD(P,Q) = 
∑ ∑ 𝑑𝑖𝑗𝑓𝑖𝑗

𝑛
𝑗=1

𝑚
𝑖=1

∑ ∑ 𝑓𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1

 320 

Network connectivity analyses to assess degrees of freedom recruitment across modalities of motor 321 
control: We use graph theory to examine the inter-relations across the nodes of the multilayered 322 
kinematics-heart network. To that end, we derive an adjacency metric of pairwise quantities 323 
reflecting the cross-correlation between any pair of nodes in the grid. We then construct weighted 324 
directed networks and borrow connectivity metrics from brain-related research. We extend these 325 
methods to represent the peripheral network using the bodily biorhythms from multiple layers of the 326 
nervous systems’ functioning, spanning from voluntary to autonomic (Figure 1A). 327 
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2.2.5. Choice of kinematics parameter 328 

The recording of positions over time across 10 upper body parts allows us to estimate two 329 
aspects of the biorhythmic data: spatial and temporal aspects, both of which are critical to characterize 330 
proper coordination and control. A parameter encompassing both aspects is the velocity. The 331 
derivative of position over time creates vector fields with direction and extent. Each point in the field 332 
(along the velocity trajectory) occurs in time and moves in space. 333 

To assess spatial components, we use the scalar speed (distance traveled per unit time, where 334 
the unit time is taken constantly at the rate of 240 frames per second). We use Euclidean norm to 335 
compute the length of the velocity vector at each unit time, thus quantifying the rate of change in 336 
position per unit time – the linear speed (m/s). Likewise, we use the orientation data from each sensor 337 
and obtain the angular velocity from the rotations of each body part. Using appropriately the 338 
quaternion representation of rotations and the Euclidean metric to quantify the magnitude of the 339 
angular velocity vector, we obtain the angular speed (deg/s). These waveforms derived from the first 340 
order change are useful, but at the time scale (~1/2 hour) of our experimental assay, they provide 341 
fewer peaks per trial than waveforms derived from the second order change (i.e., linear acceleration 342 
(m/s2) or angular acceleration (deg/s2)).  343 

As we need many spikes for our distribution-fitting and stochastic analyses, we used the angular 344 
acceleration kinematics data. Note, it is possible to have had participants perform more trials to 345 
obtain a larger number of spikes using the linear speed; however, this would fatigue the participants 346 
as the length of the experiment is around 70 minutes (inclusive of 40 minutes for set up). For that 347 
reason, within this amount of time, it was ideal to use the angular acceleration as our kinematic 348 
parameter of interest. This choice of parameter to analyze the stochastic patterns of the moment by 349 
moment fluctuations in signal amplitude (i.e. the spatial component of our analysis) provides tighter 350 
confidence interval in the empirical estimation of the best probability distribution family fitting the 351 
data.  352 

We also examined temporal components of the data. To that end, we used the linear speed 353 
patterns and the cross-correlation function. We extended our analyses to different kinematics 354 
parameters, and while they all showed similar patterns and trends, we found the linear speed to best 355 
characterize the differing patterns of motor intent. For that reason, we present the results of the 356 
temporal analyses involving cross-correlation based network connectivity patterns using the linear 357 
speed as our waveform of choice (Figure 3C). 358 

2.3. Data analysis on kinematics network connectivity 359 

As a first step, we separated the kinematics data obtained from all 10 body parts, using the start 360 
and end time of the dominant hand making a forward-deliberate motion, and the hand making a 361 
backward-spontaneous motion (Figure 4A). This is possible to do (automatically) because (1) the 362 
speed is near 0 at the onset of the motion towards the target; (2) the distance to the target 363 
monotonically decreases and once again the hand pauses at the target at near 0 speed. As the 364 
deliberate (forward) segment is completed, the speed rises again away from 0 and the distance to the 365 
target increases as the hand follows the backward segment of the full pointing loop. The two 366 
segments can be automatically differentiated also because the deliberate (forward) one is less variable 367 
than the spontaneous (backward) one [11, 29, 34, 42]. 368 

For the connectivity analysis centered on spatial aspects of the signal amplitude, we pooled the 369 
angular acceleration data from each body part and extracted the MMS amplitudes (referred to as 370 
MMS from hereon). We then built frequency histograms of the MMS and explored several families 371 
of PDFs using MLE. The continuous family of Gamma PDFs yielded the best fit (Figure A2) and 372 
served to provide the noise to signal ratio (NSR; computed to equal the Gamma scale parameter) for 373 
each body part (Figure 4B, 4D-F). These were then visualized as node size in the schematics of the 374 
network in Figure 4K across different motor intent levels. 375 

