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Abstract 

 Learning to avoid dangerous signals while preserving normal responses to safe stimuli is 

essential for everyday behavior and survival. Fear learning has a high level of inter-subject 

variability. Following identical experiences, subjects exhibit fear specificities ranging from high 

(specializing fear to only the dangerous stimulus) to low (generalizing fear to safe stimuli). 

Pathological fear generalization underlies emotional disorders, such as post-traumatic stress 

disorder. The neuronal basis of fear specificity remains unknown. Here, we identified the 

neuronal code that underlies inter-subject variability in fear specificity using longitudinal imaging 

of neuronal activity before and after differential fear conditioning in the auditory cortex of mice. 

Neuronal activity prior to, but not after learning predicted the level of specificity following fear 

conditioning across subjects. Stimulus representation in auditory cortex was reorganized 

following conditioning. However, the reorganized neuronal activity did not relate to the specificity 

of learning. These results present a novel neuronal code that determines individual patterns in 

learning.  

Keywords: fear conditioning, auditory cortex, sensory systems, learning, computational 

model, imaging, sensory cortex, tuning curve, neurobiology, population coding. 
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Introduction 

Learning allows our brain to adjust sensory representations based on environmental 

demands. Fear conditioning, in which a neutral stimulus is paired with an aversive stimulus, is a 

robust form of associative learning: exposure to just a few stimuli can lead to a fear response 

that lasts over the subject’s lifetime 1,2. However, the same fear conditioning paradigm elicits 

different levels of learning specificity across subjects 3–6. In pathological cases, the 

generalization of the fear response to stimuli in non-threatening situations can lead to conditions 

such as post-traumatic stress disorder (PTSD) 7,8 and anxiety 9. Therefore, determining the 

neuronal basis for learning specificity following fear conditioning is important and can lead to 

improved understanding of the neuropathology of these disorders. Whereas much is known 

about how fear is associated with the paired stimulus, the neuronal mechanisms that determine 

the level of specificity of fear learning remain poorly understood. Our first goal was to determine 

the neuronal basis for the differential fear learning specificity across subjects. 

Multiple studies suggest the auditory cortex (AC) is involved in fear learning. During 

differential fear conditioning (DFC), inactivation of AC chemically 10, or with optogenetics 11, as 

well as partial suppression of inhibition in AC 12 led to decreased learning specificity using either 

pure tones or complex stimuli, such as FM sweeps or vocalizations 3,11–14. These observations 

suggest that AC may determine the level of learning specificity. Therefore, we tested whether 

neuronal codes in AC prior to conditioning can predict specificity of fear learning. 

The role of AC following fear conditioning is more controversial. Changes in stimulus 

representation in AC following association learning have been proposed to represent multiple 

different features of the fear response 1,14–19. However, inactivation of the auditory cortex did not 

affect fear memory retrieval of pure tones 3,11, suggesting that AC is not involved in fear memory 

retrieval. If AC were involved in fear memory retrieval, we would expect the changes in sound 

representation to reflect the level of learning specificity across subjects. Therefore, our second 

goal was to test the role of changes in auditory cortex in shaping fear learning specificity across 

subjects. 

To address these goals, we imaged the activity of neuronal ensembles in layers 2 and 3 of 

AC over weeks, before and after differential fear conditioning with pure tones. First, we 

established the neuronal basis for differential learning specificity across subjects by finding that 

neuronal activity in AC prior to fear conditioning predicted the level of learning specificity. 
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Second, we found that the changes in stimulus representation in AC following fear conditioning 

were not correlated with the level of learning specificity across subjects, suggesting that the role 

of AC in fear learning is restricted to the consolidation period and changes in AC do not represent 

fear memory. These findings refine our understanding of the neuronal code for variability in fear 

learning across subjects and reconcile seemingly conflicting previous results on the function of 

the auditory cortex in fear learning. 

Results 

Learning specificity varies amongst conditioned mice. 

To establish the relationship between sound-evoked activity in the AC and differential fear 

conditioning, we recorded simultaneous neuronal activity from hundreds of neurons in AC. We 

tracked the same neurons before and after DFC, using two-photon imaging of a fluorescent 

calcium probe (GCaMP620, Fig S1-2). Longitudinal imaging of neuronal activity in large 

ensembles of neurons in layers 2 and 3 of AC before and after conditioning (Fig 1a) allowed us 

to compare the representation of the CS stimuli before and after learning. 

We conditioned mice by exposure to 10 repeats of an alternating sequence of two tones, 

one of which co-terminated with a foot-shock (CS+, 15 kHz), and one which did not (CS-, 

11.4kHz). Pseudo-conditioned mice were presented with the same stimuli, but the foot-shock 

occurred during periods of silence between the stimuli (Fig 1b). Following conditioning, we 

measured fear-memory retrieval by presenting the same auditory stimuli to the mice in a different 

context and measuring the percentage of time the mice froze during stimulus presentation and 

at baseline (Fig 1c). Memory retrieval was tested after each imaging session. To test whether 

levels of freezing changed over retrieval sessions we fit a linear mixed-effects model to predict 

how freezing was affected by the retrieval session time and stimulus type. We found there was 

no effect of retrieval session on freezing (Fig 1d, Table S1, t(164) = 0.90, p = .372) and no 

difference in the effect between retrieval session and stimulus type (t(164) = -1.21, p = .227). 

Similarly, freezing in pseudo-conditioned mice was consistent over the 4 retrieval sessions (Fig 

1e, Table S1, no effect of retrieval session or retrieval session*stim_type, p > .05). Since there 

was no change in freezing over time, we do not specifically consider results with respect to the 

second DFC session (Fig 1a, day 12). Henceforth we refer to DFC as the first DFC session. 

Conditioned mice that did not freeze to CS+ or CS- differently from baseline were excluded from 

subsequent analysis (5/19 mice excluded, Fig S3a, two-way ANOVA, p > .05, see methods).  
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Learning specificity was defined as the difference between freezing to CS+ and CS- during 

memory retrieval sessions (see Methods, Equation 1)3. We used two pure-tone CS stimuli which 

have been shown to engage AC in both mouse3,12 and human DFC21. The pure tones were close 

together in frequency space (0.40 octaves apart) in order to drive a range of learning specificities 

in conditioned mice that are not achievable at greater frequency distances3. Indeed, we observed 

that conditioned mice displayed a larger range of learning specificities (range: -16.9 to 55.6%) 

compared with pseudo-conditioned mice (-4.2 to 7.6%). This was reflected in a significantly 

larger standard deviation of learning specificity in conditioned mice (σ = 20.3%) than in pseudo-

conditioned mice (Fig 1f, σ = 3.3%, F-test, F(13, 8) = 36.80, p < .001) in the first retrieval session 

after DFC. We also observed a significantly higher learning specificity (mean: 15.8%) in 

conditioned mice than pseudo-conditioned mice (mean: 1.0%, t-test, t(21) = 2.15, p = .043) in the 

retrieval session after DFC. To test whether learning specificity was consistent over retrieval 

sessions, we fit a linear mixed-effects model to predict how learning specificity was affected by 

retrieval session and conditioning type. We found no effect of retrieval session on learning 

specificity for conditioned mice (Fig S3b-c, Table S1, t(88) = 0.23, p = .817) nor any interaction 

between session and conditioning type (t(88) = -0.01, p = .995). Thus, we found that conditioned 

mice exhibited a range of learning specificities, with some generalizing their fear across the CS 

stimuli and others specializing their fear responses to CS+. On average, the learning specificity 

of mice was stable over the course of the experiment. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2021. ; https://doi.org/10.1101/2020.06.02.128702doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.128702
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

Figure 1: Experimental timeline and differential fear conditioning (DFC) paradigm. (a) 

Experimental timeline: Mice were imaged for 4 sessions (48 hours apart) before DFC to establish 

baseline responses to tone pip stimuli under the two-photon. Prior to DFC, mice were habituated 

to the fear conditioning chamber. Mice were subjected to DFC (19 mice) or pseudo-conditioning 

(9 mice) on Days 8 and 12. After DFC-1 (day 8), fear retrieval testing was performed after each 

imaging session. (b) Mice were habituated to the conditioning chamber (context A) for 3 days 

prior to conditioning and on the final day, the stimuli were presented without foot-shock. During 

conditioning, a foot-shock (1 s, 0.7 mA) was paired with the CS+ (15 kHz, 30s pulsed at 1 Hz). 

The CS- (11.4 kHz, 30 s pulsed at 1 Hz) was presented alternately with the CS+ (30-180 s apart, 

10 repeats) and not paired with a foot-shock. During pseudo-conditioning, 10 foot-shocks were 

presented randomly between the CS stimuli. During retrieval testing (context B), the same CS+ 
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and CS- stimuli were presented alternately (30-180 s apart, 4 repeats). Motion of the mouse was 

recorded and the percentage freezing during each stimulus was measured offline. (c) Freezing 

at baseline (gray), for CS+ (pink) and CS- (blue) in retrieval session 1 (day 9) showing the 

percentage of time frozen during tone presentation for CS+, CS- and baseline for each mouse. 

Gray lines indicate freezing for each included mouse. (Two-way ANOVA, Tukey-Kramer post-

hoc test, Table S1). (d) Freezing to baseline, CS-, and CS+ for each conditioned mouse over 

the 4 retrieval sessions. Gray lines show each mouse. (e) Same as d for pseudo-conditioned 

mice. (f) Learning specificity of conditioned and pseudo-conditioned mice for retrieval session 1. 

Circles show individual mice. (t-test). Error bars in c-f indicate standard error of the mean (sem). 

†p < 0.1, *p < .05, **p < .01, ***p < 0.001, n.s.p > .05. 

 

Neuronal responses in AC pre-DFC predict specificity of fear learning 

We used two-photon imaging to record calcium activity from neurons in auditory cortex in 

head-fixed mice (Fig 2a). We presented 100-ms tone pips (frequency range: 5-32 kHz, including 

CS+ and CS- frequencies) to obtain frequency response functions from each neuron. We 

hypothesized that the activity in auditory cortex would predict learning specificity across 

individual mice. Thus, we tested whether neuronal discrimination of CS+ and CS- in AC pre-DFC 

predicted learning specificity following DFC. To assess how well single neurons could 

discriminate between the two conditioned tones, we computed the Z-score difference (Zdiff) of 

responses to CS+ and CS- for responsive neurons (see Methods, Equation 2). In an example 

neuron (Fig 2b), the distributions of single-trial response magnitudes to CS+ and CS- 

demonstrate a separation resulting in a significant Zdiff score of 2.01. The Zdiff score of responsive 

neurons was considered significant if the actual score was greater than the 95th percentile of the 

bootstrapped Zdiff scores (see Methods). Figure 2c shows the distribution of Zdiff scores for all 

responsive units from conditioned mice 24 hours pre-DFC.  

To test whether neuronal discrimination pre-DFC could predict subsequent learning 

specificity, we averaged the Zdiff scores of neurons recorded in each recording session of each 

mouse and compared it with learning specificity 24 hours post-DFC. Since different numbers of 

neurons were recorded from each mouse, we resampled (100x with replacement) the lowest 

number of neurons recorded from across the mice. We found that the mean Zdiff scores averaged 

across the pre-DFC imaging sessions predicted learning specificity 24 hours post-DFC (Fig 2d, 
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Spearman’s rank correlation, ρ(12) = .81, 95% confidence intervals (CI) [.60, .93], p = .007). 

