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Brassinosteroids (BRs) are a group of plant steroid hormones in-
volved in regulating growth, development, and stress responses.
Many components of the BR pathway have previously been
identified and characterized. However, BR phenotyping exper-
iments are typically performed on petri plates and/or in a low-
throughput manner. Additionally, the BR pathway has exten-
sive crosstalk with drought responses, but drought experiments
are time-consuming and difficult to control. Thus, we developed
Robotic Assay for Drought (RoAD) to perform BR and drought
response experiments in soil-grown Arabidopsis plants. RoAD
is equipped with a bench scale, a precisely controlled water-
ing system, an RGB camera, and a laser profilometer. It per-
forms daily weighing, watering, and imaging tasks and is capa-
ble of administering BR response assays by watering plants with
Propiconazole (PCZ), a BR biosynthesis inhibitor. We devel-
oped image processing algorithms for both plant segmentation
and phenotypic trait extraction in order to accurately measure
traits in 2-dimensional (2D) and 3-dimensional (3D) spaces in-
cluding plant surface area, leaf length, and leaf width. We then
applied machine learning algorithms that utilized the extracted
phenotypic parameters to identify image-derived traits that can
distinguish control, drought, and PCZ-treated plants. We car-
ried out PCZ and drought experiments on a set of BR mutants
and Arabidopsis accessions with altered BR responses. Finally,
we extended the RoAD assays to perform BR response assays
using PCZ in Zea mays (maize) plants. This study establishes an
automated and non-invasive robotic imaging system as a tool to
accurately measure morphological and growth-related traits of
Arabidopsis and maize plants, providing insights into the BR-
mediated control of plant growth and stress responses.
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Introduction

Drought, or limited availability of water, looms as one of the
most pressing threats to agriculture. As the world’s popu-
lation increases, an important challenge is to engineer plants
that withstand stresses such as drought while optimizing their
growth (Gupta et al., 2020). To realize this goal, we need to
understand how plant growth and stress responses are bal-

anced against each other. Such dissection requires precise
and comprehensive characterization of growth and drought-
related phenotypes and the signaling pathways involved in
coordinating growth and stress responses. One such path-
way is activated by a group of plant steroid hormones called
Brassinosteroids (BRs) that function as critical regulators of
plant growth, development, and drought responses (Nolan et
al., 2017b).

BRs signal through plasma membrane receptors BRI1 and
BAKI1 to regulate the activities of BES1 and BZR1 family
transcription factors, which control the expression of thou-
sands of genes for various BR responses (Sun et al., 2010;
Yu et al., 2011; Nolan et al., 2020). Mutants defective in the
BR pathway such as bril are dwarf in stature with reduced
stem elongation, shorter and rounder leaves (Li et al., 1996;
Szekeres et al., 1996; Clouse et al., 1996), and increased tol-
erance to stresses such as drought (Northey et al., 2016; Ye
et al., 2017; Nolan et al., 2017a; Nolan et al., 2017b). In
contrast, gain-of-function mutants in the BR pathway display
increased plant growth but often have reduced survival during
drought (Ye et al., 2017; Nolan et al., 2017a).

BR phenotyping experiments are typically performed on petri
plates at the seedling stage and/or in a low-throughput man-
ner. Since BRs affect plant growth and development at mul-
tiple stages of plant life, it would be helpful to comprehen-
sively measure BR related phenotypes in a time-dependent
manner with an automated system. Additionally, drought
experiments are commonly conducted by subjecting plants
to extreme water deficit conditions that are difficult to con-
trol or scale to a large number of genotypes. The outcome
of drought experiments is often a report on the percent of
plants surviving following rewatering, which ignores the dy-
namics of the drought response and its effect on plant growth
(Skirycz et al., 2011). Automated phenotyping of BR and
drought responses has great potential to address these short-
comings and further define the crosstalk between growth and
drought responses.

Recently, several image-based phenotyping systems have
been established for large-scale and non-destructive pheno-
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Fig. 1. Overview of the RoAD system.
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(A) Top view of the RoAD system showing the mobile robot and two tables that can hold up to 240 individual pots.
(B) The hardware setup of the RoAD system. Instruments for plant handling, imaging and watering are mounted to a six-axis robotic manipulator. RGB camera and 2D line
profilometer are used to acquire plant images. The two-finger gripper is used to pick up plants and place them on the bench scale. Watering nozzles attached to the gripper

allow for water delivery from two separate water tanks.
(C) Top view RGB image of a plant.

(D) Multi-view scanning of a plant for the construction of 3D images. Four side-view images and one top-view image are acquired. Arrows indicate the direction of scanning.
(E) Example of a plant being watered by the RoAD system. Plant weight is monitored by the bench scale in real-time to allow for precise control of water levels.

typing under controlled environments (Bao et al., 2019b;
Granier et al., 2004; Skirycz et al., 2011; Serrand et al.,
2013; Fujita et al., 2018). Various advanced sensor tech-
nologies have been successfully integrated into phenotyping
systems, including visible RGB imaging (Minervini et al.,
2014; Clauw et al., 2015), chlorophyll fluorescence imag-
ing (Rousseau et al., 2013; Yao et al., 2018), thermal imag-
ing (Zia et al., 2013; Klem et al., 2017), and hyperspectral
imaging (Ge et al., 2016; Behmann et al., 2018). While
both commercial (Skirycz et al., 2011; Neumann et al., 2015)
and custom-built platforms (Apelt et al., 2015; Tisne et al.,
2013) have been created, most current systems are limited to
two-dimensional (2D) imaging and lack flexibility to admin-
ister different types of treatments. In order to more fully un-
derstand the relationship between BR-mediated growth and
drought responses, we sought to develop a robotic pheno-
typing platform capable of (1) Conducting time-course ob-
servations of plant growth using 2-dimensional (2D) and 3-
dimensional (3D) imaging; (2) Administering the BR biosyn-
thesis inhibitor Propiconazole (PCZ) to assess BR response;
and (3) Accurately controlling water levels for precise water
deficit (drought) treatments.