To characterize the connectivity of 2 body parts, we took the pairwise absolute difference 376 
between angular acceleration and based on the obtained absolute difference time series, computed 377 
the corresponding MMS. We then fitted the Gamma scale parameter (i.e., NSR) (Figure 4C, 4D-F), 378 
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which were visualized as edges in the schematics of the network in Figure 4K. The intuition behind 379 
taking the absolute difference in angular acceleration time series from two body parts is that this 380 
reflects the change in positional distance between those two body parts, and thus represents the 381 
connectivity (physical distance) between those two. The NSR values were then compared between 382 
different movement segments (i.e., forward vs. backward) and different hand dominance (i.e., right 383 
vs. left arm/hand), to understand the noise level during different levels of motor intent. Note, for each 384 
type of motor segment (i.e., forward vs. backward), and for each dominance side (i.e., dominant vs. 385 
non-dominant), more than 2500 spike amplitude data were extracted. These spike amplitude data 386 
were then plotted on a frequency histogram using Freedman-Diaconis binning rule [43]. They were 387 
used for empirical estimation of the best PDF in an MLE sense. The results yielded the Gamma 388 
probability distribution function (PDF) (see Figure A2 B). 389 

Connectivity analyses on temporal aspects of coordination involved the linear speed from each 390 
pair of body parts. We computed pairwise cross-correlations to derive an adjacency matrix that 391 
would represent a weighted undirected graph. Here, the ij-link’s weight is the maximum cross-392 
correlation value between nodes i and j (that is, the corresponding two body parts). From these 393 
matrices, we computed clustering coefficients, which are measures that characterize the local 394 
connectivity (i.e., functional segregation). They would represent self-emerging kinematic synergies. 395 
Specifically, the degree of a node in the network (number of links at a node) between a set of nodes 396 
form triangles, and the fraction of triangle numbers formed around each node is known as the 397 
clustering coefficient (Figure 4G-J). This measure essentially reflects the proportion of the node’s 398 
neighbors (i.e., nodes that are one degree away from the node of interest) that are also neighbors of 399 
each other [44]. Here, we computed the average intensity (geometric mean) of all triangles associated 400 
with each node, where the triangles reflect the degree strength, and is computed as shown below 401 
(using an algorithm by [45]; Eq 2).  402 

𝐶𝑖 =  ∑
𝑡𝑖

𝑘𝑖(𝑘𝑖−1)𝑖∈𝑁           (2) 403 

𝑁: set of all nodes (composed of 10 body parts) 404 

𝐶𝑖: cluster coefficient for node 𝑖  (𝑖 ∈ 𝑁) 405 

𝑡𝑖: geometric mean of triangles links formed around node 𝑖  (𝑖 ∈ 𝑁) 406 

𝑘𝑖: number of degrees (links) formed around node 𝑖  (𝑖 ∈ 𝑁) 407 

To visualize the network, we represented the median pair-wise cross-correlation values as the 408 
edge thickness, and median cluster coefficient values as the node size (Figure 4K). The median cross-409 
correlation and cluster coefficient values were then compared between different movement segments 410 
(i.e., forward vs. backward ) and different hand dominance (i.e., right vs. left arm/hand), to 411 
understand how linear correlations differed across varying levels of motor control. 412 

 413 

2.4. Data analysis on kinematics-heart network connectivity 414 

As with the kinematics connectivity analysis, we segmented the data of the filtered EKG data along 415 
with the kinematics data by the time intervals when the dominant hand was making a deliberate 416 
forward motion and a spontaneous backward motion. (Figure 5A).  417 

For the spatial domain of connectivity, we took the segmented data of angular acceleration and 418 
EKG data, and extracted MMS from both signals, and plotted a histogram of the MMS. Because the 419 
MMS of EKG signals did not follow a Gamma distribution, in order to assess the connectivity between 420 
the two, we computed the earth mover’s distance (EMD) between the histogram from a single body 421 
part and from the EKG data (Figure 5A-D).  422 
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 423 

Figure 4. Analytical pipeline and visualization methods for the kinematics network. (A) 424 
Representative movement trajectory of the dominant hand during a pointing motion to a target 425 
(denoted by a small open circle). Each trial comprised of a forward-deliberate (red) and backward-426 
spontaneous (blue) segment. These could be automatically separated by the speed and distance 427 
criteria (see Figure A2). (B) Time series of angular acceleration of the dominant hand’s index finger 428 
during a typical pointing task. To examine kinematics-based connectivity, we used the angular 429 
acceleration time series, focusing on the moment by moment fluctuations in waveform amplitude. 430 
Here, peaks (maxima) and valleys (minima) are shown in red and black dots, respectively. The inset 431 
shows a zoomed-in picture of a single angular acceleration segment (i.e., two local minima and a 432 
single peak in between, used for standardization described in Eq 1). (C) Pairwise absolute difference 433 
in waveform was obtained and standardized using Eq 1. The resulting waveform provided the input 434 
to obtain MMS. (D) MMS train scaling the waveform amplitude for a typical pointing task. All 435 
standardized spike amplitude values from (B) and (C) were maintained, while all non-spike values 436 
were set to 0. (E) Frequency histogram of MMS amplitudes fitted to a Gamma PDF using MLE. (F) 437 
The empirically estimated Gamma parameters (shape and scale) were obtained and plotted on a 438 
Gamma parameter plane, with marker lines representing the 95% confidence interval. Noise-to-signal 439 
ratio (NSR) (i.e., fitted Gamma scale parameter) were later used for comparison between motor 440 
segments and dominance side. (G) Representative time series of linear speed of the dominant hand’s 441 
index finger in one trial. (H) Pairwise cross-correlation between two body parts. (I) Adjacency matrix 442 
obtained from all pairwise maximal cross-correlation across all body parts under consideration, to 443 
represent a weighted undirected graph. (J) Connectivity metrics (e.g. clustering coefficient) were used 444 
to quantify patterns of temporal dynamics. (K) Network connectivity analyses to unveil self-emerging 445 
clusters, where nodes correspond to each body part. For the spatial domain, NSR derived from MMS 446 
amplitudes of angular accelerations were visualized as node size, and NSR derived from MMS 447 
amplitudes of pairwise absolute difference in angular acceleration as edge thickness. For the temporal 448 
domain, cluster coefficients were visualized as node size, and median cross-correlations as edge 449 
thickness. 450 