Using only the imaging session preceding DFC, the mean Zdiff did not correlate with learning 

specificity 24 hours post-DFC (Fig 2e, ρ(12) = .48, 95% CI [.04, .78], p = .103). However, the 

two correlations were not significantly different from one another (bootstrap comparison, see 

methods: ρ difference = 0.33 , 95% CI [-0.08, 0.88], p = 0.128, N = 14). In summary, this suggests 

that the neuronal discriminability in AC of individual mice pre-DFC predicts learning specificity 

24 hours post-DFC. 

It is possible that the Zdiff score results from some underlying distributions of response 

magnitudes; for example, the magnitude of response to CS+ could be driving the prediction 

phenomenon. Thus, we explored whether magnitude of CS+ or CS- responses related to 

learning specificity. We compared the mean response magnitudes to each CS over the 4 pre-

DFC imaging sessions with learning specificity 24 hours post-DFC and found that they were not 

correlated (Spearman’s correlation, p < 0.05,  Fig S4). This suggests that it is not merely the 

magnitude of responses to CS+ or CS- but truly discriminability of the responses that is 

underlying the prediction of learning specificity.  

We next tested the temporal window for the prediction of learning specificity. If changes in 

sound-evoked responses in AC following DFC reflect memory formation or the strength of 

learning, as previously suggested15,17, we would expect a stronger relationship between 

neuronal discrimination and learning specificity after DFC than before. To test this, we compared 

the correlations between mean Zdiff across equal numbers of imaging sessions before and after 

DFC (3 imaging sessions preceding retrieval sessions 1, and 4) and learning specificity in 

retrieval sessions 1 and 4, respectively. We found that the mean Zdiff score pre-DFC predicted 

learning specificity from retrieval session 1 (Fig 2f blue dots, ρ(12) = .66, 95% CI [.39, .90], 

p = .031), whereas the mean Zdiff score post-DFC did not predict learning specificity in retrieval 

session 4 (Fig 2f green dots, ρ(12) = .25, 95% CI [-.26 .70], p = .401). However, these two 

correlations were not significantly different (bootstrap comparison (see Methods): ρ difference = 

0.41, 95% CI [-0.09, 0.95], p = .124). This change in prediction could result from a rearrangement 

of learning specificity over time or a rearrangement of Zdiff scores over time. We reasoned that if 

learning specificity was rearranged then the neural discriminability pre-DFC ought not to 

correlate with the learning specificity in retrieval session 4 (Fig 2f purple dots). However, we 

found that neural discriminability pre-DFC was able to predict learning specificity in retrieval 

session 4 (ρ(12) = .64, 95% CI [-.17 .84], p = .022), suggesting a rearrangement of Zdiff scores. 
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Further supporting a rearrangement of Zdiff scores, neuronal discriminability post-DFC did not 

correlate with learning specificity in retrieval session 1 (Fig 2f orange dots, ρ(12) = .54, 95% CI 

[-.04 .81], p = .066). 

To verify that the results were robust to variability in frequency tuning distributions and 

location of the imaging window along the anterior-posterior axis (Fig S1 & S2) between mice, we 

investigated the relationship between Zdiff and these parameters. If neuronal discriminability is 

affected by imaging location then we would expect a relationship between the location of the 

imaging field of view on the anterior-posterior axis and Zdiff, we did not find any relationship 

between these two measures (Fig S5a, Spearman’s rank correlation, p > .05) nor between the 

percentage of neurons with significant Zdiff and imaging location (Fig S5b). The best frequency 

distributions of neurons in the imaging window could affect the mean Zdiff of neurons of each 

mouse, if so we would expect higher Zdiff scores and more neurons with significant Zdiff scores 

for neurons tuned around the CS+ and CS-. However, we found no relationship between mean 

Zdiff score and mean best frequency in the imaging window (Fig S5c, Spearman’s rank 

correlation, p > .05) nor between the percentage of significant Zdiff scores and mean best 

frequency (Fig S5d). Not surprisingly, the percentage of significant Zdiff scores was correleated 

with learning specificity (Spearman’s rank correlation, ρ = .72, p = .011) suggesting that the best 

discriminating mice also had more neurons that discriminated between CS+ and CS- (Fig S5e). 

While there was no relationship between mean Zdiff and mean best frequency  of all neurons in 

the imaging window across mice, we did find that neurons with best frequency at CS+ or CS- 

had higher Zdiff scores than neurons tuned to other frequencies (Fig S5f, Table S1). This suggests 

that mice with more neurons with best frequencies at CS+ and CS- might have better learning 

specificity. However, there was no relationship between the percentage of neurons in the imaging 

window with best frequency at CS+ and CS- across the pre-DFC imaging sessions and learning 

specificity (Spearman’s rank correlation, ρ(12)  = .46, 95% CI [-.06, .71], p = .127).  

In summary, individual neuronal discriminability in AC pre-DFC predicted learning specificity 

24 hours after DFC. Post-DFC, neuronal activity no longer predicted learning specificity. 

Therefore, the role of auditory cortex in DFC is likely restricted temporally. To further investigate 

the relationship between neuronal and behavioral discriminability, we examined whether 

neuronal population discriminability could predict learning specificity.  
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Figure 2: Mean neuronal discriminability pre-DFC predicts learning specificity. (a) Imaging 

setup: Mice were head-fixed under the two-photon microscope, fluorescence of calcium indicator 

(GCaMP6s/m) was measured at ~30 Hz, regions of interest and mean fluorescence over time 

were extracted using open software22. Schematic showing auditory stimuli, comprised of pure-

tone pips (100 ms, 70 dB SPL, 5-32 kHz) presented at 0.24 Hz. (b) Response (mean ± sem, 25 

repeats) to the presentation (black bar) of CS+ (magenta) and CS- (cyan) of an example neuron. 

Inset shows distributions of the single-trial mean responses (mean ΔF/Fstd across 2-s window 

following stimulus onset) to CS+ and CS- from the same neuron. (c) Distribution of Zdiff scores 

of responsive units from conditioned mice 24 hours pre-DFC. Significant scores are indicated in 

red, n = 98/653 neurons. Inset, single mouse example, n = 15/63 neurons. (d) Mean Zdiff (± sem) 

pre-DFC correlated (Spearman’s rank correlation, N = 14 mice) with learning specificity 24 hours 

post-DFC. Black line = linear best fit. (e) Mean Zdiff (± standard deviation [sd]) for each mouse 

24 hours pre-DFC did not correlate with learning specificity 24 hours post-DFC. black line = 
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linear best fit, N = 14 mice. (f) Spearman’s rank correlation (ρ ± 95% CI, N  = 14 mice) between 

Zdiff score averaged across 3 imaging sessions as indicated in the legend and learning specificity 

from retrieval sessions 1 and 4. Dots represent individual bootstrapped ρ (n = 1000). †p < 0.1, 

*p < 0.05, **p < 0.01, ***p < 0.001, n.s.p > 0.10. 

Population neuronal activity in AC predicts specificity of learning. 

For many brain regions and tasks, activity of multiple neurons can provide more information in 

combination than averaged activity of individual neurons23–25. Using machine learning, we 

investigated whether populations of neurons predicted learning specificity better than the 

average Zdiff scores. We trained a Support Vector Machine (SVM) to discriminate between 

presentation of CS+ and CS- using population responses to the two stimuli – again we 

resampled (100x with replacement) the lowest number of neurons recorded from across the 

mice. Mean SVM performance across imaging sessions prior to DFC correlated with learning 

specificity 24 hours post-DFC (Fig 3a, ρ(12) = .77, 95% CI [.53, .89], p = .001). Using only the 

imaging session preceding DFC, SVM performance 24 hours pre-DFC did not correlate with 

learning specificity 24 hours post-DFC (Fig 3b, ρ(12) = .35, 95% CI [-.20, .64], p = .247). 

However, the two correlations were not significantly different (bootstrap comparison (see 

Methods), ρ difference = -0.43, 95% CI [-0. 86, 0.00], p = .056). The Zdiff scores and the SVM 

performance of the same neurons were strongly correlated (Fig 3c, ρ(12) = .93, 95% CI [.89, 

.97], p < 0.001), suggesting that the two different discriminability methods used similar underlying 

features to discriminate the stimuli. This was also reflected in the fact that the correlations 

between the two discriminability measures across pre-DFC imaging sessions and learning 

specificity were not statistically different (bootstrap comparison, ρ difference = 0.01, 95% CI [-

0.09, 0.00], p = .780). Thus, population responses averaged across pre-DFC imaging sessions 

predicted subsequent learning specificity likely through similar mechanisms to the mean Zdiff. 

Since the SVM should give greater weight to more informative neurons, we tested whether there 

would be a stronger correlation between the significant Zdiff scores and SVM performance. We 

found that the correlations were not significantly different (bootstrap comparison, ρ difference = 

-0.044, 95% CI [-0.28, 0.14], p = .562).  

We next tested whether predictability of learning specificity persisted after DFC by 

comparing the mean SVM performance across groups of 3 imaging sessions with retrieval 

sessions 1 and 4 (Fig 3d). The mean SVM performance pre-DFC predicted learning specificity 
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in retrieval session 1 (Fig 3d blue dots, ρ(12) = .65, 95% CI [.36, .86], p = .008) whereas the 

mean SVM performance post-DFC did not predict learning specificity in retrieval session 4 (Fig 

3d green dots, ρ(12) = .34, 95% CI [-.18, .76], p = .252). However, these two correlations  were 

not significantly different (bootstrap comparison, ρ difference = 0.31, 95% CI [-0.24, 0.93], p = 

.294). Again, we tested whether this change in prediction resulted from a rearrangement of 

learning specificity over time or a rearrangement of neural discrimination over time. While we 

found the same pattern of results as in the Zdiff (Fig 2f), we did not find a significant correlation 

between neural discriminability pre-DFC and learning specificity in retrieval session 4 (Fig 3d 

purple dots, ρ(12) = .50, 95% CI [-.01 .85], p = .073). Neuronal discriminability post-DFC did not 

correlate with learning specificity in retrieval session 1 (Fig 3d orange dots, ρ(12) = .42, 95% CI 

[-.08 .66], p = .155). 

Combined with similar results from the mean Zdiff scores (Fig 2f), there is evidence to support 

that neuronal discriminability predicts learning specificity before, but not after, conditioning. This 

is consistent with the hypothesis that neural activity is reorganized following DFC and that 

auditory cortex can no longer modulate the freezing response following conditioning, as 

suggested by previous work showing that learning specificity is not dependent on auditory 

cortical activity after fear conditioning (Aizenberg & Geffen 2013). Since neuronal activity no 

longer predicts learning specificity after conditioning, we hypothesized that there would be 

changes in neuronal activity following conditioning. Therefore, we next investigated changes in 

response and neural discriminability following DFC. 

 

Figure 3: Neuronal population discrimination between CS+ and CS- pre-DFC predicts 

learning specificity. (a) SVM performance (mean ± sem) across pre-DFC sessions predicts 

learning specificity 24 hours post-DFC (retrieval session 1). (b) SVM performance (mean ± sd) 
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24 hours pre-DFC does not predict learning specificity 24 hours post-DFC. (c) Mean (± sem) 

SVM performance pre-DFC correlates with the mean (± sem) Zdiff score pre-DFC. Fill color 

indicates learning specificity from retrieval session 1. (d) Correlation (ρ ± 95% CI) between SVM 

performance averaged across 3 imaging sessions preceding retrieval sessions 1 (blue), and 4 

(orange). Dots represent individual bootstrapped correlation values (n = 1000). Black lines in a, 

b, & c show the best linear fit. Statistics in a-d: Spearman’s rank correlation. †p < 0.1, *p < 0.05, 

**p < 0.01, ***p < 0.001, n.s.p > 0.10. 

After DFC, neuronal discriminability between CS+ and CS- is preserved. 