Here we establish our mobile robotic platform called Robotic
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Assay for Drought (RoAD) that automates daily weighing,
watering, and non-destructive acquisition of 2D and 3D im-
ages for BR and drought phenotyping experiments. To make
use of the data acquired by RoAD we developed and vali-
dated algorithms for automated image processing including
rosette and individual leaf segmentation. Subsequent extrac-
tion of morphological traits and machine learning approaches
allowed us to identify traits that distinguish PCZ or drought
treated plants from untreated controls. Using RoAD, we
then examined BR and drought phenotypes of Arabidopsis
mutants affected by BR signaling, diverse responses of 20
Arabidopsis accessions to PCZ treatment, and BR-mediated
changes in the 3D architecture of maize seedlings. Our re-
sults demonstrate that RoAD is a valuable tool to study BR-
mediated control of plant growth and drought responses.

Results

Automated operation of RoAD: a Robotic Assay for
Drought

The RoAD system was designed to perform non-destructive
imaging, weighing, and watering. The images acquired pro-
vide valuable information for measuring the morphological
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traits of the whole plants as well as the individual leaves.
The system consists of a custom-built mobile robot and two
tables that can hold up to 240 pots (Figure 1A). The robot
was designed as an unmanned ground vehicle (Shah et al.,
2016) carrying a Universal Robots UR10 manipulator (Uni-
versal Robots, Odense, Denmark) (Figure 1B). An RGB cam-
era (ex0249CU3, SVS-Vistek, Germany), a laser profilome-
ter (LJ-V7300, Keyence, Japan), a gripper (2F-85, Robotiq
Inc., Canada) and two water drippers mounted on the end-
effector of the manipulator. The camera position can be ad-
justed for plants of various heights. For example, Arabidop-
sis plants require a lower height than taller maize seedlings.
The robot is equipped with a high-precision watering station
that is composed of a bench scale (BSQ-0912-001, RMH sys-
tems, United States) and two peristaltic pumps (DriveSure,
Watson-Marlow, United Kingdom). Two kinds of liquid so-
lutions are available for users to configure different watering
regimes. The average error of calculated versus delivered wa-
ter is 0.38 g (standard deviation: 0.28 g, sample size: 26,078).

An experiment is initialized with a pot map, which stores the
attributes of the plants, including plant genotype, replicate,
watering solution type and target water level. The plants are
imaged, weighed and watered daily. During each data acqui-
sition cycle, the robot parks at one of three positions adja-
cent to the plant tables. The manipulator is programmed to
pick up each pot and place it on the scale. Image acquisi-
tion is performed before watering. First, a top-view RGB im-
age is captured (Figure 1C). Then, the plant is scanned from
five different perspectives by sweeping the laser profilometer
around the plant (Figure 1D) for 3D reconstruction. Multiple
scanning perspectives minimize occlusions in 3D reconstruc-
tion. The 3D surface model of the plant is reconstructed by
cross-registering the 2D RGB image and the 3D point clouds.
After image acquisition, the plant is then watered by one of
two peristaltic pumps to a predetermined soil moisture level
(Figure 1E). Lastly, the pot is transported back to its posi-
tion on the table. The aforementioned process takes approxi-
mately 1.5 minutes. Thus, the full cycle for 240 plants takes
around 6 hours, typically yielding 8 gigabytes of raw data
(RGB images, 3D point cloud data and pot weight data).

Automated processing of Arabidopsis plant images

Various strategies for analyzing image data and measuring
growth phenotypes have been described (Minervini et al.,
2017; Zhou et al., 2017), but general solutions for the seg-
mentation of plants and individual leaves from 3D models
remain less developed (Mccormick et al., 2016). The RoAD
system provides top-view 2D images of plants and multi-
view 3D point clouds. To analyze the large amount of data
generated by the RoAD system, we developed a fully auto-
mated image processing pipeline.

Our pipeline starts with plant segmentation of the RGB im-
age, followed by segmentation of plants and leaves in the
3D point cloud. Based on the segmentation results, pheno-
typic trait values are extracted and saved as a csv file for
downstream analysis (Figure 2A). The RGB image (Figure
2B) is first converted to a grayscale image (Figure 2C) by
Excess Green Index (Hamuda et al., 2016) and then bina-
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rized by Otsu’s thresholding method (Figure 2D). Due to the
color changes at later growth stages, pot shape information is
used to localize regions of interest (ROIs). The Hue channel
is then applied to binarize the ROIs and segment drought-
treated plants. 3D plant segmentation starts with the points
from the segmented RGB image (Figure 2E) projected onto
3D profiles (Figure 2F). The resulting point cloud was refined
by Euclidean clustering (Rusu and Cousins, 2011) (Figure
2@G). To reconstruct additional details of the plant, the seg-
mented plants from each frame are merged into a single frame
(Figure 2H) using an iterative closest point algorithm (Holz
et al., 2015). Additional details about image processing are
described in the Methods section.

Previously developed methods for leaf segmentation have im-
plemented deep learning approaches using 2D images (Chen
etal., 2019; Liu et al., 2020), and this process requires a large
set of manually labeled training data to achieve satisfactory
performance. To overcome this challenge, we developed a
leaf segmentation algorithm using smoothness and geomet-
rical constraints in the 3D point cloud. A typical Arabidop-
sis leaf is flat and smooth, and hence the variations between
the neighboring surface normals on the same leaf are small.
Based on this principle, we applied a normal-based clustering
method to the segmented point cloud (Figure 2I). The clus-
tering process begins at the point with minimum curvature
value and grows the region by checking local surface normal
and point connectivity (Rabbani et al., 2006). Among all the
extracted clusters, only the clusters that are sufficiently large
and oriented towards the plant center are considered as leaf
candidates.