For the temporal domain, we computed pairwise cross-correlations along with its lag, between the 451 
EKG filtered time series and each body part’s linear velocity time series. In fact, in our analysis, we 452 
found an interesting pattern in directionality (i.e., lag) of correlation, and deemed informative to present 453 
them in the network graph. For that reason, edge thickness was represented by the median cross-454 
correlation values, and color of the edges were visualized, where red would indicate EKG signals 455 
leading linear velocity signals, and blue would indicate linear velocity leading EKG signals (Figure 5G).  456 
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For all these metrics, we compared the medians between different movement segments (i.e., 457 
forward vs. backward) and different hand dominance (i.e., right vs. left arm/hand), to understand how 458 
stochasticity and temporal dynamics changed across varying levels of motor intent between the heart 459 
(from ANS) and kinematics (from PNS/CNS). 460 

  461 

Figure 5. Analytical pipeline and visualization methods for the kinematics-heart network. (A) 462 
Typical movement trajectory of the dominant hand position, while performing a single pointing 463 
action towards a target. Each trajectory was separated into forward-deliberate (red) and backward-464 
spontaneous segments (blue) according to hand-target updated distance and near-zero-speed value 465 
(see Figure A2 for details). (B) Angular acceleration time series of the hand during a typical pointing 466 
task. MMS amplitudes from the angular acceleration time series were extracted for each body part. (C) 467 
Filtered EKG time series during a pointing task. MMS amplitudes from the filtered EKG time series 468 
were extracted. (D) Histograms of compiled MMS amplitudes. For spatial analysis, pairwise EMD 469 
was computed between histograms from each body part and heart activity. (E) Linear speed time 470 
series of the dominant hand. For temporal analysis, linear speed kinematics time series was used. (F) 471 
Cross-correlation between a single body part's linear speed and filtered EKG signal. For each trial, 472 
cross-correlation was computed between a pair of filtered EKG and a single body part’s linear speed 473 
time series, and the maximal value (red dot) and its corresponding lag values were 474 
extracted.  (G) Visualization of connectivity. Network connectivity was visualized, where node size 475 
represented the EMD between the corresponding pair of body part and heart signals (i.e., spatial 476 
metric), and edge thickness represented the median cross-correlation values between the signal pairs 477 
(i.e., temporal metric). The edge colors were visualized, such that red would indicate EKG signals 478 
temporally leading linear speed signals, and blue would indicate linear speed leading EKG signals. 479 

3. Results 480 

3.1. Higher Motor Intent Results in Higher NSR in Spatial Parameters 481 

Motor intent in the context of our experimental assay specifically refers to the level of 482 
deliberateness (or spontaneity) of the movement segment in route to an external target (away from 483 
it). An instructed pointing action to touch the target is a goal-directed reach with high level of intent. 484 
In contrast, the uninstructed spontaneous retraction away from the target carries lower motor intent 485 
than the goal-directed one.  486 

As a first set of analysis, the MMS extracted from the angular acceleration data from each body 487 
part were aggregated across all trials and conditions, and arranged by different movement segments 488 
(forward-deliberate vs. backward-spontaneous) and different dominance side. The same was also 489 
done on the MMS extracted from the absolute difference in angular acceleration from all pairs of body 490 
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parts. The NSR was found to be significantly higher when the motions were deliberate and on the 491 
dominant side. (Figure 6).  492 

Specifically, NSRs of the kinematics time series from each body part showed was highest when 493 
an individual exerted higher motor control under higher level of motor intent, such as on the 494 
dominant side of the body and during a forward-deliberate motion. Conversely, when an individual 495 
did not deliberately intend to move the arm, as exhibited on the non-dominant side and during a 496 
backward-spontaneous motion, the NSR was at its lowest. The NSRs for all pairs of body parts’ 497 
absolute difference in angular acceleration (i.e., change in distance between the pairs of body parts), 498 
on the other hand, is higher on the dominant side (vs. non-dominant side), but does not show such 499 
consistent pattern when comparing between the two motion segments (forward vs. backward). 500 
Details of the 95% confidence interval of the fitted Gamma scale parameter (i.e., the NSR) for all 501 
participants, and for all body parts (Figure A3) and all pairs of body parts (Figure A4) can be found 502 
in the Appendix. 503 

