
Template-based prediction of protein structure with deep learning 1

 2

Haicang Zhang1,#, Yufeng Shen1, 2, 3, 4 # 3

 4

1. Department of Systems Biology, Columbia University, New York, NY, USA 5
2. Department of Biomedical Informatics, Columbia University, New York, NY, USA 6
3. JP Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA 7
4. Program in Mathematical Genomics, Columbia University, New York, NY, USA 8

 9

Correspondence should be addressed to H.Z. (hz2529@cumc.columbia.edu) and Y.S. 10

(ys2411@cumc.columbia.edu) 11

 12

 13

Abstract 14

Accurate prediction of protein structure is fundamentally important to understand biological 15

function of proteins. Template-based modeling, including protein threading and homology 16

modeling, is a popular method for protein tertiary structure prediction. However, accurate 17

template-query alignment and template selection are still very challenging, especially for the 18

proteins with only distant homologs available. We propose a new template-based modelling 19

method called ThreaderAI to improve protein tertiary structure prediction. ThreaderAI 20

formulates the task of aligning query sequence with template as the classical pixel classification 21

problem in computer vision and naturally applies deep residual neural network in prediction. 22

ThreaderAI first employs deep learning to predict residue-residue aligning probability matrix by 23

integrating sequence profile, predicted sequential structural features, and predicted residue-24

residue contacts, and then builds template-query alignment by applying a dynamic programming 25

algorithm on the probability matrix. We evaluated our methods both in generating accurate 26

template-query alignment and protein threading. Experimental results show that ThreaderAI 27

outperforms currently popular template-based modelling methods HHpred, CNFpred, and the 28

latest contact-assisted method CEthreader, especially on the proteins that do not have close 29

homologs with known structures. In particular, in terms of alignment accuracy measured with 30

TM-score, ThreaderAI outperforms HHpred, CNFpred, and CEthreader by 56%, 13%, and 11%, 31

respectively, on template-query pairs at the similarity of fold level from SCOPe data. And on 32

CASP13’s TBM-hard data, ThreaderAI outperforms HHpred, CNFpred, and CEthreader by 16%, 33

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.02.129270doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.02.129270

9% and 8% in terms of TM-score, respectively. These results demonstrate that with the help of 34

deep learning, ThreaderAI can significantly improve the accuracy of template-based structure 35

prediction, especially for distant-homology proteins. 36

 37

Availability: https://github.com/ShenLab/ThreaderAI 38

 39

Keywords: protein structure prediction · protein threading · deep learning · deep residual neural 40

network 41

 42

1 Introduction 43

Protein structure is fundamentally important to understand protein functions. Computational 44

protein structure prediction remains one of the most challenging problems in structural 45

bioinformatics. Recent progress in protein structure prediction showed that with the help of deep 46

learning, it’s possible for free modelling (FM) methods to generate fold-level accuracy models of 47

proteins lacking homologs in protein structure library1-4. Meanwhile, as both 48

protein sequence and structure databases expand, template-based modelling (TBM) methods 49

remain to be very popular and useful5-7 for the proteins with homologs available in protein 50

structure library. TBM method predicts the structure of query protein by modifying the structural 51

framework of its homologous protein with known structure in accordance with template-query 52

alignment. The quality of TBM prediction critically relies on template-query alignment and 53

template selection. It remains to be very challenging for TBM methods to predict structures 54

accurately when only remote homologs which are conserved in structure but share low sequence 55

similarity with query are available in structure library5-7. 56

 57

The model accuracy of TBM method critically depends on protein features and the scoring 58

functions that integrate these features. For protein features, sequence profiles, and protein 59

secondary structures are widely used by exiting popular TBM methods such as HHpred8, 60

CNFpred9, and Sparks-X10. As a result of recent progress in residue-residue contact prediction, 61

contact information has been integrated by several recently developed methods such as 62

DeepThreader5, CEthreader6, and EigenThreader11. For scoring functions, HHpred, Sparks-X, 63

CEthreader, and several other methods used linear functions, while non-linear models such as 64

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.02.129270doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.02.129270