An experiment at full capacity (240 plants) typically lasts
30 days and yields 36,000 images totaling 240 GB of data.
Phenotypic information related to plant growth, morphology,
and color is obtained from the image data. These pheno-
typic traits can be categorized into four classes: color-related
traits, 2D holistic traits, 3D holistic traits, and individual leaf
traits. Color-related traits characterize the color information
of the plant, which can be an indicator for assessing plant
health (Klukas, 2014). Holistic level traits such as plant area
and plant volume assess the entire plant as a single unit. On
the other hand, individual leaf traits such as leaf width, leaf
length, and leaf angle measure the architecture of individual
components. In this study, the three largest leaves from each
plant were selected to compute the individual leaf traits. A
total of 55 traits were extracted from the segmented images.
As expected, we observed a high correlation between 2D, 3D
and individual leaf traits that act as proxies of plant growth
(Figure 3A). For example, 3D convex area, 2D area and in-
dividual leaf area were highly correlated. A full list of the
extracted traits and the descriptions of how they were mea-
sured can be found in Table S1.

Traits quantified by RoAD closely resemble ground truth
measurements

To evaluate the performance of the measurements obtained
from the RoAD platform and image processing pipeline, 240
Arabidopsis plants of three different treatments were imaged.
We also manually collected ground truth measurements of
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Fig. 2. Pipeline for analysis of phenotyping data in the RoAD system.

(A) Overview of RoAD system phenotyping and data analysis. 2D and 3D images are captured for plants under control, PCZ, and drought conditions, image analysis is then
performed for feature extraction. Fifty-five phenotypic traits calculated from the images are input variables for machine learning classifications. The top features were then

used for biological analysis.

(B-E) Image processing pipeline for plant segmentation in 2D. The original RGB image (B) is first converted to a gray-scale image (C) by Excess Green Index and then
binarized by Otsu’s threshold. After that, the binary mask (D) are used to acquire a plant-only image (E).

(F-I) Plant and leaf segmentation in 3D. For each single-view point cloud (F), the segmented 2D plant is projected onto the 3D profile for removing the background, and
clustering is used to refine the segmentation (G). The segmented multi-view point clouds are merged to reconstruct the 3D plant (H). Individual leaves are segmented by local

features (1).

leaf length, leaf width, and fresh weight from the same set of
plants. Comparisons between the system-derived traits and
manual measurements indicated that the RoAD accurately
characterized phenotypic traits of interest (Figure 3B and
3C). For both leaf length and leaf width, the system-derived
traits showed high R-squared values and aligned well with
the diagonal reference line (x = y), indicating that the RoOAD
platform has the capacity of measuring leaf traits accurately.
We also compared 3D area with plant biomass measured as
fresh weight, which showed a strong linear relationship (Fig-
ure 3D). Ultimately, the high R-squared values and low mean
absolute errors demonstrate the utility of the RoAD platform
for automated and reliable measurements of morphological
traits.

RoAD enables BR phenotyping in Arabidopsis

We used the RoAD system to measure growth phenotypes
of four Arabidopsis genotypes: wild-type (WT), bril-301,
BRIIP-BRIIOX, and besI-D under control or 100uM PCZ
treated conditions. The seeds of each genotype were ger-
minated in Petri plates for 7 days and a single seedling was
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transferred to each pot. The plants were allowed to adapt to
the soil for 2-3 days before the initiation of a RoAD exper-
iment. During an experiment, each pot started with a well-
watered condition. If the gravimetric water content fell below
the target level (3g water per g of soil), a specific amount of
water or PCZ solution was added to maintain the pot at the
desired condition. The 2D and 3D data were collected daily
using the RoAD platform. Plants were imaged for 30 days,
starting the first day after being set up (DAS). The day when
the system was set up was denoted by 0 DAS.

Given the large number of traits reported by the RoAD sys-
tem, we first asked which of these traits are informative for
Brassinosteroid response. We used machine learning to clas-
sify WT plants between control and PCZ treated categories.
Our analysis attained test accuracies of up to 0.947 (Table S2)
and identified a number of traits with high feature importance
in distinguishing the BR inhibited (PCZ-treated) plants from
the controls (Figure 4A). For example, solidity, which is de-
fined as the ratio of area to convex hull area in 2D, can sepa-
rate the controls and the PCZ-treated plants effectively (Fig-
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Fig. 3. Validation results of the RoAD system.

A) Correlation among the 55 system-derived traits from RoAD image analysis. Traits are grouped by category and ordered by hierarchical clustering.
B) Correlation between system-derived traits and ground truth of leaf length.

C) Correlation between system-derived traits and ground truth of leaf width.

D) Correlation between system-derived 3D area and plant fresh weight.
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(A) Feature importance from machine learning classification of control versus PCZ-treated plants.
(B) Example of a 2D trait: solidity, which is defined as the ratio of projected area to convex hull area. The red outline indicates the convex hull.
(C) Example of a 3D trait: holistic area convexity, defined as the ratio of plant area to 3D convex hull area. Plants are pseudocolored based on the depth value and enclosed

by 3D convex hull.

(D) Example of an individual leaf trait: leaf aspect ratio, defined as the ratio of leaf length to leaf width.
(E) Representative images of WT, bri1-301, BRI1P-BRI10X, and bes1-D plants under control or 100tM PCZ conditions at 30 Days After Setup (DAS).
(F) Solidity of WT, bri1-301, BRI1P-BRI10X, and bes1-D under control and PCZ-treated conditions at 30 DAS. FDR corrected p-values relative to WT control are indicated

from a linear mixed model: FDR < 0.001 (***), <0.01 (**), <0.05 (*), <0.1 (+).

ure 4B). The solidity of the PCZ-treated plants was higher
than that of the controls, indicating PCZ-treated plants show
more compact growth. This pattern was also apparent for the
holistic area convexity trait (Figure 4C), which is a measure
of solidity in 3D, and leaf aspect ratio (Figure 4D), which
is a measure of individual leaf shape. PCZ-treated plants
showed a higher degree of compactness in 3D models and
they have relatively shorter, wider leaves than those of the
controls. These macroscopic phenotypic traits observed upon
the PCZ treatment are consistent with microscopic ones in
which there is a reduction in cell elongation resulting from
BR treatment.