 504 

Figure 6. NSR signatures during pointing can differentiate the levels of intent. Comparison 505 
includes forward-deliberate vs. backward-spontaneous segments and dominant vs. non-dominant 506 
effector. (A)  Network visualization of a right-handed representative participant. Node size is 507 
represented by the NSR derived from the corresponding body part’s kinematics time series, and edge 508 
thickness is represented by the NSR of the absolute difference in kinematics between the 509 
corresponding pairs of body parts. Node size and edge thickness are graphed in the same scale across 510 
different movement segments (i.e., forward and backward segments). (B) NSR for different 511 
movement segment and dominance side.  Each dot is the median NSR values for each participant’s 512 
different movement segments (left) and dominance side (right) from the unitless MMS derived from 513 
the Angular Acceleration (AA) fluctuations in amplitude. The x-axis denotes the NSR from individual 514 
body part’s kinematics (NSR AA) and y-axis denotes the NSR from the MMS derived from the 515 
absolute pairwise body parts’ difference (NSR AA Diff). Generally, for the former (NSR AA) measure, 516 
NSR is higher during a forward segment (F; red) than during a backward segment (B; blue), and on 517 
the dominant side (D; pink) than on the non-dominant side (ND; cyan). (C)  NSR difference between 518 
dominant vs. non-dominant side. Left panel shows the NSR median difference between the dominant 519 
and non-dominant side for each participant, denoted as a single marker. Right panel shows the NSR 520 
median difference between the dominant and non-dominant side for the forward motion (F; red) and 521 
backward motion (B; blue). When the difference between the dominant and non-dominant side is 522 
examined separately for each motion segment, the NSR AA difference is wider during forward 523 
motion segments (F; red) than during backward motion segments (B; blue). (D) NSR difference 524 
between forward vs. backward movement segment. Left panel shows the NSR median difference 525 
between the forward and backward motion segments for each participant, denoted as a single marker. 526 
Color scheme as in (B). 527 

 528 

 529 
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3.2. Higher Motor Intent Results in Higher Cross-correlations and Clustering of Temporal Parameters 530 

We used the MATLAB Network Connectivity toolbox [26] and examined the adjacency matrix 531 
derived from the pairwise maximal cross-correlation coefficient based on the time series of linear 532 
speed values. The clustering coefficient (CC) was obtained for each body part as a metric of functional 533 
segregation. For analysis, we examined the median cross-correlation values as a function of the CC 534 
values. Here we found that higher level of motor intent (i.e. during forward-deliberate motion 535 
performed with the dominant hand) resulted in a tendency of increased CC and increased median 536 
cross-correlation values (Figure 7).  537 

When we compared between different motion segments, median cross-correlations were higher 538 
for forward motions than for backward ones for all but two participants. When we compared between 539 
different dominance side, all participants showed higher correlation on the dominant side than the 540 
non-dominant one. The median CC showed to be higher for forward motions than for backward 541 
segments for all participants, and higher for the dominant side than the non-dominant side for all but 542 
two participants. For all participants, both measures showed statistical significance in their difference 543 
(see Table A1 of Appendix for detailed statistical results).  544 

 545 

Figure 7.  Network connectivity metric (cluster coefficient) and median cross-correlation 546 
differentiates between levels of intent. (A) Network visualization of a representative right-handed 547 
participant. Cross-correlation is represented by the line weight and cluster coefficient (CC) by the 548 
node size, during forward (left) and backward movement segment (right). (B) Median cross-549 
correlation (y-axis; Xcorr) and CC (x-axis) of linear speed for each participant’s movement segment 550 
(left) and dominance side (right). Forward motions (red) and dominant side (pink) exhibits higher 551 
cross-correlation and CC values, than backward segments (blue) and non-dominant side (cyan). (C) 552 
Median cross-correlation and CC difference for different movement segments (left) and dominance 553 
side (right). Each participant’s data is denoted as a single marker. Higher motor intent tends to show 554 
higher cross-correlation and CC values. 555 

The distinctions that we observe from these findings, on how different levels of motor intent 556 
have separable network connectivity patterns based on temporal aspects of the kinematics data, are 557 
consistent with the patterns uncovered using spatial aspects of the kinematics data. Specifically, when 558 
we exert higher intent on our body, regardless of the physical trajectory of the motion, there is a 559 
stronger connectivity across our body parts. However, we note that this pattern is not as uniform 560 
across all participants, as we had found in the spatial aspect of the network analysis. 561 