It has been suggested that ‘fear memories’ are encoded in the auditory cortex following 

differential fear conditioning15,17, implying that neuronal discriminability may improve following 

conditioning. We found that neuronal activity following DFC no longer predicted learning 

specificity (Fig 2f & 3d), suggesting AC does not support the fear response after DFC.  We tested 

whether the neuronal discriminability of CS+ and CS- changed after DFC by comparing the mean 

Zdiff across pre- and post-DFC sessions (Fig 4a). We found no change in Zdiff from pre- to post-

DFC in conditioned mice (Table S1, rm-ANOVA Tukey-Kramer post-hoc comparison, p = .740), 

whereas there was a significant decrease in pseudo-conditioned mice  (Tukey-Kramer post-hoc 

comparison, p = .028). Results were similar at a neuronal population level; mean SVM 

performance in conditioned mice did not change across pre- and post-DFC sessions (Fig 4b, 

Table S1, rm-ANOVA Tukey-Kramer post-hoc comparison, p = .573), whereas there was a 

significant decrease in pseudo-conditioned mice (Tukey-Kramer post-hoc comparison, p = .001). 

Combined, we found that following DFC or pseudo-conditioning, neuronal discrimination 

between the CS+ and CS- was maintained in conditioned mice, while it decreased in pseudo-

conditioned mice. These results suggest that changes in AC do not improve neural 

discriminability . Rather, plasticity in AC in conditioned mice appeared to counteract previously 

reported habituation in neuronal responses to repeated stimuli18,26. 

To further investigate how neuronal discrimination changed over time, we tested the 

neuronal discrimination performance of the SVM using cells tracked across pairs of imaging 

sessions. We trained the SVM using one imaging session and tested on data held out from that 

session and from the same cells in the second testing session (Fig S6a & b). If neuronal 

discriminability is maintained in conditioned mice, we would expect that there would be no 

change in performance between training and testing sessions. By contrast, in pseudo-
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conditioned mice, as neuronal discriminability appears to decrease, we expected to observe a 

decrease in performance particularly between sessions pre- and post-DFC. In conditioned mice, 

there was a small deficit in the testing sessions compared with training sessions, which did not 

change over sessions. By contrast, in pseudo-conditioned mice, we observed  the same deficit 

in testing sessions compared with training, but the deficit increased over sessions. A linear 

regression of difference in performance with mouse group (m) and # sessions between testing 

and training (s) as predictors indicated that the slope of the relationship was significantly different 

between conditioned and pseudo-conditioned mice (Table S1, m*s, p = .020). Similarly, we 

observed a decrease in Zdiff as the number of sessions between pairs increased in pseudo-

conditioned mice, but not in conditioned mice (Fig S6c & d, Table S1, Linear regression, m*s, 

p = .004). Neuronal representations are stabilized over time with behavioral relevance and drift 

without26,27. To assess whether representation of the CS+ and CS- was stabilized in conditioned 

vs. pseudo-conditioned mice we investigated whether was drift in the Zdiff of populations of 

neurons. If there is drift in the neuronal representation, then the similarity of Zdiff between 

individual neurons over time should become progressively dissimilar. We calculated the similarity 

(Pearson’s correlation) of Zdiff scores of neurons tracked between pairs of imaging sessions (Fig 

S6e). We fit a linear mixed-effects model to predict how Zdiff similarity between sessions was 

affected by the time between imaging sessions and whether mice were conditioned or pseudo-

conditioned. We found there was a negative effect of number of imaging sessions between pairs 

of sessions on Zdiff similarity (Table S1, t(624) = -2.87, p = .004) but no difference in the effect 

between conditioned and pseudo-conditioned mice (t(624) = 1.28, p = .201). In summary, there is 

evidence of drift in the Zdiff score of both groups of mice, indicating that the Zdiff of individual cells 

became progressively dissimilar. In conditioned mice, the average Zdiff was maintained, while in 

pseudo-conditioned mice it decreased. 

Different levels of learning specificity across mice could potentially account for the different 

levels of neuronal discriminability post-DFC. We therefore tested whether there was any 

correlation between the neuronal discriminability (mean Zdiff score and SVM performance) and 

the learning specificity post-DFC. The mean Zdiff score (imaging sessions 5-8) did not correlate 

with the mean learning specificity across retrieval sessions 1-4 of conditioned mice (Fig 4c, 

Spearman’s rank correlation, ρ(12) = .39, CI [-.25, .73], p = .175), nor was there a correlation 

between the mean SVM performance post-DFC and the mean learning specificity post-DFC (Fig 
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4d, ρ(12) = .34, CI [-.22, .79], p = .264). This suggests that neuronal discriminability post-DFC 

does not reflect learning specificity. 

 

Figure 4: Changes in neuronal discrimination post-DFC. (a) Comparison of mean ± sem Zdiff 

between the pre- (sessions 1-4, blue) and post-DFC sessions (5-8, orange) in conditioned and 

pseudo-conditioned mice. Statistics: Tukey-Kramer post-hoc, Table S1. (b) Same as a but for 

comparison of mean ± sem SVM performance between the pre- and post-DFC. Stats: Tukey-

Kramer post-hoc, Table S1. (c) Relationship between mean Zdiff across the post-DFC sessions 

(sessions 5-8) and mean learning specificity across all retrieval sessions. Statistics: Spearman’s 

rank correlation. Black line shows best linear fit. (d) Same as c but for mean SVM performance 

across the post-DFC sessions and mean learning specificity. Statistics: Spearman’s rank 

correlation. †p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001, n.s.p > 0.10. 
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After DFC, normalized responses at CS+ increased in conditioned mice. 

It has previously been shown that after differential conditioning with pure tones, select 

neurons in AC amplified the difference between CS+ and CS-17,28. However, since we observed 

no change in neuronal discrimination in conditioned mice, we hypothesized that there would be 

no change in response to CS+ and CS-. To test whether responses were altered by conditioning, 

we compared frequency response functions from the pre- and post-DFC imaging sessions of 

responsive neurons that were tracked from pre- to post-DFC (Fig S7a). On an individual neuron 

basis, we observed heterogeneous changes in the frequency tuning (Fig 5a, Table S1). However, 

on average, in conditioned mice, the normalized response to CS+ and frequencies between the 

CS+ and CS- increased, whereas the response at CS- did not change (Fig 5b, two-way rm-

ANOVA, Tukey-Kramer post-hoc testing, p < .05, Table S1). In contrast, in pseudo-conditioned 

mice, the mean normalized responses at most frequencies, including both CS frequencies, did 

not change (Fig 5c, Table S1). When comparing normalized responses at CS- and CS+ in 

conditioned mice and the CS stimuli combined (CSc) in pseudo-conditioned mice, there was a 

significant increase at the CS+ and no change at CS- or CSc (Table S2, Tukey-Kramer post-hoc 

comparison, p < .001). Although we observed an increase in normalized response to CS+, there 

were no significant changes in non-normalized response to conditioned frequencies in 

conditioned mice (Fig S7b, d, &  e, Table S1) and we observed decreased responses to most 

frequencies in pseudo-conditioned mice (Fig S7c, f, & g, Table S1). When comparing non-

normalized response changes to CS+, CS- and CSc, we found a significant decrease at CSc 

but not at CS+ or CS- (Table S3, Tukey-Kramer post-hoc comparison, p < .001). It is possible 

that the normalization of the frequency response functions has amplified a small change that is 

not strong enough to present in the absolute responses.  

Despite the lack of significant change in the absolute responses, it is possible that the 

increase in normalized responses at CS+ and the lack of change in response at CS- in 

conditioned mice could lead to improved discriminability between CS+ and CS- by increasing 

the difference between the responses to each stimulus. This would be consistent with the 

hypothesis that, following fear conditioning, reorganization of neuronal activity serves to amplify 

the relative difference in responses to CS+ and CS- thereby supporting discriminability17,19. 

However, when we compared the absolute normalized response post-DFC and the magnitude 

of changes in normalized response to CS+, CS-, and the difference between the two with 

learning specificity, we did not find any correlation (Fig S8), suggesting that the changes 
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observed are in fact not related to storage of the fear memory29. We further investigated by 

checking for a relationship between the change in neuronal discrimination (Zdiff and SVM 

performance) and learning specificity (Fig S9) finding negative correlations between the two 

factors. This suggests that the neurons that were most predictive of learning specificity changed 

less than neurons that were less predictive, supporting the idea that reorganization of cortical 

activity following DFC does not depend on the fear memory, and may be due simply to random 

drift27.  

 

Figure 5: Changes in frequency representation post-DFC. (a) We tracked the responses of 

neurons responsive at least once pre- and post-DFC. The panels show three example frequency 

response functions from tracked neurons from conditioned and pseudo-conditioned mice pre-

DFC (blue) and post-DFC (orange). Significant differences in the response functions are 

indicated by the squares above (two-way rm-ANOVA, Tukey-Kramer post-hoc analysis, Table 
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S1). Arrows show the frequencies of the CS- (11.4 kHz) and CS+ (15 kHz) and CSc. (b) (top 

panel) Mean normalized frequency response functions of tracked responsive neurons across all 

conditioned mice (N = 14 mice, n = 879 neurons). (lower panel) Percent change in normalized 

frequency response functions of the same neurons, squares indicate significant changes (two-

way rm-ANOVA, Tukey-Kramer post-hoc analysis, Table S1). (c) (top panel) Same b for pseudo-

conditoned mice (N = 9 mice, n = 626 neurons). (lower panel) Percent change in normalized 

frequency response functions for the same cells as above, squares indicate significant changes 

(Two-way rm-ANOVA, Tukey-Kramer post-hoc analysis, Table S1). 

 

Previous studies found that the best frequency of neurons shifts towards the conditioned 

stimulus (CS+) after DFC with pure tones17. We observed changes in the distributions of best 

frequencies following DFC (Fig 6a & b).  To quantify the relationship of these changes to DFC, 

we calculated the absolute distance of the best frequency of responsive neurons to the CS+ 

frequency. Consistent with a shift in best frequency towards the CS+, we observed a small 

decrease in the absolute distance of best frequency from CS+ (of mean response functions pre- 

and post-DFC for each neuron) in responsive neurons of conditioned mice (Fig 6c, -0.07 octaves, 

two-way rm ANOVA, Tukey Kramer post-hoc, p < .001, Table S1) but not in pseudo-conditioned 

mice (p = .934). It is possible that neuronal discrimination between CS+ and CS- could be altered 

by a change frequency tuning width12. As a measure of tuning width we used the sparseness of 

the frequency response function30,31: A neuron with high sparseness responds strongly to one 

or few frequencies tested and little to other frequencies. A neuron with a sparseness of zero 

would indicate an equal response to all frequencies tested. We found no difference between the 

changes in the conditoned and pseudo-conditioned mice (Fig 6d, two-way rm-ANOVA, F(1,1503) 

= 0.21, p = .649, Table S1) and that sparseness decreased in both (F(1,1503) = 20.93, p < .001). 