If the reduced BR signaling is associated with the more com-
pact growth as measured by increased solidity, then bril-
301, a loss-of-function BR receptor mutant (Xu et al., 2008),
would be expected to show a pattern similar to PCZ treat-
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ment. Indeed, we observed increased solidity of bril-301
compared to WT (Figure 4E and 4F). Moreover, solidity
showed an opposite trend for BRIIP-BRIIOX, which has
increased BR signaling (Friedrichsen et al., 2000). How-
ever, another gain-of-function BR mutant, bes-D (Yin et al.,
2002), did not show increased solidity values (Figure 4F). It
is likely that the highly curved leaves of bes/-D reduced the
rosette compactness due to feedback inhibition of some BR
traits in besI-D. Except for besI-D, the order of the solid-
ity of the other three genotypes is bril-301 > WT > BRIIP-
BRI 0X, indicating that increased BR signaling generally re-
duces plant solidity. A complete list of phenotypic values and
corresponding statistical analysis is provided (Tables S3 and
S4).

To test how RoAD can be used to phenotype diverse Ara-
bidopsis lines, we examined 20 Arabidopsis accessions from
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Fig. 5. PCZ response varies among Arabidopsis accessions.

(A) Representative images of 20 Arabidopsis accessions grown under control or 100.:M PCZ conditions on 29 DAS.

(B) Heatmap showing genotype by treatment effects for each accession compared to Col-0. BL petri indicates the response to 100nM Brassinolide in light-grown seedlings.
BRZ petri indicates the response to 250nM Brassinazole in dark-grown seedlings. All other traits are from PCZ response using RoAD on 29 DAS. FDR corrected p-values
are indicated for significant terms from a linear mixed model: FDR < 0.001 (***), <0.01 (**), <0.05 (*), <0.1 (+).

(C) 3D models of representative plants of Col-0 and Lch-0 under control conditions on 29 Days After Setup (DAS).

(D) Comparison of plant height for Col-0 and Lch-0 under control conditions on 29 DAS.

(E) Comparison of holistic area convexity for Col-0 and Lch-0 under control conditions on 29 DAS.

the 1001 genomes collection (Alonso-Blanco et al., 2016;
Kawakatsu et al., 2016) under control and PCZ treated con-
ditions (Figure 5A, Tables S5 and S6). These lines were se-
lected due to either increased or decreased hypocotyl elonga-
tion in seedlings as assessed by the response to another BR
inhibitor, Brassinazole (BRZ) (Asami et al., 2000). We ob-
served concordance between the seedling and plant growth
assays in a number of cases. For example, Petergof and Sij
1/96 were stunted in seedling BRZ assays, and similarly they
displayed a dwarf phenotype in plant growth assays. Lch-
0 had increased growth as seedlings in the presence of the
BR inhibitors (Figures S1A-D). Across all 20 lines, there
was not a strong correlation between solidity in adult plants
in response to PCZ and BL or BRZ responses in seedlings
(Figures S1E and S1F). One example is Obh-13, which was
resistant to BR inhibition in seedling BRZ assays (Figures
S1B-E), but more sensitive to PCZ in terms of solidity in the
adult stage (Figures S1A-E). This suggests that additional in-
sight can be gained through BR phenotyping of multiple de-
velopmental stages and traits. Consistent with this idea, we
found significant genotype by PCZ treatment interactions for
26 traits with 17 accessions having at least one significant dif-
ference (FDR <0.1) when compared to the commonly used
Col-0 accession (Fig. 5SA and B). Interestingly, 3D imaging
revealed that Lch-0 plants were taller (Figures 5C and SD)
and had reduced plant area convexity (Figure SE) compared
to Col-0 which coincides with longer hypocotyls in seedling
BRZ assays (Figures S1B and S1D). These results indicate
that the RoAD system captures traits relevant to BR-regulated
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plant growth and can reveal additional plant characteristics
that might be missed by phenotyping seedlings on petri plates
alone.

RoAD precisely controls water levels for drought experi-
ments

The RoAD system can control soil water content for con-
trolled drought experiments in two modes. The first is end-
point drought mode: In this type of experiment, the drought-
stressed plants begin the experiment in well-watered con-
ditions and are not watered until they fall below the target
moisture level as assessed by gravimetric water content (Fig-
ure S2A). One caveat about this method is that drying rates
may vary among pots, which has been noted in other auto-
mated drought phenotyping systems (Serrand et al., 2013).
To address this issue, we implemented a second mode with
controlled water deficit ramping. The plants in the drought-
stress treatment are kept in well-watered conditions for a set
period (e.g. 8 days). Subsequently, the soil moisture level
is decreased linearly, enabled by RoAD’s daily weighing and
watering regimen (Figures 6A and 6B). In this second mode,
both the rate of drying and the timing of water deficit can be
more precisely controlled.

To establish traits measured by RoAD that are informative for
drought phenomics we implemented a similar machine learn-
ing classification on WT plants under control versus drought
conditions (Table S2). From this analysis, we found that
color information could efficiently distinguish control from
drought treated plants (Figure 6C). Specifically, drought-
stressed plants had lower color saturation values than control
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Fig. 6. Drought responses in Arabidopsis.

(A) Representative images of control and drought-treated WT, bri1-301, BRI1P-BRI10OX, and bes1-D plants from 20 to 34 DAS.
(B) Soil water content over time for control and drought-treated plants. For drought treatments the decrease in water levels was initiated at 6 DAS (Drought 6), 8 DAS (Drought

8) or 10 DAS (Drought 10) using controlled water deficit ramping.

(C) Feature importance from machine learning classification of WT control and drought-treated plants.
(D) Saturation (hsvS) values of WT, bri1-301, BRI1P-BRI10X, and bes1-D plants under control and drought conditions.
(E) Plant area for WT, bri1-301, BRI1P-BRI10X, and bes1-D under control and drought conditions. Individual plant data are represented by dots, and the group averages are

shown with solid lines.

(F) Comparison of plant area of WT, bri1-301, BRI1P-BRI10X, and bes1-D on 32 DAS. FDR corrected p-values are indicated for significant genotype by drought interaction

from a linear mixed model: FDR < 0.001 (***), <0.01 (**), <0.05 (*), <0.1 (+).
plants.