 562 
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3.3. Kinematics and EKG (heart) Signals Show Larger Stochastic Differences for Higher Motor Intent and 563 
Control 564 

To assess patterns of connectivity between biophysical signals derived from voluntary and 565 
autonomic levels of motor control we examined the kinematics (generated by the CNS-PNS) and the 566 
heart activity (generated by the ANS). The patterns of MMS stochasticity and temporal correlation 567 
across these systems distinguished levels of motor intent and control.  568 

 The analyses involving EKG and kinematics revealed larger stochastic differences in MMS data 569 
when higher motor intent and control are exerted. More precisely, the pairwise EMD showed higher 570 
differentiation between these two signals in all but one participant when forward motion was made, 571 
but only on the dominant side of the body. Furthermore, all but two participants showed higher EMD 572 
on the dominant side of the body, but only during forward motions. On the other hand, however, 573 
when backward motion is made, we find an opposite pattern, where all participants show higher 574 
EMD on the non-dominant side. We infer that there may be a modulating factor that underlies the 575 
stochastic relation between kinematics and heart signals.  576 

When we examine the temporal relations between the two signals, by computing pair-wise 577 
cross-correlations, we see higher cross-correlations when there is lower motor intent across all 578 
participants – that is, during backward motions, and on the non-dominant side. Here we note the low 579 
range of the correlation coefficient values, around 0.1. However, we see a similar trend when this is 580 
based on the non-filtered raw EKG data, with a higher range around 0.6. 581 

3.4. EKG Leads Kinematics Under Higher Motor Intent, But Opposite Pattern Emerges in Spontaneous 582 
Motions Requiring Less Motor Intent 583 

We also examined the lag values to assess which signal leads the other. We found that motions 584 
under higher motor intent (i.e., during forward-deliberate motions performed with the dominant side 585 
of the arm), EKG signals tend to lead the kinematics signal. On the other hand, in movements 586 
performed under lower intent (i.e., during backward-spontaneous motion, and on the non-dominant 587 
side of the arm), kinematics signals tend to lead the EKG signals. This is depicted in Figure 8. 588 

 589 

Figure 8. Differentiation of spatial and temporal connectivity within the kinematics-heart network 590 
according to levels of motor intent. (A)  Network visualization of a right-handed representative 591 
participant. 1/EMD is represented by the node size, and median correlation is represented by the line 592 
weight. The color of edges indicates the temporal directionality between signals, where red indicates 593 
that heart leads the body linear speed and blue indicates that body linear speed leads the heart signals. 594 
(B) Median EMD (z-axis) and correlation (x-axis) and lag (y-axis) for each participant’s movement 595 
segment (left) and dominance side (right). There is an overall pattern where higher motor intent 596 
(denoted by red for forward motions, and pink for dominant side) is exhibited by lower correlations 597 
and EKG leading the kinematics signal (i.e., lag is positive value). (C) Median EMD, correlation, and 598 
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lag difference for different dominance side (left), and this difference separated by movement segment 599 
(right). We find a pattern where pairwise EMD show higher differentiation under higher motor intent 600 
on the dominant side, but only when forward motion was made. (D) Median EMD, correlation, and 601 
lag difference for different movement segments (left), and this difference separated by dominance 602 
side (right). We find a pattern where pairwise EMD show higher differentiation under lower motor 603 
intent on the non-dominant side, but only when the backward motion was made. 604 

We caveat that that because the EKG device and motion capture system was not exactly 605 
synchronized, the absolute lag value may not be as meaningful. Nevertheless, as we analyze these 606 
data in terms of the difference (i.e., the delta lag values between forward and backward motions, and 607 
between dominant and non-dominant sides), it is indeed meaningful to find such patterns uniformly 608 
across all participants. 609 

Table1 summarizes the results that we showed in the sections above. We emphasize that 610 
although we examined a small number of 8 participants, each individual’s data is composed of a 611 
significant amount of data points with unique non-Gaussian stochastic characteristics. For that 612 
reason, instead of presenting the results with NHST (null hypothesis significant tests), we presented 613 
the results by comparing the median difference between data points from different levels of intent, 614 
for each individual.  615 

Table 1. Summary of the connectivity results, where symbols1 are shown to indicate which category 616 
shows higher values. 617 

 
Kinematics (AA) Network 

Forward Backward Dominant Non-Dominant 

Spatial 
NSR AA o  o  

NSR AA Diff   o  

Temporal 
Cross-Correlation Δ  o  

Cluster Coefficient o  Δ  

 
Kinematics (LS)-Heart Network 

Forward Backward Dominant Non-Dominant 

Spatial EMD Δ (D)2 - Δ (F)3 o (B)4 

Temporal 
Cross-Correlation  Δ  o 

Lead*5 EKG LS EKG LS 

1 o indicates that it is higher for every participant; Δ indicates that it is higher for most participants  618 