Random Forest model in Boost-Threader12 and one-layer dense neural network in CNFpred have 65

shown their advantages over linear models. Inspired by the success of non-linear models in TBM 66

methods, we would like to study if we can improve TBM methods’ model accuracy using more 67

advanced neural network architecture such as deep residual network which has proven very 68

successful in protein residue-residue contacts prediction. 69

 70

In this paper, we present a new method, called ThreaderAI, which uses a deep residual neural 71

network to perform template-query alignment. More specifically, we formulate template-query 72

alignment problem as the classical pixel classification problem in computation vision. We first 73

adapt the deep residual neural network model to predict residual-residual aligning scoring matrix, 74

and then we employ a dynamic programming algorithm on the predicted scoring matrix to 75

generate the optimal template-query alignment. 76

 77

2 Materials and Methods 78

Figure 1. Overview of ThreaderAI. A. The procedure of protein structure prediction using ThreaderAI.
B. The procedure of aligning query with template using a deep residual neural network model and a
dynamic programming algorithm.

Query: YSYLLKNHLDYRPVA

Alignment 1:

YSYLLKNHLDYRPVA
YESEILPSTPNPQPP

Build protein models
using Modeller

Rank

The template library

Alignment 2:

YSYLL--HLDYRPVA
YEEALQAQSCLQGEP

Alignment N:

YSYLLKNHLDYRPVA
YEFQL--KNTVHMVS

Top alignments :

YSYLL--HLDYRPVA
YEEALQAQSCLQGEP

…

Input feature tensors (! ! �×! #×#)

QRRYVYYYSYLLKNH
Query

(Length: ! #)

Sequence profile
SSE, SA

Torsion angles

Residue-residue contacts

Sequence profile
Predicted SSE, SA

Predicted torsion angles

Predicted residue-residue contacts

ED GA

V

W

E

G

Dummy
Y

W

match

insert

match

match deletion

match

Template

(Length: ! !)

Generate residue-residue

aligning probability matrix

by a deep residue neural

network

Generate template-query

alignment by a dynamic

programming algorithm

The input template

structure and query

sequence

! !

! #

0.9

0.8

0.7

0.6

Input feature tensors

Residue-residue
aligning probability

A

B

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.02.129270doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.02.129270

2.1 Overview of the method 79

For a query protein, ThreaderAI predicts its tertiary structure through the following steps (Figure 80

1A). First, query protein is aligned to each template in the structure library using a deep residual 81

neural network model and a dynamic programming algorithm. Second, all the alignments are 82

ranked based on alignment scores. Third, the final tertiary structures of query are built using 83

Modeller13 based on the top-ranked alignments. 84

 85

For TBM methods, the quality of query-template alignments critically determines the quality of 86

predicted structures5,9. ThreaderAI uses a deep residue neural network model to generate 87

template-sequence alignment (Figure 1B). First, protein features are extracted from both 88

template and query. Second, a deep residue neural network model is used to generate residue-89

residue aligning probability matrix. Third, a dynamic programming algorithm is applied on the 90

scoring matrix to generate the final template-query alignment. 91

 92

2.2 Protein features 93

We included the following features as inputs for our deep residual neural network model (also 94

see Table 1). 95

Sequence profile (40 features): HHblits14 was used to generate the sequence profile for both 96

template and query. The feature vector for each residue-residue aligning pair is from the 97

concatenation of the sequence profiles of template and query. 98

 99

Sequential Structural features (29 features): For template, we generated its 8-class secondary 100

structure types, real-valued solvent accessibility, and backbone dihedral angles using DSSP15. 101

We also calculated the contact numbers of template with ��-�� and ��-�� distances of 8A� as 102

threshold. And for Glycine, we only used its �� coordinates. For query, we predicted its 3-class 103

secondary structure types, real-valued solvent accessibility, backbone dihedral angles, disordered 104

regions, and residual level interfaces using NetSurfP216. We also predicted these sequential 105

structural features for template. The features of a residue-residue aligning pair are the 106

concatenation of the structural properties of these two residues. 107

 108

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.02.129270doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.02.129270

Residue-residue contacts (8 features): The residue-residue contacts of template are defined as the 109

residue pairs with ��-��distance less than 8A�. For query, we predict its contact map using 110