We performed a controlled water deficit ramping drought ex-
periment using WT, bril-301, BRI1P-BRI10X, and besI-D in
which water levels were reduced starting at 6 DAS (Drought
6), 8 DAS (Drought 8) or 10 DAS (Drought 10) (Figures 6A
and 6B, Tables S7 and S8). We first analyzed the color in-
formation but found that the genotypes responded similarly
to drought in terms of color saturation (Figure 6D). Next, we
examined growth responses in terms of plant area during the
drought time series. We observed a more pronounced de-
crease in growth during drought conditions for both bril-301
and besI-D compared to WT (Figures 6E and 6F). These re-
sults differ from water-withholding drought survival assays in
which bril-301 plants have increased survival rates whereas
besI-D has decreased survival (Ye et al., 2017; Nolan et al.,
2017a). While the conditions for traditional drought sur-
vival assays are more severe, the drought conditions applied
from RoAD system are milder, which might better represent
field conditions. This suggests that monitoring growth dur-
ing drought using the RoAD system could reveal new aspects
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of BR-mediated growth and stress coordination. Interest-
ingly, the reduction of growth in BRI1P-BRI1OX plants under
drought was less severe than that of WT (Figures 6E and 6F).
This indicates that some aspects of BR response that are in-
creased in BRIIP-BRI10OX may help improve growth under
drought. Taken together, the ability of the RoAD system to
precisely control soil water conditions and monitor pheno-
typic traits should prove instrumental in dissecting the cross-
talk between BR-mediated growth and drought responses.

The 3D architecture of BR response in maize seedlings is
revealed by RoAD

To extend the RoAD system to a crop plant, we set out to
implement RoAD assays in maize. PCZ has been previously
demonstrated as an effective BR inhibitor in maize, but the
corresponding changes in 3D plant architecture have yet to
be explored (Hartwig et al., 2012; Best et al., 2017). To this
end, we developed a protocol for RoAD to carry out image
acquisition for maize seedling plants nondestructively. Dur-
ing each acquisition cycle, a total of one RGB image and four
multi-view point clouds were saved for each maize plant. The
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Fig. 7. Image processing and BR phenotyping of maize seedlings.
A) 3D point cloud of a maize plant.
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3D view of Maize plant growth from 10 to 14 DAP under the indicated control or PCZ-treated conditions.

Solidity of maize plants under different PCZ levels.

(
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(D) 2D view of maize plant growth from 10 to 14 DAP under the indicated control or PCZ-treated conditions.
(B)

(F)

(

G) Leaf curvature of the second leaf under the indicated control or PCZ-treated conditions.

multi-view point clouds were filtered and then registered to a
single point cloud (Figures 7A). To compute the component
phenotypes, a point cloud skeletonization method was used
to analyze the maize plant architecture (Figures 7B and 7C)
(Bao et al., 2019a; Xiang et al., 2019). A series of morpho-
logical traits were automatically extracted. Maize plants were
grown in a growth chamber and imaged to evaluate the sys-
tem and the image analysis algorithm. Comparisons between
the measurements indicated that the RoAD platform provides
accurate and reliable measurements for seedling maize plants
(Figure S3, R2 between 0.93 and 0.99).

Thirty maize plants with five levels of treatments (PCZ 0,
100uM, 500p:M, 1000:M, 2000:M) were grown to examine
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the effect of PCZ on maize seedling growth (Figures 7D and
7E, Tables S9 and S10). Images were acquired daily from 10-
14 days after planting (DAP). A set of phenotypic traits were
extracted automatically using the developed algorithm. We
plotted averaged growth curves by plant height, plant width,
plant area and plant volume per treatment (Figures S4A-D).
PCZ inhibited growth of the maize plants which was evident
by the reduction of the plant height, plant width, plant area
and plant volume. These effects increased with the PCZ con-
centration. Consistent with our observations in Arabidopsis,
the solidity for PCZ-treated maize plants was also increased
compared with controls (Figure 7F). Next, we studied indi-
vidual leaf traits to gain more detailed insight into the dif-
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ferences observed at the whole plant level. We found that
the PCZ-treated plants had lower leaf curvature values than
the control plants (Figure 7G). Leaf length also decreased for
PCZ-treated plants compared with the control plants (Figure
7H). The decrease in leaf curvature and leaf length at least
partially explains the increase in solidity observed and cor-
roborates that PCZ treatment leads to more compact maize
seedling phenotypes. The trends observed in our phenotypic
characterization of maize seedling PCZ response are con-
gruent with the described roles of BRs in controlling maize
growth and development (Hartwig et al., 2011; Hartwig et
al., 2012; Kir et al., 2015) and lend new insight into the 3D
architecture of this response.

Discussion

In this paper, we introduce RoAD, an automated phenotyping
system designed for BR and drought response in Arabidop-
sis. The system is capable of watering and maintaining plants
at different soil moisture conditions, as well as providing top-
view RGB images and 3D multi-view point clouds of plants
over time. RoAD incorporates an automatic image process-
ing pipeline, supporting plant and leaf segmentation, and cal-
culation of morphological and color features. The pipeline
was validated with manual measurements of plants. Overall,
we found that system-derived traits were highly correlated
with the ground truth data collected manually. We assessed
how traits measured by RoAD vary among BR mutants sub-
jected to PCZ or drought conditions. Additionally, we phe-
notyped 20 Arabidopsis accessions under control and PCZ
treated conditions, which revealed substantial variation in
traits affected upon BR inhibition. The system was also used
for maize seedling plant phenotyping to demonstrate that it is
readily extensible to the analysis of other plant species.

The RoAD system differs from other previously developed
phenotyping systems by (1) utilizing a mobile base, which
can easily move to and fit in different growth chambers; (2)
adopting a six-axis robotic manipulator, making the robot
more versatile, dexterous and flexible to acquire multi-view
images; and (3) allowing multiple treatments such as PCZ
and water limitation. In drought experiments, users can set
when water limitation starts, the target water level, and when
the target water level is reached. The robotic platform is ex-
tendable to other analytical sensors (such as near-infrared,
thermal, and probing sensors) and could be integrated into fa-
cilities for large-scale plant phenotyping. A limitation of the
RoAD system is that during each acquisition cycle, there is
a gap of several hours between when the first and last plants
of an experiment are processed, which means the timing of
imaging and watering varies from plant to plant. To address
this issue, we have incorporated a randomized block design
that avoids confounding between factors of interest such as
genotypes or treatments and the acquisition order. It would
be helpful to design multiple robots working in parallel to
reduce the time between data collection for different individ-
uals.