2 Forward-deliberate motions have higher EMD only on the dominant (D) side  619 

3 Dominant side has higher EMD only during forward-deliberate (F) motions  620 

4 Non-dominant side has higher EMD only during backward-spontanous (B) motions  621 

5 Lead* shows which signal leads between the 2 signals  622 

4. Discussion 623 

This paper examined elements of the construct of agency from the embodied cognition 624 
framework and dissected several layers of neuromotor control contributing to the sense of action 625 
ownership. These layers, defined along a phylogenetically orderly taxonomy of maturation, follow a 626 
higher-to-lower gradient of intent, from voluntary, to involuntary, to autonomic signals.  At the 627 
voluntary level, we followed the deliberate and the spontaneous segments of the target-directed 628 
pointing act, positing that they could differentiate between levels of intent and as such, delineate 629 
from the fluctuations in their biorhythmic activity, when a given movement segment was deliberately 630 
performed with intent vs. when the segment happened spontaneously without instruction. This 631 
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differentiation is important to distinguish the sensory consequences of voluntary acts from those of 632 
acts that are not intended, or that occur autonomically. The sensory consequences of the latter are not 633 
currently studied, yet they seem important to complement von Holst’s and Mittelstaedt’s principle 634 
of reafference -as we know it today [19]. 635 

Our initial thought was that autonomic systems contributing to our brain’s autonomy over the 636 
body and to our overall embodied sense of agency would remain impervious to stochastic shifts at 637 
the voluntary levels. We reasoned that given the vital role of these systems for survival, their robust 638 
signal would not reflect subtle changes in levels of intent, motor awareness and voluntary control. 639 
As such, our guess was that if during voluntary movements, there were stochastic differences 640 
between deliberate and spontaneous segments of the reach, or between dominant and non-dominant 641 
sides of the body, such shifts in patterns of variability would not be appreciable in the heart signals’ 642 
fluctuations. Our guess was altogether wrong. Not only were the heart signals’ differences 643 
quantifiable at the level of fluctuations in signal amplitude; these differences were appreciable as well 644 
in the inter-dynamics of the kinematics and cardiac signals.  645 

We found that when movements are intended and deliberately performed to attain the goal 646 
defined by an external (visual) target, the heart signal leads the movement kinematics signal. Yet, 647 
when these overt movements are spontaneous in nature, i.e. uninstructed and not pursuing the 648 
completion of a specific externally defined task goal, the heart signal lags the movement kinematics 649 
signal. Across spatial and temporal parameters, we found consistent trends and confirmed the trends 650 
through different parameters. Indeed, deliberate motions, performed with the dominant effector, 651 
carry higher levels of NSR, denoting higher fluctuations away from the empirically estimated mean. 652 

We interpret these findings considering the principle of reafference [46]. Furthermore, we 653 
discuss the possible contributions of these self-generated signals to the self-emergence of cognitive 654 
agency from motor agency, namely, the sense that one can physically realize what one mentally 655 
intends to do, confirm the consequences (both intended and unintended) and as such own the action. 656 

Von Holst and Mittelstaedt studied the complexities of reafference across the nervous systems 657 
in the 1950s. They tried to capture the inherent recursiveness that relates movements and their 658 
sensations as they flow within closed feedback loops between the external and the internal 659 
environments of the organism. They wrote, “Voluntary movements show themselves to be 660 
dependent on the returning stream of afference which they themselves cause.” And undeniably, 661 
feedback from voluntary movements currently play an important role in theoretical motor control, 662 
particularly within the framework of internal models for action [21, 47, 48] and more recent models 663 
of stochastic feedback control [49, 50]. Central to all these conceptualizations of the control problem 664 
has been the notion of anticipating the sensory consequences of impending intended actions. 665 
Nevertheless, nothing has been said about the consequences of action segments that bear a lower 666 
level of intent, that occur spontaneously, or that are altogether occurring autonomously. Modelers 667 
and experimenters in motor control do not seem to be aware of the former (although see [11, 12, 51]) 668 
and the latter are assumed to be far removed from cognitive processes (although see [13] more 669 
recently.) Yet, unintended consequences from the spontaneous segments of the voluntary action seem 670 
as important as those sensory consequences that result from the deliberate segments. They may serve 671 
to inform learning new tasks, adapting to new environmental conditions or situations and more 672 
generally, they may play a role as a surprise factor to aid propel curiosity and / or to stimulate 673 
creative, exploratory thinking. They may help make our “invisible” automatic movements visible to 674 
the conscious brain performing them, and/or to the external observer tracking our behaviors. 675 

Neither these models, nor Von Holst’s work considered the contributions of unintended 676 
consequences from spontaneous acts quantifiable at different anatomical and physiological layers of 677 
the nervous systems, while trying to model the basic problem that the organism faces, i.e. the paradox 678 
of understanding the “self”, which entails parsing out external from internal reafference [52]. Without 679 
a unifying framework to quantify these multilayered interactions and their contributions to the 680 
emergence of the notion of self, it becomes rather challenging to bridge the cognitive sense of agency, 681 
and more basically of action ownership, “I can do this!; It’s me who’s doing this!” with the type of 682 
autonomous  motor control that enables successful completion of the intended act. We argue that 683 
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inclusion of the unintended consequences from overt spontaneous motions and autonomic signals in 684 
our models of motor control will help define embodied agency and provide a new framework to 685 
objectively quantify it. 686 

