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Abstract  14 

Accurate prediction of protein structure is fundamentally important to understand biological 15 

function of proteins. Template-based modeling, including protein threading and homology 16 

modeling, is a popular method for protein tertiary structure prediction. However, accurate 17 

template-query alignment and template selection are still very challenging, especially for the 18 

proteins with only distant homologs available. We propose a new template-based modelling 19 

method called ThreaderAI to improve protein tertiary structure prediction. ThreaderAI 20 

formulates the task of aligning query sequence with template as the classical pixel classification 21 

problem in computer vision and naturally applies deep residual neural network in prediction. 22 

ThreaderAI first employs deep learning to predict residue-residue aligning probability matrix by 23 

integrating sequence profile, predicted sequential structural features, and predicted residue-24 

residue contacts, and then builds template-query alignment by applying a dynamic programming 25 

algorithm on the probability matrix. We evaluated our methods both in generating accurate 26 

template-query alignment and protein threading. Experimental results show that ThreaderAI 27 

outperforms currently popular template-based modelling methods HHpred, CNFpred, and the 28 

latest contact-assisted method CEthreader, especially on the proteins that do not have close 29 

homologs with known structures. In particular, in terms of alignment accuracy measured with 30 

TM-score, ThreaderAI outperforms HHpred, CNFpred, and CEthreader by 56%, 13%, and 11%, 31 

respectively, on template-query pairs at the similarity of fold level from SCOPe data. And on 32 

CASP13’s TBM-hard data, ThreaderAI outperforms HHpred, CNFpred, and CEthreader by 16%, 33 
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9% and 8% in terms of TM-score, respectively. These results demonstrate that with the help of 34 

deep learning, ThreaderAI can significantly improve the accuracy of template-based structure 35 

prediction, especially for distant-homology proteins. 36 

 37 

Availability: https://github.com/ShenLab/ThreaderAI  38 

 39 

Keywords: protein structure prediction · protein threading · deep learning · deep residual neural 40 

network  41 

 42 

1 Introduction  43 

Protein structure is fundamentally important to understand protein functions. Computational 44 

protein structure prediction remains one of the most challenging problems in structural 45 

bioinformatics. Recent progress in protein structure prediction showed that with the help of deep 46 

learning, it’s possible for free modelling (FM) methods to generate fold-level accuracy models of 47 

proteins lacking homologs in protein structure library1-4. Meanwhile, as both  48 

protein sequence and structure databases expand, template-based modelling (TBM) methods 49 

remain to be very popular and useful5-7 for the proteins with homologs available in protein 50 

structure library. TBM method predicts the structure of query protein by modifying the structural 51 

framework of its homologous protein with known structure in accordance with template-query 52 

alignment. The quality of TBM prediction critically relies on template-query alignment and 53 

template selection. It remains to be very challenging for TBM methods to predict structures 54 

accurately when only remote homologs which are conserved in structure but share low sequence 55 

similarity with query are available in structure library5-7.  56 

 57 

The model accuracy of TBM method critically depends on protein features and the scoring 58 

functions that integrate these features. For protein features, sequence profiles, and protein 59 

secondary structures are widely used by exiting popular TBM methods such as HHpred8, 60 

CNFpred9, and Sparks-X10. As a result of recent progress in residue-residue contact prediction, 61 

contact information has been integrated by several recently developed methods such as 62 

DeepThreader5, CEthreader6, and EigenThreader11. For scoring functions, HHpred, Sparks-X, 63 

CEthreader, and several other methods used linear functions, while non-linear models such as 64 
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Random Forest model in Boost-Threader12 and one-layer dense neural network in CNFpred have 65 

shown their advantages over linear models. Inspired by the success of non-linear models in TBM 66 

methods, we would like to study if we can improve TBM methods’ model accuracy using more 67 

advanced neural network architecture such as deep residual network which has proven very 68 

successful in protein residue-residue contacts prediction.  69 

 70 

In this paper, we present a new method, called ThreaderAI, which uses a deep residual neural 71 

network to perform template-query alignment. More specifically, we formulate template-query 72 

alignment problem as the classical pixel classification problem in computation vision. We first 73 

adapt the deep residual neural network model to predict residual-residual aligning scoring matrix, 74 

and then we employ a dynamic programming algorithm on the predicted scoring matrix to 75 

generate the optimal template-query alignment.  76 

 77 

2 Materials and Methods  78 

Figure 1.  Overview of ThreaderAI. A. The procedure of protein structure prediction using ThreaderAI. 
B. The procedure of aligning query with template using a deep residual neural network model and a 
dynamic programming algorithm. 
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2.1 Overview of the method  79 