To verify that the results were robust to variability in frequency tuning between conditioned 

and pseudo-conditioned mice, we performed the analysis on change in response, change in 

distance of best frequency from CS+, and change in sparseness resampling the same number 

of neurons from each best frequency bin (1/12 bins). This had the effect of normalizing the 

frequency distributions pre-DFC between conditioned and pseudo-conditioned mice. We found 

that there was still an increase in response at the CS+ in conditioned mice while there were no 

changes at CS-, and no changes at either CS in pseudo-conditioned mice (Fig S10a). 

Furthermore, we found that despite the increase in response at CS+ in conditioned mice, there 
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was no change in the distance of best frequency from the CS+ on average, whilst there was an 

increase in distance from CS+ in pseudo-conditioned mice (Fig S10b) while sparseness fell in 

both groups of mice (Fig S10c). Observing the best frequency distributions post-DFC (Fig S10d), 

this change is driven mostly an increase in neurons with best frequency at the extremes of our 

measurement (5 and 32 kHz). Qualitatively, the conditioned mice showed increased numbers of 

neurons tuned at and above the CS+ and decreased numbers below CS+ compared with 

pseudo-conditioned mice. Pairing of the CS+ with the shock led to increased number of neurons 

tuned to frequencies at and above the CS+ compared with an unpaired shock.  Combined, 

whereas we find some changes in tuning consistent with classical results, these changes do not 

account for the differential learning specificity across mice. 

To investigate whether variability in the region of sampling in each mouse affected the main 

findings, we split the mice into two groups based on whether the location that the center of their 

imaging window mapped onto the anterior-posterior axis. Locations that also contained the 

auditory thalamus (medial geniculate body, Fig S1) or not, with each group’s field of view more 

likely to be from primary auditory cortex (A1) or the anterior auditory field (AAF), respectively32. 

We found that the changes in response at CS+ were driven by neurons in putative A1 where 

there was a significant increase in normalized response and not in putative AAF where there 

was no change in response (Fig S11a). The distance of best frequency increased on average in 

AAF while there was no change in A1 (Fig S11b). However, we found no effect of imaging region 

on predicition of learning specificity by Zdiff or the SVM performance pre-DFC (Fig S11c-d) and 

no effect of imaging region on change in Zdiff (Fig S11e). Thus, there appears to be a differential 

effect of change in response at CS+ following conditioning for primary auditory cortex regions 

A1 and AAF, but this does not appear strongly related to the learning specificity (Fig S11f). 

In summary, we observed heterogeneous changes in responses of individual neurons 

tracked from pre- to post-DFC. In conditioned animals, there was, on average, an increase in 

normalized response at CS+ and no change at CS-, however increase was not observed in 

absolute response changes. In pseudo-conditioned mice, we observed no changes in 

normalized responses at the CS stimuli. We observed a small shift in best frequency towards 

CS+ in conditioned mice. Sparseness of the frequency response functions decreased in both 

conditioned and pseudo-conditioned mice, indicating that frequency tuning became broader 

after conditioning, thus unlikely to support increased discriminability. Combined, these results 

reconcile our findings with previous studies, which had effectively, by not sampling responses 
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from the same neurons pre- and post-DFC, normalized the responses. It is plausible that 

previous studies observed an increase in normalized activity, which did not translate into an 

actual population-wide increase in discriminability as we find here.  

 

Figure 6: Best frequency and tuning sparseness pre- and post-conditioning. (a) 

Distributions of best frequencies of responsive neurons pre- (blue) and post-conditioning 

(orange), N = 879. (b) Same as b for pseudo-conditioned mice, N = 626. (c) Distance of best 

frequency from CS+ (15 kHz) of neurons from conditioned and pseudo-conditioned mice pre- 

(blue) and post-conditioning (orange). Statistics: 2-way rmANOVA Tukey-Kramer post-hoc 

analysis (Table S1). (d) Sparseness of mean frequency response functions of neurons from 

conditioned and pseudo-conditioned mice pre- (blue) and post-conditioning (orange). Statistics: 

2-way rmANOVA Tukey-Kramer post-hoc analysis (Table S1). Error bars = sem. †p < 0.1, *p < 

0.05, **p < 0.01, ***p < 0.001, n.s.p > 0.10. 

 

A learning model of the fear circuit  

We found that AC activity prior to learning predicts specificity of learning, yet the reorganized 

neuronal responses do not correlate with learning specificity. In order to better understand our 

findings in relation with previous results, we built a simple model that consisted of two frequency-

tuned populations of neurons and a neuronal population that responds to the foot-shock. Our 

goal was to test whether this simple model could account for both the findings in this manuscript 

and from previous work, in particular: (1) Discriminability between CS+ and CS- in AC predicts 

learning specificity post-DFC (Fig 2-3); (2) Suppressing inhibition in AC leads to increased 

generalization (decreased learning specificity) post-DFC 12; (3) Suppressing AC post-DFC does 

not affect learning specificity 3,11.  
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In the model, we included two populations of frequency-tuned neurons (representing the 

medial geniculate body, MGB, and AC). MGB receives auditory inputs and projects to AC. Both 

populations project to basolateral amygdala (BLA). AC sends tonotopically organized feedback 

connections to MGB. During conditioning, the MGB neurons receive sound inputs and the 

neurons in the BLA are active during the foot-shock (Fig 7a). The weights from MGB and AC to 

BLA are updated according to a Delta learning rule (see Methods), that is, they are potentiated 

when both are co-activated (i.e. when the foot-shock coincides with the sound stimulus). We 

control the level of overlap in frequency tuning between neurons in AC, which difts over time27, 

and use it to represent frequency discriminability (more overlap = less discriminability). The 

activity of the BLA after weight update and with auditory input only is used as a measure of 

freezing. 

First , we first tested whether broad tuning in AC (low neuronal discriminability between CS+ 

and CS-) during conditioning produced more generalized freezing than sharp tuning (high 

neuronal discriminability). We found that increased overlap in frequency tuning in AC neurons, 

without changing the tuning of MGB neurons, drove more generalized freezing responses (Fig 

7b, S12). This is due to the fact that, when AC was broadly tuned, CS+ tone activated AC 

neurons not only responded to the CS+ frequency but also to other frequencies, such as the CS-

, albeit to a lesser extent. After learning, this resulted in strong AC to BLA synaptic weights that 

are not specific to CS+.  MGB is narrowly tuned in our model, but the weights from MGB to BLA 

were also strengthed in a non-specific fashion because AC projects back to MGB. Therefore, 

CS+ also activated non-specific neurons in MGB concurrently with the foot-shock. These results 

support the present findings (Fig 2, 3). Drift in the tuning properties of the neurons in the model 

led to the correlation between learning specificity and tuning width decreasing over time since 

conditioning, consistent with our finding that neural acticity post-DFC no longer predicts learning 

specificity (Fig 4). Second, we examined the effects of decreasing inhibition in the AC population 

during conditioning (Fig 7c, S13). Decreasing inhibition resulted in an increased overlap in 

frequency responses in the AC population, which in turn led to increased generalization, 

supporting previous findings and providing a mechanism12,33. Third, we tested the effects of 

inactivating AC during conditioning we found that learning specificity was reduced, consistent 

with the hypothesis that AC affects tone discrimination during DFC (Fig 7c, S14). Finally, we 

tested whether inactivating the auditory cortex following conditioning had an effect on freezing 

responses (Fig 7c, S15). Consistent with previous findings3,11, we did not observe a change in 
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fear generalization following AC inactivation. The broad or narrow tuning of AC neurons allowed 

for the synapses from MGB to BLA to be strengthened either narrowly or broadly during 

conditioning. Therefore, with suppression of AC during memory recall, the specialized versus 

generalized learning was preserved. 

 Combined, the model demonstrates that a simple anatomically consistent circuit supports 

multiple aspects of cortical control of fear conditioning identified here and in previous studies.  

    

Figure 7: A learning model reconciles present and past findings. (a) (left) connectivity 

between auditory cortex (AC, gray), medial geniculate body (MGB, orange) and basolateral 

amygdala (BLA, blue). (Right) Model connectivity. MGB receives auditory input and provides 

input to AC (orange lines), and both MGB and AC provide inputs to BLA (blue lines). AC feeds 

back to MGB (black lines). Colored circles represent neurons tuned to different, overlapping 

frequency ranges. (b) Normalized learning specificity output from the model with varying levels 

of AC discriminability, achieved by changing the frequency tuning overlap between the neurons 

in the AC population, 𝜎𝑐𝑡𝑥. Learning specificity was measured at two time points, immediately 

after DFC (black) and 104 time-steps later (blue). (c) Normalized learning specificity at two AC 

discriminability levels; fine (light blue) and broad (dark blue) tuning. Results are shown for 

learning specificity with no interventions, when inhibition is reduced in AC during DFC (analogue 

of when ArchT-transfected PV interneurons in AC are inactivated by optogenetics during DFC), 

when AC is inactivated during DFC (in the model), and when AC is inactivated during memory 
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recall (analogue of an injection of muscimol during memory recall; PV = parvalbumin positive 

interneurons, ArchT = Archaerhodopsin-T). 

Discussion 

Our results identify the role of the auditory cortex in differential fear learning: (1) Prior to fear 

learning, neuronal responses in AC shape fear learning specificity (Fig 2 & 3); (2) Following 

differential fear conditioning, neuronal response transformations are not correlated with fear 

learning specificity (Fig 5, Fig S8), and therefore the auditory cortex does not encode auditory 

differential fear memory; (3) Neuronal activity in AC post-DFC does not correlate with freezing 

behavior (Fig 4); (4) A simple model of the auditory nuclei and the basolateral amygdala could 

account for our results as well as a number of previous findings (Fig 7).  

Our finding that the neuronal activity prior to fear conditioning predicted specialization of fear 

learning provides a mechanism for the role of AC in differential fear memory acquisition 10–12,14,33. 

Specifically, inactivation of inhibitory neurons in the AC during fear conditioning led to increased 

generalization of fear learning with pure tones 12. Suppressing inhibitory neurons in the AC led 

to a decrease in Fisher information, which reflects the certainty about a stimulus in neuronal 

representation33. This change would likely result in a decrease in neuronal discriminability 

between the dangerous and safe tones in the AC, and therefore drive a increase in fear 

generalization, as demonstrated by our model (Fig 7). Our results provide the link between 

optogenetic inactivation of interneurons in AC leading to increased fear generalization, and to 

increased frequency tuning width12, which decreases neuronal discriminability.  

By using two-photon imaging to record from the same neurons over the course of differential 

fear conditioning, we were able to compute changes in both absolute and relative neuronal 

activity of a large number of identified neurons, a feat not normally achievable with 

electrophysiology17,19. Previous work found that changes in neuronal responses to the 

dangerous and safe stimuli after differential fear conditioning amplified the difference between 

the responses17,19. This change was proposed to represent fear memory15,19,29. We identified 

similar transformations in the normalized response functions of neurons that were tracked pre- 

to post-conditioning, we found an increased relative response to the CS+. However, these 

changes did not correlate with freezing behavior suggesting that the neuronal code in the AC 

after fear conditioning does not reflect differential fear memory. Indeed, a number of studies 

found that inactivating the auditory cortex after fear conditioning with pure tones does not affect 
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fear memory retrieval3,11 (but see14). Combined, our results restrict the role of auditory cortex in 

fear conditioning to pure tone differential fear memory acquisition, but not retrieval. 