The present work provides empirical evidence that (1) different levels of cognitive intent, 687 
awareness and control are indeed embodied and quantifiable in natural, unconstrained movements 688 
and (2) there are important contributions to central cognitive control quantifiable at the periphery in 689 
spontaneous segments of our motions and their consequences, but also in motions from supporting 690 
(non-dominant) body parts. Importantly, such differentiating contributions are also present in 691 
patterns from signals generated by the autonomic nervous systems. These aspects of the motor 692 
control problem are not considered at present in any of the mathematical and computational 693 
frameworks used to model the human brain, despite a body of empirical data differentiating classes 694 
of movements that are less sensitive to changes in dynamics [11, 16, 22-27] from those which are 695 
dynamic dependent [11, 12]. 696 

Our work augments Von Holst’s and Mittelstaedt’s principle of reafference nontrivially by 697 
including reafferent contributions from other layers of the nervous systems (Figure 1A) and 698 
highlighting the need to update our conceptualization of internal models for action [52]. In the past, 699 
the literature has focused on voluntary control and goal-directed behavior to define and to 700 
characterize agency [4, 9, 10, 53]. However, if new generations of AI models aim to attain artificial 701 
autonomous agents with real agency, it may be necessary to reformulate our models and 702 
reconceptualize our experiments in embodied cognition to encompass these multiple layers of intent, 703 
awareness and motor function. 704 

An area of importance in this regard is smart health and AI, connecting digital biomarkers with 705 
clinical observational criteria (e.g. [54].) In the clinical world, there are many problems that will 706 
require to be mindful of this intended vs. unintended dichotomy, as there are phenomena that occurs 707 
spontaneously and is difficult to model within the voluntary reafference framework. The type of 708 
reafference that we need to model those problems belongs in the realm of self-emerging behaviors. 709 
Among these are sudden freezing of gait in Parkinson’s disease, leading to the loss of balance and 710 
occasional falls; seizures across a broad range of disorders; heart attacks; a subset of repetitive 711 
behaviors and self-injurious or aggressive episodes in autism, among others. All these episodes have 712 
in common the element of surprise connected to their spontaneity. No algorithm relying exclusively 713 
on intentional control signals can appropriately capture the essence of these phenomena. To properly 714 
characterize it, forecast it and quickly detect it, we need veridical generative models that understand 715 
the differences between the consequences of something that was intended and under voluntary 716 
control, something that spontaneously happened, and something that happens autonomically, with 717 
high accuracy. We do not have autonomous robots with embodied agency yet, because their staged 718 
motions are mostly pre-programmed. These programs may only mimic the predictive consequences 719 
of voluntary actions. Self-correcting robotic systems where such behaviors spontaneously self-720 
emerge, are less common. It is perhaps self-emerging awareness derived from the consequences of 721 
spontaneous and autonomic phenomena that makes our embodied agency a special human trait 722 
contributing to intelligent control. This type of control combining deliberate and spontaneous acts, 723 
may produce solutions that are capable of generalizing from a small set of specific situations; transfer 724 
the learning from one context to another (using contextual variations) and retain robustness to 725 
potential interference from new situations in unknown contexts. In future research, it will be 726 
important to understand how the type of differentiation that we discovered here, paired with 727 
externally vs. internally generated rewards, may contribute to the fast or slow acquisition of 728 
memories from transient acts vs. memories from systematic periodic repetitions of those acts. 729 

Here we offer a unifying framework with a taxonomy of function and differentiable levels of 730 
intent, awareness and control paired with a new statistical platform for personalized analyses of 731 
natural behaviors. This new model aims to capture and characterize the micro-fluctuations in the 732 
gross data of our biorhythms that traditional approaches throw away as noise through grand 733 
averaging and “one size fits all” methods. Our approach allows integration of multilayered 734 
hierarchical signals and provides the means to differentiate re-entrant contributions from 735 
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multilayered exo- and endo-afference. This can help our self-realization of embodied agency as the 736 
spontaneous transformation of mental intent into physical volition. We invite the reader to consider 737 
this new model for embodied cognition and offer novel avenues to bridge the currently disconnected 738 
fields of motor control and cognitive phenomena. 739 
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Appendix A 748 

 749 

Figure A1. Fourier power spectrum of linear speed and EKG and filtered EKG signals extracted from 750 
60 trials of pointing motion (i.e., 300 seconds). 751 
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 752 