For a query protein, ThreaderAI predicts its tertiary structure through the following steps (Figure 80 

1A). First, query protein is aligned to each template in the structure library using a deep residual 81 

neural network model and a dynamic programming algorithm. Second, all the alignments are 82 

ranked based on alignment scores. Third, the final tertiary structures of query are built using 83 

Modeller13 based on the top-ranked alignments.  84 

 85 

For TBM methods, the quality of query-template alignments critically determines the quality of 86 

predicted structures5,9. ThreaderAI uses a deep residue neural network model to generate 87 

template-sequence alignment (Figure 1B). First, protein features are extracted from both 88 

template and query. Second, a deep residue neural network model is used to generate residue-89 

residue aligning probability matrix. Third,  a dynamic programming algorithm is applied on the 90 

scoring matrix to generate the final template-query alignment.  91 

 92 

2.2 Protein features  93 

We included the following features as inputs for our deep residual neural network model (also 94 

see Table 1).  95 

Sequence profile (40 features): HHblits14 was used to generate the sequence profile for both 96 

template and query. The feature vector for each residue-residue aligning pair is from the 97 

concatenation of the sequence profiles of template and query. 98 

  99 

Sequential Structural features (29 features): For template, we generated its 8-class secondary 100 

structure types, real-valued solvent accessibility, and backbone dihedral angles using DSSP15. 101 

We also calculated the contact numbers of template with ��-�� and ��-�� distances of 8A� as 102 

threshold. And for Glycine, we only used its �� coordinates. For query, we predicted its 3-class 103 

secondary structure types, real-valued solvent accessibility, backbone dihedral angles, disordered 104 

regions, and residual level interfaces using NetSurfP216. We also predicted these sequential 105 

structural features for template. The features of a residue-residue aligning pair are the 106 

concatenation of the structural properties of these two residues. 107 

 108 
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Residue-residue contacts (8 features): The residue-residue contacts of template are defined as the 109 

residue pairs with ��-��distance less than 8A�. For query, we predict its contact map using 110 

ResPRE17. The eigenvectors and eigenvalues of the residue-residue contact matrix can capture 111 

the intrinsic properties of protein’s tertiary structure and have been used as features by recently 112 

developed threading methods6,11.  Given contact matrix � of the protein, the �th residue can be 113 

represented as ������� , ������ , … , ������� where �� and ��. is the �th eigenvalue and 114 

eigenvector of matrix �, respectively. Here we set  as 8. Given template and query’s contact 115 

matrices �	 and �
, the features of the  �th residue of template aligning the �th residue of query 116 

are defined as ����	��
����	 ���
 �, ���	��
����	 ���
 �, … , ���	��
����	 ���
 ��. Heuristically, we set the 117 

sign of each eigenvector as positive. Previous methods6,11 enumerated a total of 2� possible 118 

alignments to decide the sign of each involved eigenvector which is very time-consuming and 119 

infeasible for neural network-based models. 120 

 121 

 122 

sequence profiles (20×2  features) Amino acid type distribution in multiple 
sequence alignment (20 features for template and 
20 features for query) 

sequential structural features only for template (13 
features) 

8-class secondary structure types (8 features) 
solvent accessibility (1 feature) 
backbone dihedral angles (2 features) 
contact numbers (2 features) 

predicted sequential structural features for both 
template and query (8×2 features) 

predicted 3-class secondary structure types (3 
features) 
predicted solvent accessibility (1 feature) 
predicted backbone dihedral angles (2 features) 

predicted residual level interfaces (1feature) 

predicted disordered regions (1 feature) 

residual-residual contacts (8 features) the dot products of the corresponding elements of 
top 8 eigenvectors of contact matrices of 
template and query 

Table 1. Protein features used in ThreaderAI. 
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2.3 Neural network architecture  123 