If the increase in normalized response at CS+ is not related to fear memory, then why is 

there an increase in response? It could be reflective of increased attention caused by 

presentation of the CS+ and that the discrimination of the CS stimuli is unaffected by this effect34. 

Furthermore, changes in frequency map organization do not necessarily relate to changes in 

behavioral frequency discrimination of pure tones35,36, thus over-representation of the CS+ could 

be induced by learning but not necessary for discrimination learning. 

To locate our findings with previous work, we implemented a simple, anatomically 

accurate37,38 model with connections from auditory nuclei to the basolateral amygdala (Fig 7). 

The model demonstrated that (1) neuronal activity in cortex can predict subsequent learning 

specificity; that (2) inactivation of PV interneurons in AC during DFC leads to increased 

generalization12, and that (3) the auditory cortex is not necessary for differential fear memory 

retrieval3,11 and (4) that discrimination is still possible with AC inactive during conditioning but 

learning specificity is reduced. The model proposes that either MGB or AC or a combination of 

both can induce auditory fear memory through the strengthening of connections in the amygdala. 

We propose that feedback from auditory cortex to the MGB contributes to discrimination of 

perceptually similar pure tone stimuli during DFC by controlling stimulus discrimination in the 

MGB, this may or may not be a direct projection neuroanatomically37,39,40. Random drift accounts 

for the lack of correlation between neuronal tuning and learning specificity after conditioning27.  

Future studies need to explore the role of the MGB and specific projections between AC, MGB 

and BLA in fear learning and memory. It is likely that such an important behavioral modification 

as fear has redundant pathways to obtain the same behavioral outcomes11,41–43.  

Our results relied on tracking the neuronal responses in all transfected neurons in AC without 

distinguishing between different neuronal subtypes. Previous studies found that a specific class 

of inhibitory neuron increases activity with presentation of repeated tones18,26. It is therefore 

plausible that our results include a subset of neurons that function differently during fear 

conditioning but which we are unable to identify due to lack of selective labelling. Furthermore, 

we restricted our recordings to layers 2 and 3 of the auditory cortex, and it is possible our results 

overlook more specific changes in the thalamo-recipient layers of the cortex44,45. The complexity 

of transformations in the cortical microcircuit and between layers with learning can be explored 

further46–49. 
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The results of the study may be restricted to pure tone stimuli. We chose pure tone stimuli 

because these stimuli provide a well-defined axis (frequency) along which to vary stimulus 

discriminability and there is strong evidence to suggest auditory cortex modulates discrimination 

of pure tones35,50,51. Furthermore, in human subjects, AC encodes threat during DFC for pure 

tone stimuli 21. Our prior work has established that large frequency separation between CS+ and 

CS- results in uniform specificity of the fear response among subjects, whereas smaller 

frequency separation, such as the one used here, provides for a gradient of specificity across 

subjects3,12. Other studies have found that AC is not behaviorally relevant for discrimination 

between pure tones separated by large frequency distances11,13. However, when the frequencies 

were brought closer together, then manipulation of AC activity did affect behavior13. Therefore, 

it is unclear whether recent conclusions that AC is involved in processing of more complex stimuli 

and not pure tones are due to differences in complexity of the stimulus, or to the degree to which 

AC can discriminate these stimuli. Furthermore, the FM sweeps used in these studies are not 

necessarily more complex than pure-tones for AC processing. Indeed, neurons in the inferior 

colliculus, which is two synapses earlier than AC, differentiate between FM sweeps, e.g.52. 

Ultimately, the relevant aspect of the present study was the ability to measure how well neuronal 

ensembles differentiate between two stimuli. We achieved this by bringing CS+ and CS- close 

together in frequency, and we found that neuronal discriminability of the stimuli differs across 

mice and correlates with behavioral discriminability prior to DFC. We would not expect this result 

were the stimuli not relevant for AC. Furthermore, inactivation of AC during conditioning in the 

model led to a decrease in learning specificity (Fig 7). Future studies will dissect to what extent 

the differences in neuronal codes in AC shape differential fear learning of more complex and 

natural sounds and its role in other forms of learning13,36,53,54. 

Our results may be applicable to understanding anxiety disorders. An extreme example of 

fear generalization is realized in PTSD55. Here we find that the present state of each individual 

brain, in terms of neuronal discrimination of stimuli, is predictive of the future generalization of 

fear in the subject. This suggests that a way to prevent generalization of dangerous and safe 

sounds is to improve neuronal discrimination of potentially threatening stimuli56–59. Further work 

in this area can lead to a deeper understanding how genetic and social factors, as well early life 

experiences, shape the role of sensory cortex in this common and devastating disorder7,58. 

We identified a neuronal correlate for inter-individual differences in learning specificity. We 

found that the mammalian sensory cortex plays key role in stimulus discrimination during, but 
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not following, differential fear conditioning. These results reconcile several previous findings and 

suggest that the role of sensory cortex is more complex than previously thought. Investigating 

the changes in the cortico-amygdala circuit during fear learning will pave way for new findings 

on the mechanisms of learning and memory. 
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Online methods 

Mice 

All experimental procedures were in accordance with NIH guidelines and approved by the 

IACUC at the University of Pennsylvania. Mice were acquired from Jackson Laboratories (19 

male, 9 female; age 12 weeks, PV-Cre (4) [Stock No: 017320], CamKII-Cre mice (1) [Stock No: 

005359] or Cdh-23 mice (23) [Stock No: 018399]) and were housed in a room with a reversed 

light cycle. Experiments were carried out during the dark period. Mice were housed individually 

after the cranial window implant. 19 mice (13 males, 6 females) were in the conditioning group 

and 9 mice (6 males, 3 females) were in the pseudo-conditioned control group. 
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The Auditory Brainstem Response (ABR) to tone pips (4 – 32 kHz, 10 – 80 dB SPL) was 

acquired before or at the end of the experiment, when possible, in order to confirm that mice had 

thresholds for the stimuli at or below the presentation level (Fig S16). Mice with ABRs >70 dB 

were excluded from the study (N = 2).  

Euthanasia procedures were consistent with the recommendations of the American 

Veterinary Medical Association (AVMA) Guidelines on Euthanasia. 

Surgical procedures 

Mice were implanted with cranial windows over auditory cortex. Mean age of cranial window 

implant: 9.6 weeks [6.3 – 13.0 weeks]. Briefly, mice were anaesthetized with 1.5 – 3% isoflurane 

and a 3-mm circular craniotomy was performed over the left auditory cortex (stereotaxic 

coordinates) using a 3-mm biopsy punch centered over the stereotaxic coordinates of A1 (70% 

of the distance between bregma and lambda, 4.3 mm lateral to the midline). An adeno-

associated virus (AAV) vector encoding the calcium indicator GCaMP6s or GCaMP6m 

(AAV1.Syn.GCaMP6s.WPRE.SV40 or AAV1.Syn.GCaMP6m.WPRE.SV40, UPENN vector 

core) was injected (750 nl, ~1.89 x 10-12 genome copies.ml-1) at a 750µm depth from the surface 

of the brain at 60 nl min-1 for expression in layer 2/3 neurons in A1. 3 injections were made at 

the same lateral distance but separated by 0.5 mm in the anterior-posterior direction or 5 

injections were made spread across the window (0.3 – 0.5 mm apart). The injection needle was 

left in place for 10 mins after the injection was complete before retraction. Injections were made 

using a pump (Pump 11 Elite, Harvard Apparatus, USA)  and needles were pulled (P-97 Puller, 

Sutter Instruments, USA) glass pipettes (Harvard Apparatus, USA) with tip openings of 

30 – 50 µm. After injection, a circular 3-mm diameter glass coverslip (size 0 or 1, Warner 

Instruments) was placed in the craniotomy and fixed in place using a mix of cyanoacrylate glue 

and dental cement. A custom-made stainless-steel head-plate (eMachine Shop) was fixed to the 

skull using C&B Metabond dental cement (Parkell). The implant was further secured using black 

dental cement. Mice were allowed to recover for 3 days post-surgery.  

Behavioral training and testing 

Mice underwent a minimum of 4 imaging sessions (range: 4 – 11) prior to differential auditory 

fear conditioning (DFC). DFC and subsequent fear retrieval testing took place in two different 

contexts (A and B, discussed below). Before and after each conditioning or retrieval, we cleaned 
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the conditioning and testing chambers with either detergent (retrieval chamber) or 70% ethanol 

(conditioning chamber). We recorded a video of the mouse in the testing chamber using 

FreezeFrame 3 software (Coulbourn) at 3.75 Hz; the subsequent movement index (mean 

grayscale values of frame (n+1) minus the preceding frame (n)) was exported and analyzed 

offline using MATLAB. The threshold of movement was defined as the 12.5th percentile of the 

values from each session. The mouse was considered to be freezing if the movement index was 

below the threshold; the measure of freezing was expressed as a percentage of time spent 

freezing during stimulus presentation and for baseline during the 30s prior to stimulus onset. 

Stimuli were generated using FreezeFrame 3 and presented at 70 dB SPL from an 

electrostatic speaker (ES-1, TDT) mounted above the animal. DFC took place in context A (Fig 

1). Stimuli were 30 s in duration and were either a continuous pure tone (4 mice) or pulsed pure 

tones (500 ms duration at 1 Hz). The CS+ (15 kHz) was paired with a foot-shock (1 s, direct 

current, 0.7 mA, 10 pairings, inter-trial interval: 50 – 200 s) delivered through the floor of context 

A (by precision animal shocker, Coulbourn). The foot-shock either co-terminated with the 

continuous tone or the onset coincided with the final tone pulse of the CS+ stimuli. The CS- (11.4 

kHz) was presented after each CS+-foot-shock pairing but was not reinforced (10 presentations, 

inter-trial interval: 20 – 180 s). Fear memory retrieval sessions in context B followed each two-

photon imaging session after conditioning.  The CS+ and CS- were presented 4 times (30 s 

duration, interleaved, inter-trial interval: 30 – 180 s). For 4 mice, longer continuous presentations 

of the CS+ and CS- were presented (either 120 s, 1 mouse, or 60 s, 3 mice), for these mice, 

trials were divided into 4 equal durations and treated as above. In pseudo-conditioning, the foot-

shocks were presented interleaved between the stimuli in periods of silence. Baseline freezing 

consisted of an equal time of silence prior to tone onset. 

Conditioned mice that did not freeze either to CS+ or CS- were removed from subsequent 

analysis (two-way ANOVA for each mouse on freezing scores to CS+, CS- and baseline from all 

retrieval sessions (16 trials for each CS and 32 trials for baseline). Stimulus (CS+/CS-) and 

baseline (stimulus/no stimulus) were the independent variables. Learners were defined as those 

with significant effect of baseline or baseline*stimulus, p < .05). 6 mice (5 males, 1 female) were 

excluded from the study, leaving 15 conditioned mice (10 males, 5 females). 

For each mouse the learning specificity (LS, Equation 1 3) was calculated as: 
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𝐿𝑆 =  ∑ 𝑓𝑟𝐶𝑆+(𝑖)

𝑁

𝑖=1

𝑁⁄ −  ∑ 𝑓𝑟𝐶𝑆−(𝑖)

𝑁

𝑖=1

𝑁⁄  

Equation 1 

Where i is the trial index, 𝑓𝑟𝐶𝑆+/−(𝑖) is the fraction of time spent freezing during trial i in the 

CS+/- condition, respectively, and N is the number of trials per condition. 