Figure A2. (A) Speed profile of a typical pointing motion. During a single pointing motion, a typical 753 
speed profile of linear speed, angular speed, linear acceleration, and angular acceleration are 754 
exhibited as such. Because angular acceleration shows to have the largest number of peaks during a 755 
single pointing motion, we decided to examine this kinematic waveform, as this would provide the 756 
highest statistical power for the MLE process. Note, linear speed data was used to extract the timing 757 
that would separate the start and end time of a forward-deliberate motion (shown in red) and of a 758 
backward-spontaneous motion (shown in blue arrow). This was done by finding the timepoint when 759 
instantaneous zero linear speed occurs, since this indicates the moment the index finger reaches 760 
target. (B) Maximum likelihood estimated values for the corresponding histogram on top of each 761 
graph. The horizontal axis contains the value of the gradient at the end of the optimization process, 762 
and the vertical axis contains the maximum likelihood estimation (MLE) value for the Gamma, 763 
normal, exponential and lognormal distributions. Overall, we found that the Gamma and lognormal 764 
distributions have a good fit to these kinematics data. However, because Gamma distributions have 765 
shown to be a better fit to the kinematics data from individuals with neurological disorders than 766 
lognormal distributions, for consistency, we chose to use the Gamma probability distribution for 767 
fitting purpose. 768 
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 769 

Figure A3. Fitted Gamma scale parameter (i.e., NSR) 95% confidence interval for a single body 770 
part’s kinematics data. The 95% confidence interval is plotted for all eight participants (P1 to P8). 771 
Each row represents a single body part: under the “All body” category shows all 10 body parts during 772 
forward (red) and backward (blue) motions; under the “D (dominant)” category shows the 4 body 773 
parts from the dominant side of the arm; under the “ND (non-dominant)” category shows the 4 body 774 
parts from the non-dominant side of the arm; under the “All seg (all segment)” category shows the 4 775 
body parts on the dominant (pink) and non-dominant (cyan) side during the entire pointing motion; 776 
under the “F (forward)” category shows the 4 body parts on both D and ND side during forward 777 
motion; and under the “B (backward)” category shows the 4 body parts on both D and ND side during 778 
backward motion. 779 

 780 

Figure A4. Fitted Gamma scale parameter (i.e., NSR) 95% confidence interval from the absolute 781 
difference in kinematics between pairs of body parts. The 95% confidence interval is plotted for all 782 
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eight participants (P1 to P8). Each row represents a pair of body part: under the “All body” category 783 
shows all 45 body part (10C2) pairs during forward (red) and backward (blue) motions; under the “D 784 
(dominant)” category shows the 6 body part pairs (4C2) from the dominant side of the arm; under the 785 
“ND (non-dominant)” category shows the 6 body parts pairs (4C2) from the non-dominant side of the 786 
arm; under the “All seg (all segment)” category shows the 6 body parts pairs (4C2) on the dominant 787 
(pink) and non-dominant (cyan) side during the entire pointing motion; under the “F (forward)” 788 
category shows the 6 body parts pairs (4C2) on both D and ND side during forward motion; and under 789 
the “B (backward)” category shows the 4 body parts on both D and ND side during backward motion. 790 

 791 

Figure A5. Different viewpoints of the 3D graphs in Figure 8. (A) Different viewpoint of graphs in 792 
Figure 8B. (B) Different viewpoints of graphs in Figure 8C (left) and Figure 8D (right). 793 

  794 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.01.128140doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.01.128140
http://creativecommons.org/licenses/by-nd/4.0/


 23 of 25 

 

Table A1. Kolmogorov-Smirnov test statistics (KS-stat) and their p-values (p) on cluster coefficients 795 
comparison (left) and cross-correlation (right) between different movement segments (forward (F) vs. 796 
backward (B)) and dominance side (dominant (D) vs. non-dominant (ND))1 797 

           

Cluster Coefficient  Cross-Correlation 

Subject 

ID 

F vs. B D vs. ND  Subject 

ID 

F vs. B D vs. ND 

KS-stat p KS-stat p  KS-stat p KS-stat p 

P01 0.29 <0.01** 0.16 <0.01**  P01 0.14 <0.01** 0.40 <0.01** 

P02 0.55 <0.01** 0.57 <0.01**  P02 0.55 <0.01** 0.57 <0.01** 

P03 0.38 <0.01** 0.16 <0.01**  P03 0.38 <0.01** 0.16 <0.01** 

P04 0.09 <0.01** 0.09 <0.01**  P04 0.09 <0.01** 0.09 <0.01** 

P05 0.14 <0.01** 0.26 <0.01**  P05 0.14 <0.01** 0.26 <0.01** 

P06 0.17 <0.01** 0.28 <0.01**  P06 0.17 <0.01** 0.28 <0.01** 

P07 0.35 <0.01** 0.41 <0.01**  P07 0.35 <0.01** 0.41 <0.01** 

P08 0.13 <0.01** 0.35 <0.01**  P08 0.13 <0.01** 0.35 <0.01** 
           

1Note, the Kolmogorov-Smirnov test was used, as this test is appropriate for data that do not follow a Gaussian 798 
distribution and has a large sample size (n>1000) that may yield low statistical power.    799 
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