We employed a deep residual neural network18 (ResNet) model to predict residue-residue 124 

aligning probability matrix. ResNet has proven very successful in computer vision and also in 125 

structural bioinformatics. First, convolutional layers in ResNet are capable of extracting 126 

hierarchical features or spatial patterns from images or image-like data automatically. Second, 127 

the residual component in ResNet can efficiently mitigate the issue of vanishing/exploding 128 

gradients and makes it possible to train an ultra-deep neural network model on a large scale of 129 

training data.  130 

 131 

Specifically, for a template-query pair, the input feature tensor for our neural network model has 132 

dimensions of �	 � �
 � � where �	 and �
 denotes the lengths of template and query, 133 

respectively, and � is the number of features for each residue-residue pair. And the output for our 134 

model has dimensions of  �	 � �
 each element of which representing residue-residue aligning 135 

probability. Our model includes 16 residue blocks18 each of which includes 2 convolutional 136 

layers. Each convolutional layers used 16 filters and a kernel size of 3 � 3. We used ELU19 as 137 

nonlinear activation function. Sigmoid function was used as the final layer to output residue-138 

residue aligning probabilitites. 139 

 140 

2.4 Alignment labels and training loss function  141 

We built training template-query pairs from proteins with known structures. For each template-142 

query pair in training data, we used DeepAlign20 to generate its structural alignments as ground 143 

truth. For a template with a length of �	 and a query with a length of �
, there are �	 � �
 144 

residue-residue pairs in total, in which the aligned pairs in the structural alignment are labeled as 145 

positives while the others as negatives. 146 

 147 

Instead of using binary labels directly, we weighted9 the conservation of aligned residue pairs 148 

using local TM-score21. Given a structure alignment of two proteins and the corresponding 149 

superimposition, the local TM-score of an aligned residue pair ��and ��  is defined as follows:  150 

��� � 11 � ����/���� 
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where ���  is the distance deviation between the two aligned residues and �� is a normalization 151 

constant depending only on protein length. The TM-score ranges from 0 to 1, with higher values 152 

indicating more highly conserved aligned positions. And for a gap in the alignment, the local 153 

TM-score ��� is equal to 0.  154 

 155 

The labels from the structure alignments are highly imbalanced in which the ratio of negatives 156 

over positives is proportional to the lengths of template and query. To mitigate this imbalanced 157 

labeling issue, we weighted the aligned pairs in the reference alignments with the average length 158 

of template and query. 159 

 160 

We used cross-entropy loss as our training loss function which is defined as follows:  161 

1 ! 1�
	

���



��
! !"#������

��log '���� # �1 # ���

���log �1 # '�����(��
���

�

��
���

�

�

��

 

where   is the number of protein pairs in training data and ) iterates over all training samples, 162 

and ���equals *�	
�� � �
��+/2 meaning the average length of template and query, and ���

��and 163 

'���� are residue-residue aligning probability from our neural network model and local TM-score, 164 

respectively.  165 

 166 

2.5 Training algorithm  167 

We used AdamW algorithm22 to minimize the objective function with a weight decay rate of 1e-168 

4. For the warmup stage, we increased the learning rate from 0 to 0.01 over the first 2 epochs. 169 

We also decayed the learning rate to 1e-4 with a polynomial decay policy in the following 16 170 

epochs22. Early-stopping with validation error as a metric was performed during training. The 171 

model architecture and training algorithm was implemented by TensorFlow223 and run on 3 172 

NVIDIA GeForce-1080 GPUs in parallel. We set training batch size as 2 and we didn’t try a 173 

larger batch size due to the limited GPU memory.  174 

 175 

2.6 Maximum accuracy algorithm  176 
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Given the residue-residue aligning probability matrix of �	 � �
 from our neural network model, 177 

we used a dynamic programming algorithm called Maximum Accuracy algorithm (MAC)8,14 to 178 

generate the final template-query alignment. MAC creates the local alignment through 179 

maximizing the sum of probabilities for each residue pair to be aligned minus a penalty , which 180 

can control the alignment greediness. To find the best MAC alignment path, an optimal sub-181 

alignment score matrix - is calculated recursively using the probability '��  as substitution scores:  182 