Using RoAD and machine learning, we identified solidity
as an important feature in distinguishing control from PCZ-
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treated WT plants. While inhibition of the BR pathway by
PCZ and a BR loss-of-function mutant, bri/-301, reduced
plant solidity, increased BR signaling in BRIIP-BRII-OX de-
creased solidity (Figure 4). On the other hand, besI-D, which
is also a BR gain-of-function mutant, had more complex phe-
notypes at the whole plant level with increased solidity com-
pared to WT Col-0. It is worth noting that the bes/-D mutant
used in this study was introgressed into the Col-0 background
(Vilarrasa-Blasi et al., 2014), whereas this mutant was orig-
inally described in the Enkheim-2 (En2) background (Yin et
al., 2002). The increased solidity of the besI-D allele used in
this study might be due to highly curled leaves likely due to
feedback inhibition on the BR pathway.

By phenotyping 20 Arabidopsis accessions we identified a
large array of traits that responded to PCZ treatment differ-
ently than Col-0, which is often used as a WT control and
reference accession (Figure 5). Additionally, the 3D imag-
ing capabilities of RoOAD detected altered plant height in the
Lch-0 accession, which would have been difficult to observe
from 2D imaging (Figure 5). We noticed that seedling BR re-
sponse assays did not always correlate with adult plant PCZ
response phenotypes, suggestions complementarity among
these assays. Our results demonstrate the utility of pheno-
typing BR-mediated growth responses across different devel-
opmental stages, phenotypic traits, and genotypes. Brassi-
nosteroids have extensive cross-talk with drought and sev-
eral mechanisms impinge on BES1 to balance BR-regulated
growth responses with drought survival (Ye et al., 2017;
Nolan et al., 2017a; Chen et al., 2017; Xie et al., 2019).
Gain-of-function bes!-D mutants have reduced survival dur-
ing drought, whereas loss-of-function bril/-301 mutants dis-
play increased drought survival (Ye et al., 2017; Nolan et
al., 2017a). Despite these opposite phenotypes in terms of
drought survival, RoAD drought experiments showed that
both besi-D and bril-301 had more dramatic reductions in
growth compared to WT under the drought conditions tested.
On the other hand, the growth of BR gain-of-function BRI P-
BRI1-0X plants showed less inhibition in response to drought
compared to WT. These phenotypes of BRIIP-BRII-OX are
interesting in light of the recent findings showing that over-
expression of the vascular BR receptor BRL3, a homolog of
BRI, allows for increased drought survival without compro-
mising plant growth (Fabregas et al., 2018; Planas-Riverola
et al., 2019). Our findings suggest additional complexity in
BR-mediated control of drought responses. Future studies
should deconvolute the role of various BR signaling compo-
nents in modulating both growth during drought and plant
survival. The precise control of water levels and drought tim-
ing enabled by RoAD will enable such investigations.

In conclusion, the RoAD system provides a comprehensive
and automated platform for BR and drought response ex-
periments in soil-grown plants. The ability of RoAD to
accurately measure morphological and growth-related traits
of plants over time and under different treatments should
prove a powerful resource to study coordination between BR-
mediated growth and stress responses.
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Methods

Assembly of RoAD System

RoAD consists of a mobile service robot and two elongated
tables that support the pots. The robot is made up of an un-
manned ground vehicle (UGV), a weighing station, a six-
axis manipulator that carries a RGB camera, a laser pro-
filometer, and an electric gripper with two liquid drippers at
the fingertips. The robot is able to navigate in the growth
chamber and pick up each pot on the tables with high re-
liability. The base of the UGV has a dimension of 73 cm
x 73 cm x 51 cm. The T-slotted aluminum building sys-
tem (80/20 Inc, United States) was used to build the frame
of the vehicle. The UGV is equipped with four mecanum
wheels (6” HD, AndyMark, United States) and magnetic
guide sensors (MGS1600, Roboteq, United States). The
mecanum wheels were driven by four brushless DC mo-
tors (BL58-412F-48V GRA60-032, Midwest Motion Prod-
ucts, United States) through two dual-channel motor con-
trollers (FBL2360, Roboteq, United States). The motor con-
trollers, the manipulator and the sensors are controlled by an
industrial-grade embedded computer (ML400G-30, Onlogic,
United States). To reach all the pots on the tables, the UGV
travels along a straight magnetic tape on the floor between
the two tables. The UGV can autonomously move between
and parked at three positions along the magnetic tape, which
are enabled by the magnetic guide sensor and additional mag-
netic markers next to the magnetic tape. More details about
UGYV can be found in a published paper (Shah et al., 2016).

The two tables (71 cm x 213 cm) are made of rectangular
plastic panels and 80/20 aluminum frames. As the mag-
netic guidance system has a position accuracy of £1 cm, even
spherical metal balls of 2.54 cm in diameter are positioned
along the edges of each table for the robot to accurately cali-
brate its pose with respect to the table. At each workstation,
two balls on the near side of the table and one ball on the
far side are scanned with the laser profilometer. Ball cen-
ters are estimated by fitting spheres to the resultant 3D point
clouds. Subsequently, the pot positions in a grid system can
be located with an accuracy of +5 millimeters, which is de-
termined by the accuracies of the hand-eye calibration, the
synchronization between the laser profilometer and the ma-
nipulator, and sphere fitting. The space between adjacent pots
on the table allows an approximately 1 cm tolerance. The 3D
ball-based pose calibration method is essential to the high re-
liability of the RoAD platform.

A Graphic User Interface (GUI) was developed to set plant
attributes, manage RoAD parameters, and control the RoAD
system. To start a new experiment, the user needs to define
plant attributes including plant genotype, replicate, watering
solution type and target water level. Subsequently, a pot map
is generated using a randomized complete block design. In
the pot map, each plant has a unique ID. The GUI allows the
user to set the drought mode and tune parameters such as the
exposure time of the RGB camera, the vertical distance from
the camera to the plant, and the speed and acceleration of the
robotic manipulator. The user can select various operation
modes based on the needs of the experiment. In mode 1,
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RoAD will grab pots given by the user and put them on the
table sequentially. Mode 2 is for daily image acquisition and
watering of the plants on the tables. Mode 3 is designed to
image and scan a plant that is manually placed on the bench
scale.