ResPRE17. The eigenvectors and eigenvalues of the residue-residue contact matrix can capture 111

the intrinsic properties of protein’s tertiary structure and have been used as features by recently 112

developed threading methods6,11. Given contact matrix � of the protein, the �th residue can be 113

represented as ������� , ������ , … , ������� where �� and ��. is the �th eigenvalue and 114

eigenvector of matrix �, respectively. Here we set as 8. Given template and query’s contact 115

matrices �	 and �
, the features of the �th residue of template aligning the �th residue of query 116

are defined as ����	��
����	 ���
 �, ���	��
����	 ���
 �, … , ���	��
����	 ���
 ��. Heuristically, we set the 117

sign of each eigenvector as positive. Previous methods6,11 enumerated a total of 2� possible 118

alignments to decide the sign of each involved eigenvector which is very time-consuming and 119

infeasible for neural network-based models. 120

 121

 122

sequence profiles (20×2 features) Amino acid type distribution in multiple
sequence alignment (20 features for template and
20 features for query)

sequential structural features only for template (13
features)

8-class secondary structure types (8 features)
solvent accessibility (1 feature)
backbone dihedral angles (2 features)
contact numbers (2 features)

predicted sequential structural features for both
template and query (8×2 features)

predicted 3-class secondary structure types (3
features)
predicted solvent accessibility (1 feature)
predicted backbone dihedral angles (2 features)

predicted residual level interfaces (1feature)

predicted disordered regions (1 feature)

residual-residual contacts (8 features) the dot products of the corresponding elements of
top 8 eigenvectors of contact matrices of
template and query

Table 1. Protein features used in ThreaderAI.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.02.129270doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.02.129270

2.3 Neural network architecture 123

We employed a deep residual neural network18 (ResNet) model to predict residue-residue 124

aligning probability matrix. ResNet has proven very successful in computer vision and also in 125

structural bioinformatics. First, convolutional layers in ResNet are capable of extracting 126

hierarchical features or spatial patterns from images or image-like data automatically. Second, 127

the residual component in ResNet can efficiently mitigate the issue of vanishing/exploding 128

gradients and makes it possible to train an ultra-deep neural network model on a large scale of 129

training data. 130

 131

Specifically, for a template-query pair, the input feature tensor for our neural network model has 132

dimensions of �	 � �
 � � where �	 and �
 denotes the lengths of template and query, 133

respectively, and � is the number of features for each residue-residue pair. And the output for our 134

model has dimensions of �	 � �
 each element of which representing residue-residue aligning 135

probability. Our model includes 16 residue blocks18 each of which includes 2 convolutional 136

layers. Each convolutional layers used 16 filters and a kernel size of 3 � 3. We used ELU19 as 137

nonlinear activation function. Sigmoid function was used as the final layer to output residue-138

residue aligning probabilitites. 139

 140

2.4 Alignment labels and training loss function 141

We built training template-query pairs from proteins with known structures. For each template-142

query pair in training data, we used DeepAlign20 to generate its structural alignments as ground 143

truth. For a template with a length of �	 and a query with a length of �
, there are �	 � �
 144

residue-residue pairs in total, in which the aligned pairs in the structural alignment are labeled as 145

positives while the others as negatives. 146

 147

Instead of using binary labels directly, we weighted9 the conservation of aligned residue pairs 148

using local TM-score21. Given a structure alignment of two proteins and the corresponding 149

superimposition, the local TM-score of an aligned residue pair ��and �� is defined as follows: 150

��� � 11 � ����/����

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.02.129270doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.02.129270

where ��� is the distance deviation between the two aligned residues and �� is a normalization 151

constant depending only on protein length. The TM-score ranges from 0 to 1, with higher values 152

indicating more highly conserved aligned positions. And for a gap in the alignment, the local 153

TM-score ��� is equal to 0. 154

 155

The labels from the structure alignments are highly imbalanced in which the ratio of negatives 156

over positives is proportional to the lengths of template and query. To mitigate this imbalanced 157

labeling issue, we weighted the aligned pairs in the reference alignments with the average length 158

of template and query. 159

 160

We used cross-entropy loss as our training loss function which is defined as follows: 161

1 ! 1�
	

���

��
! !"#������

��log '���� # �1 # ���

���log �1 # '�����(��
���

�

��
���

�

�

��

where is the number of protein pairs in training data and) iterates over all training samples, 162

and ���equals *�	
�� � �
��+/2 meaning the average length of template and query, and ���

��and 163

'���� are residue-residue aligning probability from our neural network model and local TM-score, 164

respectively. 165

 166

2.5 Training algorithm 167

We used AdamW algorithm22 to minimize the objective function with a weight decay rate of 1e-168