 183 

-�,� � max 1 '�� # ,-�,��� # , 2⁄-���,� # , 2⁄0
4 

 184 

Then standard traceback procedure of dynamic programming24 was then applied on the score 185 

matrix - to generate the optimal local alignment.  We rank the template-query alignments based 186 

on the optimal alignment scores from MAC.  187 

 188 

2.7 Dealing with proteins of variable lengths  189 

Our model has an architecture of fully convolutional neural network25 in which no fully-190 

connected layers were used. As a result, the number of parameters of our model is independent 191 

of the lengths of both template and query. Hence, our model can deal with proteins of variable 192 

lengths. In particular, zero paddings were applied so that each training sample in the same 193 

minibatch has the same size. We also filtered out the padded positions when we aggregated the 194 

final training loss.  195 

 196 

2.8 Training and test data  197 

We built the training set, validation set, and independent testing set from proteins in SCOPe40. 198 

We also included CASP13 data for testing. 199 

 200 

2.8.1 Training data  201 

We prepared template-query pairs from SCOPe4026. First, for testing purpose, we excluded the 202 

domains which share larger than 25% sequence identity with the domains in CASP13 data7. Here 203 

we used MMseqs227 to evaluate sequence identity with the default E-value of 1e-3. Second, we 204 
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excluded families with single domains. Third, for each class of ,, 5, ,/5, and , � 5 of 205 

SCOPe40, we randomly selected 5 folds as independent testing data and the left folds as training 206 

data. The testing and training template-query pairs were generated from testing and training folds 207 

respectively.  208 

 209 

Template-query pairs at the similarity of fold, superfamily and family levels were generated 210 

separately. When generating family level pairs, at most 10 pairs were randomly selected for each 211 

family. And when generating superfamily and fold level pairs, for each family pairs from the 212 

same fold, we randomly selected 1 domain from each family as its representative to form pairs. 213 

And all protein pairs with TM-score less than 0.3 were excluded. Finally, we have 53734 training 214 

pairs and 2000 validation pairs from the training folds, and 3106 pairs from testing folds.  215 

 216 

2.8.2 Test data  217 

We used two test datasets to test ThreaderAI in terms of alignment accuracy and protein 218 

threading performance, respectively. For testing alignment accuracy, we used 3106 template-219 

query pairs (denoted as SCOPe3K data) created together with training pairs and validation pairs 220 

(see section 2.8.1). The testing template-query pairs belong to different folds with training and 221 

validation pairs. The second test set consists of 61 officially-defined CASP137 target domains 222 

under the category of Template-Based Modelling (TBM). The CPSP13 TBM data are divided 223 

into two groups by difficulty level: TBM-easy (40 targets) and TBM-hard (21 targets). We used  224 

 225 

To test the threading performance of ThreaderAI using CASP13 TBM data , we built our 226 

template database from PDB90 in which any two proteins share less than 90% sequence identity. 227 

We only included the structures deposited before CASP13. We also excluded the structures with 228 

more than 800 amino acids and the structures with more than 50% unobserved residues. Finally, 229 

our template library includes 50099 proteins.  230 

 231 

2.9 Evaluating metrics  232 

2.9.1 Evaluating alignment accuracy 233 

For a query protein and one of a candidate template from the template library, we evaluated the 234 

alignment accuracy by evaluating the quality of the structure built from this alignment. In 235 
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particular, for each template-query pair, we first used ThreaderAI to generate an alignment, then 236 

built a 3D structure for the query using MODELLER13 based on the alignment, and finally 237 

evaluate the similarity between the predicted structure and the ground truth structure. Here, we 238 

evaluated the quality of a 3D model by GDT28 and TM-score, two widely used metric for 239 

measuring the similarity of two protein structures. GDT score is calculated based on the largest 240 

set of residue-residue pairs falling in a defined distance cutoff when superposing these two 241 

structures. GDT ranges from 0 to 100, but we normalize it by 100 so that it has a scale between 0 242 

and 1. TM-score is designed to be length-independent by introducing a length-dependent 243 

normalization factor. TM-score ranges from 0 to 1 with 1 indicating the perfect model quality.  244 