Plant materials and growth conditions

Our experiments on the RoAD system included the follow-
ing Arabidopsis thaliana (Arabidopsis) lines: wild type Col-0
(WT), besI-D (Yin et al., 2002; Vilarrasa-Blasi et al., 2014),
BRI1P-BRI10X (Friedrichsen et al., 2000), and bril-301 (Xu
et al., 2008) and the 20 Arabidopsis accession listed in Ta-
ble S11. Plants were grown under control (3g water per g
dry soil), PCZ (3g water with 100uM PCZ added per g dry
soil) or drought conditions (0.75g water per g dry soil). Plant
seeds were sown on %2 Linsmair and Skoog plates supple-
mented with 1% sucrose and stratified at 4°C in darkness
for 2-5 days. Plates were then placed in the light at 22°C.
After 7 days, the plants were transferred to 10-cm-diameter
pots filled with equal weights of soil and soaked in plastic
trays with water or PCZ solution. The exact mass of dry soil
was determined for each experiment so that gravimetric wa-
ter content could be calculated to reach the desired soil mois-
ture level. Plants were positioned on the two tables using a
randomized complete block design with 4-8 replications per
genotype per treatment. Lighting in the growth room was
set to a 12-h light and 12-h dark cycle. A dehumidifier was
used to maintain the relative humidity at approximately 50%.
Weighing and watering were performed once a day for each
pot, according to the target conditions. The plants were im-
aged for 30 days starting from the day when the plants were
placed in the phenotyping system. For trait validation, the
leaf length and width were measured manually using MAT-
LAB image processing toolbox, which allows determining
the distance between pixels. The distance was then converted
to an actual length based on the pinhole camera model.

For BRZ response experiments we sterilized seeds for 4
hours in a Nalgene Acrylic Desiccator Cabinet (Fisher Sci-
entific, 08-642-22) by mixing 200mL bleach (8.25% sodium
hypochlorite) with 8mL concentrated hydrochloric acid to
generate chlorine gas. Seeds were then resuspended using
0.1% agarose solution for plating. Control (BRZ0; DMSO
solvent only) or BRZ250 treated (250nM Brassinazole) 1/2
LS plates supplemented with 1% (w/v) sucrose. After seeds
were plated, the plates were sealed with breathable tape (3M
Micropore) and placed in the dark at 4°C for 5 days. Plates
were then exposed to light for 6-8 hours and wrapped in foil
for 7 days of growth in the dark. Plates were imaged with an
Epson Perfection V600 Flatbed Photo scanner at a resolution
of 1200 DPI and hypocotyls were then measured in ImageJ.

BL response experiments were carried out in a similar fash-
ion, except that plates were supplemented with control sol-
vent (BLO, DMSO) or 100nM Brassinolide (BL; Wako chem-
icals) and plants were grown for 7 days at 22°C under con-
tinuous light.

Maize plants were studied to further extend the application
of the RoAD system to crop plants. B73 maize seeds were
planted in plastic pots in a growth chamber with one seed per
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pot. The plants were divided into five experimental groups
and one control group. The plants in the experimental groups
were watered with indicated concentrations of PCZ (100.M,
500uM, 1000uM or 2000u4M), and the plants in the control
group were grown with water. The plants were cultivated in
a growth chamber (16h light/8h dark) with the temperature
at 28°C and the relative humidity at 50%. Thirty individual
plants were randomly selected from all six groups with five
replicates in each group to be inspected by the RoAD sys-
tem. Image acquisition was performed at five different devel-
opmental time points (once a day from 10 to 14 DAP). One
RGB image and four multi-view depth images were acquired
for each plant. The maize plants were manually transported
from the growth chamber to the RoAD system.

Image processing

Segmentation of drought-stressed Arabidopsis plants in 2D
Excess green (ExG) index has been found to be an effective
indicator to separate green plants from soil (Hamuda et al.,
2016). However, we observed that the plants under water-
limited conditions tend to exhibit a dark purple color at late
growth stages (Figures 6A and S2A). Accordingly, we im-
plemented hue information to identify the dark purple parts.
The pot edges were detected using Circle Hough Transform
to aid in the isolation of plants. The part inside the detected
circle was considered the region of interest (ROI). The ROI
was then transformed to hue saturation value (HSV) color
space. An appropriate threshold was then applied to the hue
channel of the ROI to separate the drought plant from the
soil. The mask images from ExG and HSV color space were
combined to acquire a plant-only RGB image. The 2D im-
age processing pipeline was implemented in Matlab R2017a
(MathWorks, United States).

Segmentation of Arabidopsis plants in 3D

The processing pipeline of 3D image analysis utilized the
Point Cloud Library (Rusu and Cousins, 2011) and the
OpenCV library (Bradski and Kaehler, 2008). First, we im-
plemented the Iterative Closest Point algorithm (ICP) to find
the global transformation between multi-view point clouds.
At this stage, four transformation matrices were obtained,
which were later used for merging the multi-view point
clouds into a single point cloud. To improve the efficiency of
the ICP configuration, the point cloud was down-sampled and
filtered to reserve only the parts that were common among the
multi-view point clouds (plant, soil and pot). In the next step,
we roughly segmented the plant canopy by mapping the fore-
ground from the 2D image to the point cloud. However, the
resulting point cloud (Figures 2F and 2G) may contain points
of partial soil that are occluded by leaves. To resolve this,
we adopted Euclidean clustering (Rusu and Cousins, 2011)
to filter the point cloud. The point cloud is clustered by Eu-
clidean distance between points (Figure 2G). We found that
non-plant clusters, which likely represent soil, were small
and close to the pot edge, and the plant clusters were mostly
large and have small clusters (young leaves) near the pot cen-
ter. Therefore, the non-plant clusters are removed by a dy-
namic size threshold (Eq. (1)) that is a logarithmic function
of the point cloud size and the distance from the cluster to
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the pot center. Cth=SC/Spc*d (1) where SC and Spc repre-
sent the number of the points in the whole point cloud and
the cluster, and d is the distance between the center of the
cluster and the center of the pot. Next, the segmented plants
from each frame were merged into a single frame using the
transformation matrices obtained in the registration process.
Finally, in order to remove the duplicate points without los-
ing important information, a voxel grid filter with a 3D box
size of 5 mm3 was applied to the combined point cloud.