Calcium imaging procedure and acoustic stimuli 

All imaging sessions were carried out inside a single-walled acoustic isolation booth 

(Industrial Acoustics). Mice were placed in the imaging setup, and the head plate was secured 

to a custom base (eMachine Shop) serving to immobilize the head. Mice were gradually 

habituated to head-fixing over 3 – 5 days, 3 – 4 weeks after surgery and before imaging 

commenced. Imaging took place in mice aged at the end of experiments  19.6 ± 2.5 weeks ± 

sem. 

We recorded changes in fluorescence of GCaMP6s/m caused by fluctuations in calcium 

concentration in transfected neurons of awake, head-fixed mice, using two-photon microscopy 

(Ultima in vivo multiphoton microscope, Bruker). We used a 16X Nikon objective with 0.8 

numerical aperture (Thorlabs, N16XLWD-PF). The laser (940 nm, Chameleon Ti-Sapphire) 

power at the brain surface was kept below 30 mW. Recordings were made at 512 x 512 pixels 

and 13-bit resolution at ~30 frames per second. 

Stimuli were generated at a sampling rate of 400 kHz using MATLAB (MathWorks, USA) 

and consisted of 100-ms long tone pips in the 5−32-kHz frequency range presented at 60 – 80 

dB SPL. In a single recording session, each frequency was repeated 15 – 30 times in a pseudo-

random order with a 4-s inter-stimulus interval.  

Cell tracking across imaging sessions. 

We imaged the activity from the same cells over 15 days in layers 2/3 of auditory cortex, 

using blood vessel architecture, depth from the surface, and the shape of cells to return to the 

same imaging site. To identify ROIs across imaging sessions that corresponded to the same 

cell, the maximum-projection fluorescence images from each day were registered by 

transforming the coordinates of landmarks present in both images in MATLAB (2017a) using the 

fitgeotrans function. The transformation was applied to ROIs from the second imaging session 
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to match the first – all subsequent sessions were aligned to the first imaging session. We next 

calculated the distance between all the pairs of centroids (mean x-y position of each ROI) across 

the two sessions; ROIs from the two sessions were then automatically registered as the same 

cell based on the nearest centroid. We then manually checked the shape and position of the 

ROIs for any pairs that had duplicate matches, <80% ROI overlap, or a larger than average 

distance between the centroid locations (>2 standard deviations). ROIs which were not matched 

to any earlier ROIs were counted as new cells. This process was repeated for subsequent 

sessions, registering the imaging field to the first session, and comparing the ROIs to the 

cumulative ROIs from previous sessions. A final manual inspection of all the unique ROIs was 

performed after all the imaging sessions were registered. ROIs that overlapped with each other 

extensively were excluded from the dataset since it was unclear whether they were the same or 

different cells. Examples of tracked cells and aligned ROIs are shown in Fig S1. 

Data analysis and statistical procedures 

Publicly available toolboxes22 running on MATLAB were used to register the two-photon 

images, select regions of interest (ROI), and estimate neuropil contamination, resulting in a 

neuropil-corrected fluorescence trace (F) for each neuron (F = trace - (neuropil*0.7)). This trace 

was low pass filtered (filter cut off at 7.5 Hz) to remove high frequency noise. From this filtered 

trace, we calculated the mean baseline fluorescence (Fbaseline) and standard deviation of the 

baseline (Fstd) over the one second prior to tone onset, and then determined the change in 

fluorescence over time relative to the mean baseline fluorescence (ΔF = F - Fbaseline) for each 

sound presentation. We then divided ΔF by Fstd, effectively calculating the z-score of the 

fluorescence response relative to the baseline (ΔF/Fstd) for each sound presentation.  

The response to each tone was defined as the mean ΔF/Fstd over 2 seconds following tone 

onset. Neurons were deemed sound responsive if at least one of the frequency responses was 

different from zero (t-test, p < 0.05, corrected for multiple comparisons using false discovery rate 

60,61). The frequency response function was defined as the mean response to each tone 

frequency across repeats. Best frequency was defined as the frequency with the highest mean 

response. Sparseness (S, Equation 230,31) was used to estimate the sharpness of response 

functions, with 1 being very sharply tuned and 0 being an equal response to each tone frequency: 

𝑎 =  
((∑ 𝑟𝑖) 𝑁⁄ )2

∑(𝑟𝑖
2 𝑁⁄ )

,     𝑆 =  
1 − 𝑎

1 −  1 𝑁⁄
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Equation 2 

where ri is the mean response to the frequency i and N is the total number of frequencies 

tested.  

The Z-scored difference between responses to CS+ and CS- (Zdiff, Equation 3) was 

calculated for each neuron using the following equation: 

𝑍𝑑𝑖𝑓𝑓 =  ||
∑ 𝑟𝐶𝑆+ 𝑁⁄ − ∑ 𝑟𝐶𝑆− 𝑁⁄

√(𝜎𝑟𝐶𝑆+ ∙ 𝜎𝑟𝐶𝑆−)

|| 

Equation 3 

where rCS+/CS- is the single trial mean responses (mean ΔF/Fstd over 2 s post-stimulus onset) 

to CS+ and CS- respectively, N is the number of repeats of each stimulus and σ is the standard 

deviation of mean responses. The Zdiff score was considered significant if the actual Zdiff was 

larger than the 95th percentile of the distribution of Zdiff scores calculated with shuffled the 

CS+/CS- response labels 250 times. For mice not tested under the two-photon directly with the 

CS+ or CS-, the data were linearly interpolated to estimate responses at CS- and CS+. We used 

average Zdiff across pre-DFC sessions of learner mice to test whether there was a difference 

between using GCaMP6s (6/23) and GCaMP6m (17/23). We found no difference (unpaired t-

test, t(21) = 1.04, p = .309) between the mean Zdiff scores of the two groups of mice and thus we 

have analyzed them together. 

For fitting the Support Vector Machine, we used MATLAB’s fitcsvm function with a Linear 

kernel and 10-fold cross-validation to predict the learning specificity based on the standardized 

single-trial population responses (mean ΔF/Fstd over 2 s post-stimulus onset for each neuron).  

We calculated the confidence intervals of correlations using a bootstrap procedure, 

resampling, with replacement, the data 1000 times, and computing the Pearson’s correlation 

between the resampled data. We defined the 95% confidence limits of the correlation coefficient 

(ρ) as the 2.5th and 97.5th percentiles of the resulting distribution of correlation coefficients. In 

order to assess whether two correlations were significantly different from one another we 

subtracted the bootstrapped ρ distributions of each dataset from one another, the change in ρ 

was considered significant if 95% CI of the difference-distribution did not overlap with zero. 
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To compare results between testing groups (conditioned/pseudo-conditioned) we used two-

way repeated measures ANOVAs, linear regressions, and linear mixed-effects models with the 

relevant variables (see Table S1-3).  

For mice that were not tested at 11.4 and 15 kHz under the two-photon microscope (4 

conditioned mice) responses were linearly interpolated from the frequency response functions 

pre- and post-DFC. For cells present in more than one session either pre- or post-DFC, the 

frequency response curves from each session were averaged and the changes in response were 

assessed from the mean across pre- and post-DFC sessions. Sparseness and best frequency 

were calculated from the mean responses across sessions. Zdiff scores were also averaged 

across neurons responsive in multiple sessions pre- and post-DFC. For comparing the 

fluorescence traces of responses (Fig S7d-g), for the 4 mice not tested directly at CS+ and CS-

, the nearest frequencies were used. 

Confirming anatomical location of recording 

Upon conclusion of the imaging sessions, we removed the windows of the mice and injected 

a red fluorescent marker (Red Retrobeads, CTB or AAV5.CAG.hChR2(H134R)-

mCherry.WPRE.SV40 (mCherry)) into the site of imaging as identified by blood vessel patterns. 

Briefly, we anaesthetized mice with 1.5 – 3% isoflurane and used a drill (Dremel) to remove the 

dental cement holding the window in place. We removed the glass window and injected the red 

marker into the imaging site (Red Retrobeads: 250 nl, CTB: 500 nl (0.5%), mCherry: 500 nl) 

using a glass pipette (tip diameter: 40 – 50 µm) at 60 nl min-1. Following the injection, we covered 

the exposed brain with silicon (Kwik-Sil, World Precision Instruments) and then coated it with 

dental cement. After allowing time for retrograde transport (retrobeads and CTB: 1 week) or viral 

transfection and expression (mCherry: 3 weeks) mice were deeply anesthetized with a mixture 

of Dexmedatomidine (3 mg/kg) and Ketamine (300 mg/kg) and brains were extracted following 

perfusion in 0.01 M phosphate buffer pH 7.4 (PBS) and 4% paraformaldehyde (PFA). They were 

further fixed in PFA overnight and cryopreserved in 30% sucrose solution for 2 days before 

slicing. The location of imaging was confirmed through fluorescent imaging (Fig S2). For 

Retrobeads and CTB, the injection site was clear as a very bright injection site, for mCherry, 

expression levels were measured across the AC and the site of imaging was assumed to be the 

section with the strongest expression/brightest red. The identified sections were cross-

referenced with the Allen Institute Mouse Brain Atlas using freely available software 62.  
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Model 

Neuron model and network 

We simulated cortical neuronal populations, MGB populations and a BLA neuronal 

population in a rate-based description of neuronal activity. We simulated 𝑁 = 10 MGB 

populations. Each MGB population receives 𝑁 = 10 inputs 𝑥𝑖
𝑀𝐺𝐵, i = 1..N. To model the fact that 

neighboring inputs are correlated, we generated the inputs 𝑥𝑖 assuming that they each have a 

similar tuning to stimuli. These stimuli were modeled as 10 time-dependent activities 𝑠𝑗(𝑡) (which 

corresponded to a sound amplitude at a given frequency, 𝑗). The activity of input 𝑖 was calculated 

by a sum of the stimulus channels, weighted with tuning strengths 𝑥𝑀𝐺𝐵
𝑖(𝑡) =  ∑ 𝑇𝑀𝐺𝐵

𝑖𝑗 𝑠𝑗(𝑡) +𝑗

𝑥𝑐𝑡𝑥
𝑗(𝑡). The input tuning was Gaussian: 𝑇𝑀𝐺𝐵

𝑖𝑗 = [𝑒
−

(𝑖−𝑗)2

2𝜎𝑀𝐺𝐵]
+

 for 𝑖 and 𝑗 going from 1 to 10. 

[. ]+ means that negative values are set to zeros. The term 𝑥𝑐𝑥𝑡 corresponds to the direct cortical 

feedback. The parameter 𝜎𝑀𝐺𝐵  regulated how broad the population response is to the sound. In 

the model, we assumed that MGB neuronal populations always have a small overlap in neuronal 

responses (𝜎𝑀𝐺𝐵 = 0.8).  

Similarly, we simulated 𝑁 = 10 cortical populations as 𝑥𝑐𝑡𝑥
𝑖(𝑡) =  ∑ 𝑇𝑐𝑡𝑥

𝑖𝑗𝑥𝑀𝐺𝐵
𝑗(𝑡)𝑗 . The 

input tuning was also Gaussian: 𝑇𝑐𝑡𝑥
𝑖𝑗 =

1

1.8
[𝑒

−
(𝑖−𝑗)2

2𝜎𝑐𝑡𝑥 −  𝐼𝑐𝑡𝑥]
+

for i and j from 1 to 10. 𝐼𝑐𝑡𝑥 = 0.9 

was a broad inhibitory term.  