4. For the warmup stage, we increased the learning rate from 0 to 0.01 over the first 2 epochs. 169

We also decayed the learning rate to 1e-4 with a polynomial decay policy in the following 16 170

epochs22. Early-stopping with validation error as a metric was performed during training. The 171

model architecture and training algorithm was implemented by TensorFlow223 and run on 3 172

NVIDIA GeForce-1080 GPUs in parallel. We set training batch size as 2 and we didn’t try a 173

larger batch size due to the limited GPU memory. 174

 175

2.6 Maximum accuracy algorithm 176

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.02.129270doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.02.129270

Given the residue-residue aligning probability matrix of �	 � �
 from our neural network model, 177

we used a dynamic programming algorithm called Maximum Accuracy algorithm (MAC)8,14 to 178

generate the final template-query alignment. MAC creates the local alignment through 179

maximizing the sum of probabilities for each residue pair to be aligned minus a penalty , which 180

can control the alignment greediness. To find the best MAC alignment path, an optimal sub-181

alignment score matrix - is calculated recursively using the probability '�� as substitution scores: 182

 183

-�,� � max 1 '�� # ,-�,��� # , 2⁄-���,� # , 2⁄0
4

 184

Then standard traceback procedure of dynamic programming24 was then applied on the score 185

matrix - to generate the optimal local alignment. We rank the template-query alignments based 186

on the optimal alignment scores from MAC. 187

 188

2.7 Dealing with proteins of variable lengths 189

Our model has an architecture of fully convolutional neural network25 in which no fully-190

connected layers were used. As a result, the number of parameters of our model is independent 191

of the lengths of both template and query. Hence, our model can deal with proteins of variable 192

lengths. In particular, zero paddings were applied so that each training sample in the same 193

minibatch has the same size. We also filtered out the padded positions when we aggregated the 194

final training loss. 195

 196

2.8 Training and test data 197

We built the training set, validation set, and independent testing set from proteins in SCOPe40. 198

We also included CASP13 data for testing. 199

 200

2.8.1 Training data 201

We prepared template-query pairs from SCOPe4026. First, for testing purpose, we excluded the 202

domains which share larger than 25% sequence identity with the domains in CASP13 data7. Here 203

we used MMseqs227 to evaluate sequence identity with the default E-value of 1e-3. Second, we 204

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.02.129270doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.02.129270

excluded families with single domains. Third, for each class of ,, 5, ,/5, and , � 5 of 205

SCOPe40, we randomly selected 5 folds as independent testing data and the left folds as training 206

data. The testing and training template-query pairs were generated from testing and training folds 207

respectively. 208

 209

Template-query pairs at the similarity of fold, superfamily and family levels were generated 210

separately. When generating family level pairs, at most 10 pairs were randomly selected for each 211

family. And when generating superfamily and fold level pairs, for each family pairs from the 212

same fold, we randomly selected 1 domain from each family as its representative to form pairs. 213

And all protein pairs with TM-score less than 0.3 were excluded. Finally, we have 53734 training 214

pairs and 2000 validation pairs from the training folds, and 3106 pairs from testing folds. 215

 216

2.8.2 Test data 217

We used two test datasets to test ThreaderAI in terms of alignment accuracy and protein 218

threading performance, respectively. For testing alignment accuracy, we used 3106 template-219

query pairs (denoted as SCOPe3K data) created together with training pairs and validation pairs 220

(see section 2.8.1). The testing template-query pairs belong to different folds with training and 221

validation pairs. The second test set consists of 61 officially-defined CASP137 target domains 222

under the category of Template-Based Modelling (TBM). The CPSP13 TBM data are divided 223

into two groups by difficulty level: TBM-easy (40 targets) and TBM-hard (21 targets). We used 224

 225

To test the threading performance of ThreaderAI using CASP13 TBM data , we built our 226

template database from PDB90 in which any two proteins share less than 90% sequence identity. 227

We only included the structures deposited before CASP13. We also excluded the structures with 228

more than 800 amino acids and the structures with more than 50% unobserved residues. Finally, 229

our template library includes 50099 proteins. 230

 231

2.9 Evaluating metrics 232

2.9.1 Evaluating alignment accuracy 233

For a query protein and one of a candidate template from the template library, we evaluated the 234

alignment accuracy by evaluating the quality of the structure built from this alignment. In 235