Maize plants image analysis and traits validation

A point cloud skeletonization method was introduced to an-
alyze the maize plant architecture and segment individual
leaves. The raw data (Figure S5A) were filtered and regis-
tered to a single point cloud (Figure S5B). To compute the
plant height, the Random Sample Consensus (RANSAC) al-
gorithm (Fischler and Bolles, 1981) was implemented to fit
a plane in the merged point cloud to detect the soil (Fig-
ure S5C). The points were sliced into layers based on their
height and Euclidean clusters were extracted for grouping
each layer. The 3D skeleton was generated and mapped to
a graph by connecting the centroid of the adjacent Euclidean
clusters (Figure S5D). The individual leaf was detected by it-
eratively traversing the graph from a one-neighbor node (leaf
tip, blue points) along a connected path until encountering
a three-neighbor node (leaf base, red points) (Figure SSE).
Leaves were numbered consecutively, with the first leaf be-
ing closest to the soil. The stem was detected as a 3D Hough
line (Figure SS5F). Based on the segmentation results, a series
of morphological traits were automatically extracted (Table
S).

A total of 21 maize plants were grown in a growth chamber
and studied to evaluate the system and the proposed algo-
rithm. The plants were sampled at 20 days after planting.
The position of the camera was adjusted based on the heights
of the plants. After image acquisition, plants were manually
measured to collect ground truth data. Plant height and plant
width were measured using a ruler. Subsequently, each leaf
was cut off to measure the leaf length and leaf area. Leaf
length was measured as the distance from leaf base to tip.
The leaf was then scanned using an Epson Perfection V600
Flatbed Photo scanner and quantified using Matlab to obtain
the area.

Linear mixed model analysis

A linear mixed-effects model was fit to the trait data us-
ing the Ime function in the R nlme package (Pinheiro et al.,
2020). For each trait and day, the mixed model used raw trait
measurements as the dependent variable with fixed effects of
genotype, treatment, and their interaction. The random ef-
fects structure consisted of a random intercept of plant index
within block. Genotype-specific weights were assigned to
account for unequal variance across genotypes. The model
specification was as follows: lme(raw value genotype *
treatment, random = 1lblock/index, weights = varldent(form
= llgeno)). For all plotted data, P values were adjusted
for multiple testing according to (Benjamini and Hochberg,
1995).

Machine learning classification
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To understand the underlying relationship between system-
derived phenotypic traits and plant responses to PCZ or
drought treatments, we constructed two-class classification
models based on six machine learning methods: Random
Forest, Support Vector Machine, AdaBoost, Gradient Boost-
ing, Extra Trees, and Linear Discriminant Analysis. Feature
importance was calculated for each model to assess the rel-
ative contribution of each trait in the classification process.
The classifications with labeling “1” for control and “2” for
PCZ were performed for WT Arabidopsis plants from 15 to
30 DAS. The full dataset of WT plant morphological traits
under control and PCZ conditions was shuffled and split into
two groups with 70% for training and 30% for testing with
10-fold cross-validation. The performance of the models was
evaluated and ranked by test accuracy, and the averaged fea-
ture importance ranking was obtained from the top four mod-
els. The mean and standard deviation of accuracy, F1, preci-
sion, and recall values of the top four classifiers are reported
in Table S2. The same processing pipeline was applied to WT
plants from 25 to 30 DAS to classify control and drought-
stressed Arabidopsis plants. Machine learning classification
methods were implemented in Python 2.7.14 (Python Soft-
ware Foundation, United States) using scikit-image v0.13.0
(Van Der Walt et al., 2014).
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Fig. S1. PCZ and BRZ responses of Arabidopsis Accessions

(A) Representative images of 5 selected Arabidopsis accessions grown under control or 100 uM PCZ conditions on 29 DAS. Images are repeated from Figure 5A to for
comparison to BRZ phenotypes below.

(B) Representative images of 5 selected Arabidopsis accessions grown under control or 250nM BRZ in the dark for 7 days.

(C) Solidity of 5 selected Arabidopsis accessions grown under control or 100 uM PCZ conditions on 29 DAS.

(D) Hypocotyl lengths of 5 selected Arabidopsis accessions grown under control or 250nM BRZ in the dark for 7 days.

(E) Comparison of Solidity and BRZ Length ratios among the 20 accessions phenotyped.
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Fig. S2. Drought responses in Arabidopsis using RoAD end-point drought mode

(A) Soil water content of control and drought-stressed plants in end-point drought mode.

(B) Plant area for WT under control and drought-stressed conditions.

(C) Saturation (hsvS) values for WT under control and drought-stressed conditions at 29 DAS.

(D) Representative images of control and drought-stressed WT from 13 to 29 DAS in end-point drought mode.
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Fig. S3. Validation results for maize plants
Linear regression results between the system-derived traits and the manual measurements for plant height (A), plant width (B), leaf length (C) and leaf area (D). RMSE: Root
mean square error; MAE: Mean absolute error.
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Fig. S4. Comparison of traits extracted from 3D point cloud of maize plants
The extracted traits include plant height (A), plant width (B), plant area (C), and plant volume (D). Individual plant data are represented by dots and groups means are depicted
in solid lines.
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Fig. S5. Processing of image data to segment maize seedling stems and leaves

A) Raw data of a maize plant scanned by the RoAD system.

Point clouds sampled from multiple perspectives.

Soil detection, red points are soil inliers.

Sliced point cloud and the generated 3D skeleton.

The detection results of leaf tip (blue points), leaf base (red points), and stem. The white line denotes the stem central line.
) Segmentation results of the stem and individual leaves.
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