In the simulations, we tested for two different values of initial 𝜎𝑐𝑡𝑥; one corresponding to 

narrow tuning with a small overlap (𝜎𝑐𝑡𝑥
 = 3), and one corresponding to broad tuning with a large 

overlap (𝜎𝑐𝑡𝑥
 = 10). (Note that 𝜎𝑀𝐺𝐵

 = 0.8 was equivalent to 𝜎𝑐𝑡𝑥
 = 3 since we did not model MGB 

inhibition here, 𝐼𝑀𝐺𝐵
 = 0). To avoid boundary effects, we had a circular boundary condition of the 

10 inputs, meaning that input 1 and input 10 are neighbors. We also assumed that the tuning 

𝜎𝑐𝑡𝑥 would drift over time. Specifically, at every time step, we added a uniform random noise 

between -0.25 and 0.25 to 𝜎𝑐𝑡𝑥 . 𝜎𝑐𝑡𝑥 was bounded between 4 and 20.  

Finally, we simulated one population in the BLA. It received inputs from both cortical and 

MGB populations, i.e., 𝑦 =  𝑤𝑀𝐺𝐵𝑥𝑀𝐺𝐵 +  𝑤𝑐𝑡𝑥𝑥𝑐𝑡𝑥, where 𝑤𝑀𝐺𝐵
 are the weights from MGB 

neurons to the BLA neurons, and 𝑤𝑐𝑡𝑥 are the weights from cortical neurons to the BLA. 
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Normalized freezing response was computed as the activity after the fear conditioning paradigm 

(see below) normalized by the maximal activity (i.e., when the weights are all 1). 

Modelling fear conditioning paradigm and interventions  

During the fear conditioning training to simulate a CS- tone, we set (channel number 6) 𝑠6 =

1, all the other inputs to zero, and a CS+ we set (channel number 3) 𝑠3 = 1, all the other inputs 

to zero. In addition, we paired it with a shock (e = 1 if there is a shock, e = 0 otherwise). The 

synaptic weights were plastic under the following rules: ∆𝑤𝑐𝑡𝑥/𝑀𝐺𝐵
𝑖 =  𝛼𝑥𝑐𝑡𝑥/𝑀𝐺𝐵

𝑖𝑒, where 𝛼 = 

0.1 is the learning rate. This is analogous to the standard Delta rule. The weights were bound 

between 0 and 1 and are initialized at 0.1. We simulated the fear conditioning for 10 time-steps 

[arbitrary time] and spontaneous dynamics with tuning 𝜎𝑐𝑡𝑥 drift for another 10000 time steps. 

To simulate optogenetic inactivation of PV neurons in AC 12, which decreases inhibition in AC, 

we lowered inhibition in AC by setting 𝐼𝑐𝑡𝑥 = 0.45 (half the ‘normal’ level), the maximum 

freezing was computed with the original inhibitory term intact (𝐼𝑐𝑡𝑥 = 0.9). To simulate 

pharmacological inactivation of AC during memory recall (after learning), we tested the behavior 

of the model with AC inactivation by setting 𝑥𝑖
𝑐𝑡𝑥 = 0 during the BLA simulation protocol. 

References 

Recent work in several fields of science has identified a bias in citation practices such that 

papers from women and other minority scholars are under-cited relative to the number of such 

papers in the field 63–67. Here we sought to proactively consider choosing references that reflect 

the diversity of the field in thought, form of contribution, gender, race, ethnicity, and other factors. 

First, we obtained the predicted gender of the first and last author of each reference by using 

databases that store the probability of a first name being carried by a woman 67,68. By this 

measure (and excluding self-citations to the first and last authors of our current paper), our 

references contain 12.21% woman(first)/woman(last), 3.15% man/woman, 27.0% woman/man, 

and 57.64% man/man. This method is limited in that a) names, pronouns, and social media 

profiles used to construct the databases may not, in every case, be indicative of gender identity 

and b) it cannot account for intersex, non-binary, or transgender people. Second, we obtained 

predicted racial/ethnic category of the first and last author of each reference by databases that 

store the probability of a first and last name being carried by an author of color 69,70. By this 

measure (and excluding self-citations), our references contain 10.02% author of color 

(first)/author of color(last), 14.31% white author/author of color, 14.22% author of color/white 
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author, and 61.45% white author/white author. This method is limited in that a) names and Florida 

Voter Data to make the predictions may not be indicative of racial/ethnic identity, and b) it cannot 

account for Indigenous and mixed-race authors, or those who may face differential biases due 

to the ambiguous racialization or ethnicization of their names.  We look forward to future work 

that could help us to better understand how to support equitable practices in science. 

Supplemental Information (16 figures and 3 tables) 

Figure S1: Longitudinal two-photon imaging tracks activity of neurons over weeks. 

Figure S2: Location of imaging site example. 

Figure S3: Mean freezing to CS+ and CS- and learning specificity across sessions. 

Figure S4: Mean response to CS+ or CS- does not predict learning specificity 

Figure S5: Relationship between Zdiff and best frequency distributions and anatomical 

location. 

Figure S6: Changes in neuronal discrimination between imaging sessions. 

Figure S7: Changes in frequency response after conditioning  

Figure S8: Changes in normalized responses and normalized responses post-DFC do not 

correlate with learning specificity. 

Figure S9: Changes in neuronal discriminability negatively correlate with learning specificity.   

Figure S10: Effects of best frequency distributions on changes in response post-DFC. 

Figure S11: Effects of region of sampling on changes in response post-DFC and prediction 

of learning specificity. 

Figure S12: Model schematic. 

Figure S13: Model schematic with PV inactivation of AC during DFC. 

Figure S14: Model schematic with AC inactivation during DFC.   

Figure S15: Model schematic with AC inactivation during memory recall. 

Figure S16: Auditory Brainstem Responses. 

Table S1: Statistics for all figures. 

Table S2: Statistics comparing normalized responses at CS+, CS- and CSc. 
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Table S3: Statistics comparing absolute normalized responses at CS+, CS- and CSc. 
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Figure S1: Longitudinal two-photon imaging tracks activity of neurons over weeks. (a) 

Two-photon imaging field of view with regions of interest corresponding to individual neurons 

(yellow outline, N = 350). Scale bar = 100 µm. (b) Cell outlines from a indicating cells not 

responsive to the stimuli (light gray), cells responsive to tones (dark gray, t-test against zero, 

p < .05, corrected for multiple comparisons using Holm–Bonferroni method) but not frequency 

tuned and frequency-tuned cells (colored according to frequency tuning, significantly responsive 

and one-way ANOVA, p < .05). Color bar indicates best frequency of each tuned neuron. (c) Part 

of a raw fluorescence trace (black) for an example frequency-tuned neuron with tone pip 

presentation times overlaid in color (vertical lines). The color of the vertical lines corresponds to 

the frequency of the tone pip presented – colors as in b. (d) Responses of neuron in c with single-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2021. ; https://doi.org/10.1101/2020.06.02.128702doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.128702
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 
 

trial responses (gray, n = 25 for each frequency) and the mean response (black). Dashed lines 

= tone pip onsets. (e) Mean response (from tone onset to 2 s after tone onset) across trials at 

each frequency of neuron in c-d. This neuron has a best frequency (B.F.) of 6.1 kHz. (f) 

Distribution of best frequencies of responsive cells recorded 24 hours pre-DFC (N = 1203, mice 

= 26). (g) Distribution of sparseness of  responsive cells recorded in f. (h) Smoothed best 

frequency distributions 71 for each mouse pre-DFC ordered by anatomical location of the imaging 

window from anterior (A) to posterior (P). Black dashes indicate the median best frequency. (i) 

Field of view from two imaging sessions from the same mouse (maximum intensity projections), 

15 days apart (left and middle) with ROIs tracked between the two sessions outlined in cyan and 

magenta. The right panel shows the ROIs from the two sessions overlaid. Scale bar = 100 µm. 

(j) Frequency responses of a representative cell over the 8 sessions of the experiment. Cell is 

shown outlined (cyan line). Scale bar = 25 µm. Error bars = standard error of the mean (sem) 
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Figure S2: Location of imaging site example. (a) Upon completion of the experiments, the 

cranial window was removed, and a red indicator injected into the imaging site. The brains were 

fixed and sectioned at 40µm. We applied DAPI to reveal cell nuclei. This stain was used to align 

the section with the red indicator injection site (white arrows) with the mouse brain atlas 

(magenta outline). The red channel reveals the site of injection (Retrobeads) and is aligned with 

strong GCaMP6m/s expression (GCaMP). (b) Using the red injection sites as markers for the 
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location of the imaging windows, the brain sections were aligned with the mouse brain atlas 72 

to obtain the anterior-posterior location of the imaging windows relative to bregma and the field 

of auditory cortex imaged from. The center of the imaging field of view on the surface of the brain 

of conditioned (yellow) and pseudo-conditioned (blue) mice (N = 26/28) is indicated on the 

mouse brain atlas adapted from. The left stack of sections contains the MGB and the more 

anterior right-hand stack of sections does not contain the MGB Franklin & Paxinos, 3rd edition 

Mouse brain atlas. (c) For two mice, the red injection failed, and we used the widefield imaging 

to locate the imaging field of view. The figure shows an example widefield result. Thresholded 

responses to low (5 kHz, blue), medium (15 kHz, green) and high (30 kHz, red) tones of each 

pixel are indicated by the shaded regions. The pattern of responses allowed us to estimate the 

locations of the auditory fields using 73 as a guide. A1 – primary auditory cortex, VPAF – ventral 

posterior auditory field, SRAF – suprarhinal auditory field, AAF – anterior auditory field. Arrows 

indicate tonotopic gradients from low (L) to high (H) frequency. 
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Figure S3: Mean freezing to CS+ and CS- and learning specificity across sessions. (a) 

Mean freezing across all 4 retrieval sessions at baseline (gray) and in response to CS+ (pink) 

and CS- (blue) for all mice. Learners (N = 14) showed a significant difference from baseline 

freezing in (baseline vs non-baseline) while non-learners (N = 5) did not (see Methods). Non-

learners were subsequently excluded from further analysis. Pseudo-conditioned mice N = 9. 

Gray lines indicate individual mice. (b) Mean learning specificity in each retrieval session for 

conditioned mice. Gray lines show individual mice. (c) Same as b for pseudo-conditioned mice. 

(d) Mean learning specificity across all 4 retrieval sessions for conditioned (gray) and pseudo-

conditioned mice (red). Circles show individual mice. Error bars in a-d show standard error of 

the mean. 
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Figure S4: Mean response to CS+ or CS- does not predict learning specificity. (a) 

Responses to CS+ and CS- of responsive cells were averaged in each session and across the 

4 pre-DFC imaging sessions (1-4). These mean responses were compared with the learning 

specificity from the retrieval session (1) 24 hours post-DFC. (b) Learning specificity of 

conditioned mice (N = 14) plotted against the mean response to CS- across the 4 pre-DFC 

imaging sessions. The line shows the linear best fit. Error bars represent standard error of the 

mean. Statistics: Spearman’s correlation. (c) Same as b but for responses to CS+.  
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Figure S5: Relationship between Zdiff and best frequency distributions and anatomical 

location. (a) Number of responsive neurons with significant Zdiff and Zdiff of responsive neurons 

was averaged in each session and across sessions for each mouse. Relationship between the 

distance from bregma of the imaging field of view and the mean Zdiff scores of conditioned (black 

circles) and pseudo-conditioned mice (red diamonds) across pre-DFC sessions. (c) Relationship 

between the distance from bregma of the imaging field of view and the % of significant Zdiff scores 

across pre-DFC sessions. (d) Relationship between mean best frequency of responsive units in 

the imaging field of view and the mean Zdiff scores across pre-DFC sessions. (e) Relationship 

between mean best frequency of responsive units in the imaging field of view and the % of 

significant Zdiff scores across pre-DFC sessions. (f) Relationship between the mean % of 

significant Zdiff scores in the imaging field of view across pre-DFC sessions and the learning 

specificity from retrieval session 1 for conditioned mice. (g) Relationship between mean Zdiff 

across tracked pre-DFC sessions for each neuron and best frequency. Grey bars show median 

Zdiff ± sem. Statistics: Spearman’s rank correlation.  
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Figure S6: Changes in neuronal discrimination between imaging sessions. (a) The 

SVM was trained with data of neurons tracked between a pair of sessions from one of the 

sessions. The SVM was subsequently with data left out from that training set (10-fold cross 

validation) and with the same number of trials from the left-out neurons using the testing set. 