 245 

2.9.2 Evaluating threading performance  246 

We evaluated threading performance by measuring the quality of 3D models built from the top-247 

ranked templates. Specifically, for a query protein, we used ThreaderAI to generate alignments 248 

for all the templates in template library,  ranked these alignments by alignment scores and then 249 

built 3D models using MODELLER from the top five alignments. Finally, we evaluated the 250 

quality of the first-ranked and the best of top five 3D models by TM-score and GDT.  251 

 252 

2.10 Compare with previously published methods  253 

We compared ThreaderAI with several widely used threading methods including HHpred8, 254 

CNFpred9, and CEthreader6, a new threading method built upon contacts predicted by ResPre17. 255 

Here, HHpred was run with the option mact 0.1, real secondary structures for template, and 256 

predicted secondary structures for query proteins. And CEthreader was run with the mode of 257 

EigenProfileAlign in which sequence profile, secondary structures, and contact maps are used. 258 

For protein threading, we used CEthreader’s suggested strategy to speedup. That is, we first run 259 

CEthreader’s greedy algorithm and then selected top the 1000 templates for refinement using its 260 

enumerative algorithm. DeepThreader5 is another recently developed threading software in 261 

which a linear function was used to combine local potentials from CNFpred and pairwise 262 

potentials from predicted residue-residue contacts. DeepThreader’s performance wasn’t shown 263 

here because its package is unavailable to the public. To be fair, for all methods we used the 264 

same template database (see section 2.8.2) and used HHblits14 to build sequence profiles against 265 
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sequence database uniclust30_2017_10 built before CASP13. We used HHblits’ utility script to 266 

convert HHBlits’ profile format to BLAST’s29 profile format used by CNFpred.  267 

 268 

3 Results  269 

3.1 Alignment accuracy on SCOPe3K data  270 

Based on SCOPe’s hierarchical classification for proteins, we split all the template-query pairs 271 

into three groups: the pairs similar at family level, at superfamily level, and at fold level. Two 272 

proteins are similar at fold level if both query and template belong to the same fold but different 273 

super families. The similarity at superfamily level and family level are defined in the same way. 274 

Two proteins similar at fold level are conserved in structure but diverges in sequence, and are 275 

usually considered as remote homologs, while two protein similar at family level share high 276 

sequence similarity and are usually considered as close homologs. 277 

 278 

As shown in Table 2 and Figure 2, on SCOPe3K data, ThreaderAI outperforms all other 279 

competitors including HHpred, CNFpred, and CEThreader in terms of alignment accuracy. In 280 

particular, ThreaderAI achieved average TM-score and GDT of 0.510 and 0.437, respectively. In 281 

terms of TM-score, ThreaderAI outperforms HHpred, CNFpred, and CEthreader by 23%, 9%, 282 

and 12%, respectively. The advantage of ThreaderAI over the second-best method is the largest 283 

when the similarity between template and query falls into fold level, which indicates 284 

ThreaderAI’s power in modelling of remote homologs. In particular, at the fold level, 285 

ThreaderAI outperforms HHpred, CNFpred, and CEthreader by 56%, 13%, and 11% in terms of 286 

TM-score, respectively. The advantages of ThreaderAI over other methods decreases at the 287 

family level, which is not surprising since it is easy to align two closely-related proteins. At the 288 

Table 2. Alignment accuracy measured by TM-score and GDT on SCOPe3K data 
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superfamily level, ThreaderAI outperforms HHpred, CNFpred, and CEthreader by 18%, 9%, and 289 

14% in terms of TM-score, respectively.  290 

 291 

We also used a t-test to assess the statistical significance of the comparison results. On 3206 292 

template-query pairs, in terms of TM-score, the p-values between ThreaderAI and HHpred, 293 

CNFpred, and CEthreader are 2e-65, 9e-16, and 5e-29, respectively. Figure 2 shows more details 294 

on the difference of alignment accuracy between ThreaderAI and the competing methods. In 295 

terms of TM-score, ThreaderAI achieved better alignment quality than CNFpred for 2743, 2395, 296 

and 2343 pairs, while worse for 363, 711, and 763 pairs, respectively. It confirms that 297 

ThreaderAI can generate better alignments than our competing methods.  298 

 299 

3.2 Threading performance on CASP13 data  300 

Figure 2. Comparison of ThreaderAI and previously published methods using alignment accuracy on 
SCOPe3K. Each point in the figure represents alignment accuracy of ThreaderAI versus the other 
competing method. 