This was repeated across all pairs of imaging sessions. These graphs show the difference in 

performance between the training and the testing sets for each pair of imaging sessions. (b) The 

relationship between the difference in performance from a and the number of sessions between 
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each pair in the forward direction (upper triangle outlined in a). Black lines show best linear fit. 

(c) The difference in Zdiff between neurons tracked between pairs of imaging sessions for 

conditioned and pseudo-conditioned mice. (d) The relationship between difference in Zdiff and 

number of sessions between each pair in the forward direction (upper triangle outlined in c). (e) 

Similarity of the Zdiff scores of neurons tracked between pairs of sessions were assessed using 

Pearson correlation (ρ). The panels show the similarity between each pair of sessions averaged 

across conditioned (left) and pseudo-conditioned mice (right). Black lines show best linear fit. 

Statistics: Spearman’s rank correlation, †p < 0.1, *p < .05, **p < .01, ***p < 0.001, n.s.p > .05.   
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Figure S7: Changes in frequency response after conditioning. (a) Normalized frequency 

response curves of all neurons responsive at least once pre-DFC (imaging sessions 1-4) and 

once post-DFC (imaging sessions 5-8). Responses from neurons present in more than one 

session pre- or post-DFC are averaged together. Neurons are ordered according to their best 

frequency and secondarily by sparseness. The grey bars indicate the identity of each neuron 

pre- and post-DFC. The bars indicate the neurons with CS- (cyan) and CS+ (magenta) best 
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frequencies. (b) (Upper panel) The mean frequency response curve of all responsive neurons 

(not normalized) pre- and post-DFC. (Lower panel) Change in frequency response curve across 

responsive all neurons. (c) Same as b for pseudo-conditioned mice. Statistics: paired t-test, p-

values corrected for multiple comparisons by false-discovery rate. (d) Mean CS+-responses 

ordered by magnitude from conditioned mice (N = 14 mice) pre-DFC (left) and post-DFC (right). 

The grey bars indicate the identity of each neuron pre- and post-DFC. Red lines indicate the 

upper and lower 20th percentiles. (e) Mean responses to CS+ and CS- of the upper and lower 

quartile of neurons ordered by response magnitude in d. (f) Same as d but for responses to CS+ 

from pseudo-conditioned mice. (g) Same as e but for responses to the CS+ and CS- in pseudo-

conditioned mice. 2-way ANOVA with Tukey’s multiple comparisons test. Data are shown as 

mean ± SEM. See Tables S14, S15, S17 & S18 for full statistical results. †p < 0.1, *p < 0.05, **p 

< 0.01, ***p < 0.001, n.s.p > 0.10.  
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Figure S8: Changes in normalized responses and normalized responses post-DFC do not 

correlate with learning specificity. (a) Cells included were responsive in at least one imaging 

session pre- (sessions 1-4) and post-DFC (sessions 5-8). (b) Change in normalized response 

magnitude to CS+ post-DFC against mean learning specificity across retrieval sessions 1-4. 

Magenta line represents the best linear fit. (c) Same as b but for change in response to CS-. (d) 

Same as b but for change in difference between CS+ and CS-. (e) Normalized response 

magnitude to CS+ post-DFC against mean learning specificity across retrieval sessions 1-4. 

Magenta line represents the best linear fit. (f) Same as e but for response to CS-. (g) Same as 

e but for difference in normalized response magnitude between CS+ and CS-. Statistics: 

Spearman’s correlation (N = 14). Data are shown as mean ± sem.  
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Figure S9: Changes in neuronal discriminability negatively correlate with learning 

specificity. (a) Change in neuronal discriminability was calculated as the difference between 

the mean discriminability across pre-DFC imaging sessions (1-4) and the mean discriminability 

across post-DFC imaging sessions (5-8). Change in Zdiff from pre- to post-DFC against mean 

learning specificity post-DFC (retrieval sessions 1-4). Black line represents the best linear fit. (b) 

Same as a but for change in SVM performance. Data are shown as mean ± sem. Statistics: 

Spearman’s correlation. †p < 0.1, *p < .05, **p < .01, ***p < 0.001, n.s.p > 0.10. 
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Figure S10: Effects of best frequency distributions on changes in response post-DFC. (a) 

The minimum number of neurons with best frequency at each tested frequency pre-DFC (n = 

32) across conditioned and pseudo-conditioned mice was resampled with replacement (x250) 

from populations of neurons with best frequency at each frequency in conditioned and pseudo-

conditioned mice. This had the effect to normalize the pre-DFC frequency distributions across 

neurons from the conditioned and pseudo-conditioned mice. The top panels show the mean  

normalized responses pre- (blue) and post-DFC (orange) for conditioned and pseudo-

conditioned mice. The bottom panels show the % change in normalized response for the two 

groups. (b) Mean distance of the best frequency from CS+ pre- and post-DFC, using the same 
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resampling as in a. (c) Sparseness of frequency tuning pre- and post-DFC, using the same 

resampling as in a. (d) Mean best frequency distributions post-DFC of the resampled neurons 

from a for conditioned (top) and pseudo-conditioned (middle) mice. The pre-DFC distribution is 

indicated by the blue line.  The bottom panel shows the difference between the post-DFC best 

frequency distributions of the conditioned and pseudo-conditioned mice.  

Significance p-values indicate the percentile of the shuffled distributions at which zero 

occurred for the difference between the pre- and post-DFC for each frequency (a), distance of 

best frequency from CS+ (b) and sparseness (c). Error bars in all panels: ± sd of resampled 

data. 
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Figure S11: Effects of region of sampling on changes in response post-DFC and 

prediction of learning specificity. (a) The minimum number of neurons with best frequency at 

each tested frequency pre-DFC (n = 16) across conditioned mice with imaging regions in putative 

A1 or AAF was resampled with replacement (x250) from populations of neurons with best 

frequency at each frequency. This had the effect to normalize the pre-DFC frequency 

distributions across neurons from imaging windows in A1 or AAF. The top panels show the mean 

normalized responses pre- (blue) and post-DFC (orange) for A1 and AAF in conditioned mice. 

The bottom panels show the % change in normalized response for the two groups. (b) Mean 

distance of the best frequency from CS+ pre- and post-DFC, using the same resampling as in 

a. (c) Relationship between mean Zdiff (± sem) across pre-DFC imaging sessions (1-4) and 

learning specificity (± sem) in retrieval session 1 for conditioned mice with imaging regions in 

putative A1 (black) and AAF (blue). (d) Relationship between mean SVM performance across 

pre-DFC imaging sessions (1-4) and learning specificity (± sem) in retrieval session 1 for 

conditioned mice with imaging regions in putative A1 (black) and AAF (blue). (e) Change in mean 
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Zdiff (± sem) from pre- to post-DFC for conditioned mice with imaging regions in A1 and AAF. (f) 

Relationship between change in normalized response at CS+ (± sd) and mean learning 

specificity (± sem) post-DFC (retrieval sessions 1-4). Significance p-values in a and b indicate 

the percentile of the shuffled distributions at which zero occurred for the difference between the 

pre- and post-DFC for each frequency (a) and distance of best frequency from CS+. Error bars 

in a and b: ± sd of resampled data from a.  
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Figure S12: Model schematic. The stages of the model are outlined with narrow tuning in AC 

(high discriminability, left column) and broad tuning (low discriminability, right column). (a) 

Activation of projections during DFC. MGB is narrowly tuned and provides input to AC (orange 

connections). Feedback from AC to MGB (black connections) is narrow or broad depending upon 

the tuning width of AC, e.g. in different subjects. A foot-shock (lightning shape) is delivered 

simultaneously with the CS+ (magenta) and activates the BLA. CS- (cyan) is presented alone 

and there is no activation of BLA. The weights of the connections between AC and BLA, and 

MGB and BLA are strengthened depending on their co-activation of BLA. Feedback connections 
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from AC help to strengthen the MGB projections to BLA. Connections with increased weights 

are shown as larger circles. (b) During memory recall, with narrow AC tuning, CS+ stimulus 

activates consolidated connections, thus activating BLA, whereas the CS- does not. With broad 

AC tuning, both CS+ and CS- activate consolidated connections, leading to BLA activation with 

both stimuli. (c) The normalized freezing output of the model (relative levels of BLA activation). 

Broad tuning leads to increased levels of fear generalization. 
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Figure S13: Model schematic with PV inactivation of AC during DFC. The process of the 

model is the same as Fig. S9. PV inactivation is modeled by lowering cortical inhibition. It 

effectively increases the tuning width of AC tuning (therefore lower discrimination in AC). 

Following activation (a), AC tuning is returned to its original narrow and broad tuning (as in Fig 

S11). Even with narrow tuning, CS- now activates strengthened AC-BLA and MGB-BLA 

connections (b, left panel) leading to increased fear generalization (C, left panel) compared with 

no PV inactivation (Fig S11). With broad tuning, both CS+ and CS- activate many strengthened 
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AC-BLA and MGB-BLA connections (b, right panel) leading to high levels of fear generalization 

compared with no PV inactivation (c, right panel).  
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Figure S14: Model schematic with AC inactivation during DFC. The process of the model is 

the same as Fig. S9. AC inactivation is modeled by setting cortical currents to zero during the 

conditioning phase. Following inactivation (a), AC tuning is returned to its original narrow and 

broad tuning (as in Fig. S11). (b) Schematic of recall with AC active. (c) Freezing to CS+ and 

CS- presentations during recall. Although freezing is lower in general, there is still discrimination 

in both cases but much lower than when AC is active throughout. 
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Figure S15: Model schematic with AC inactivation during memory recall. Activation and 

consolidation during DFC are the same as Fig S11. (a) shows activation of MBG and BLA without 

the presence of AC. With broad tuning, CS- still activated strengthened MGB-BLA connections 

thus increasing BLA activation. (b) Results of freezing during memory recall are very similar to 

when there are no interventions (Fig. S11). 
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Figure S16: Auditory Brainstem Responses. (a) Example ABR responses to 5 frequencies 

presented at 7 different levels. (b) Relationship between age at ABR threshold measurement 

and threshold (mean of frequencies closest to CS+ and CS-). Mice with threshold greater than 

70dB (red) were excluded from the study. (c) Relationship between age at the last imaging 

session and learning specificity. Black lines in b and c are best linear fits. Statistics: Spearman’s 

rank correlation. 
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