Table 3. Threading performance on 61 CASP13 TBM domains. Each cell shows the average quality of the 
3D models built from the first-ranked and the best of top five templates.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.02.129270doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.129270


We further evaluated the threading performance of our method on the 61 CASP13 TBM domains. 301 

Among the TBM domains, 40 and 21 domains belong to the categories of TBM-easy and TMB-302 

hard, respectively. Here ThreaderAI and all competitors used the same template database (see 303 

section 2.8.2).  304 

 305 

As shown in Table 3, on all TBM targets, ThreaderAI outperforms all the competing methods no 306 

matter whether the models are built from the first-ranked or the best of top five templates. 307 

ThreaderAI achieves a TM-score 0.761 for first-ranked models, which outperforms HHpred, 308 

CNFpred, and CEthreader 10%, 5%, and 6%, respectively. Overall, ThreaderAI shows larger 309 

advantages on the TBM-hard group in which only remote homologs are available. Specifically, 310 

on TBM-hard group, ThreaderAI outperforms HHpred, CNFpred, and CEthreader by 16%, 9%, 311 

and 8%, respectively. This again indicates ThreaderAI’s great advantages in modelling of remote 312 

homologs.  313 

 314 

3.3 Running time  315 

With the help of GPUs’ computational power, ThreaderAI is very efficient in protein threading 316 

(Figure 3). As far as we know, ThreaderAI is the first template-based modelling method which 317 

can take advantage of GPUs. ThreaderAI first uses 3 GeForce-1080 GPUs to generate the 318 

scoring matrices for all templates in the template library and meanwhile uses 4 CPU cores to 319 

Figure 3. The running time of ThreaderAI searching query protein in CASP13 data against PDB90. Here we 
split the data into several groups based on protein lengths. Y-axis is the mean running time in minutes for 
each group. 
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maintain the data stream for the model. And then ThreaderAI runs the Maximum Accuracy 320 

Algorithm for all scoring matrices on 1 CPU core.  321 

 322 

The running time of ThreaderAI mainly depends on protein length. The protein threading can be 323 

finished within 20 minutes for proteins with less than 200 amino acids. And it takes ThreaderAI 324 

less than 1 hour to finish protein threading even for the proteins with length larger than 500. 325 

ThreaderAI is highly scalable as it can use more GPUs.  326 

 327 

4 Discussion 328 

We developed ThreaderAI, a new template-based method for predicting protein structure using a 329 

deep residual neural network. We show that Threader outperforms the existing popular TBM 330 

methods including HHpred, CNFpred, and CEthreader, in both alignment accuracy and threading 331 

performance, especially on proteins that only have remote homologs with known structure. In 332 

particular, ThrederAI outperforms CNFpred, another neural network based-method, in which 333 

only one dense layer is used. This demonstrates that advanced neural network models are more 334 

capable of capturing complex sequence-structure relationship.  335 

 336 

ThreaderAI formulates the template-query alignment problem as the classical pixel classification 337 

problem in computer vision. To fulfill this, residue-residue pair scoring is separated from 338 

alignment generation. It’s still possible to design an end-to-end model to produce template-query 339 

alignment by combining a deep residual neural network and a chain graphical model such as 340 

Hidden Markov Model30 and Condition Random Fields31. However, in the hybrid model, the 341 

gradients of neural network will entangle with the gradients of chain graphical model which 342 

makes it very inefficient to train a deep model on a large scale of training samples32.  343 

 344 

ThreaderAI could be improved in several directions. First, besides deep residual neural network, 345 

other deep learning models such as deep autoregressive models33 may improve alignment 346 

accuracy. Second, deep attention model34 may provide a more efficient way to integrate residue-347 

residue contact information. ThreaderAI integrates residue-residue contacts indirectly by 348 

including the eigenvectors of the contact matrix in which the sign of eigenvectors are decided 349 
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very heuristically. Local potentials and pairwise potentials related to the residue-residue contact 350 

pairs and non-contacting pairs can be weighted directly with the help of attention mechanisms. 351 

 352 

 353 
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