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.02.129270doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.02.129270

particular, for each template-query pair, we first used ThreaderAI to generate an alignment, then 236

built a 3D structure for the query using MODELLER13 based on the alignment, and finally 237

evaluate the similarity between the predicted structure and the ground truth structure. Here, we 238

evaluated the quality of a 3D model by GDT28 and TM-score, two widely used metric for 239

measuring the similarity of two protein structures. GDT score is calculated based on the largest 240

set of residue-residue pairs falling in a defined distance cutoff when superposing these two 241

structures. GDT ranges from 0 to 100, but we normalize it by 100 so that it has a scale between 0 242

and 1. TM-score is designed to be length-independent by introducing a length-dependent 243

normalization factor. TM-score ranges from 0 to 1 with 1 indicating the perfect model quality. 244

 245

2.9.2 Evaluating threading performance 246

We evaluated threading performance by measuring the quality of 3D models built from the top-247

ranked templates. Specifically, for a query protein, we used ThreaderAI to generate alignments 248

for all the templates in template library, ranked these alignments by alignment scores and then 249

built 3D models using MODELLER from the top five alignments. Finally, we evaluated the 250

quality of the first-ranked and the best of top five 3D models by TM-score and GDT. 251

 252

2.10 Compare with previously published methods 253

We compared ThreaderAI with several widely used threading methods including HHpred8, 254

CNFpred9, and CEthreader6, a new threading method built upon contacts predicted by ResPre17. 255

Here, HHpred was run with the option mact 0.1, real secondary structures for template, and 256

predicted secondary structures for query proteins. And CEthreader was run with the mode of 257

EigenProfileAlign in which sequence profile, secondary structures, and contact maps are used. 258

For protein threading, we used CEthreader’s suggested strategy to speedup. That is, we first run 259

CEthreader’s greedy algorithm and then selected top the 1000 templates for refinement using its 260

enumerative algorithm. DeepThreader5 is another recently developed threading software in 261

which a linear function was used to combine local potentials from CNFpred and pairwise 262

potentials from predicted residue-residue contacts. DeepThreader’s performance wasn’t shown 263

here because its package is unavailable to the public. To be fair, for all methods we used the 264

same template database (see section 2.8.2) and used HHblits14 to build sequence profiles against 265

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.02.129270doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.02.129270

sequence database uniclust30_2017_10 built before CASP13. We used HHblits’ utility script to 266

convert HHBlits’ profile format to BLAST’s29 profile format used by CNFpred. 267

 268

3 Results 269

3.1 Alignment accuracy on SCOPe3K data 270

Based on SCOPe’s hierarchical classification for proteins, we split all the template-query pairs 271

into three groups: the pairs similar at family level, at superfamily level, and at fold level. Two 272

proteins are similar at fold level if both query and template belong to the same fold but different 273

super families. The similarity at superfamily level and family level are defined in the same way. 274

Two proteins similar at fold level are conserved in structure but diverges in sequence, and are 275

usually considered as remote homologs, while two protein similar at family level share high 276

sequence similarity and are usually considered as close homologs. 277

 278

As shown in Table 2 and Figure 2, on SCOPe3K data, ThreaderAI outperforms all other 279

competitors including HHpred, CNFpred, and CEThreader in terms of alignment accuracy. In 280

particular, ThreaderAI achieved average TM-score and GDT of 0.510 and 0.437, respectively. In 281

terms of TM-score, ThreaderAI outperforms HHpred, CNFpred, and CEthreader by 23%, 9%, 282

and 12%, respectively. The advantage of ThreaderAI over the second-best method is the largest 283

when the similarity between template and query falls into fold level, which indicates 284

ThreaderAI’s power in modelling of remote homologs. In particular, at the fold level, 285

ThreaderAI outperforms HHpred, CNFpred, and CEthreader by 56%, 13%, and 11% in terms of 286

TM-score, respectively. The advantages of ThreaderAI over other methods decreases at the 287

family level, which is not surprising since it is easy to align two closely-related proteins. At the 288

Table 2. Alignment accuracy measured by TM-score and GDT on SCOPe3K data

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.02.129270doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.02.129270

superfamily level, ThreaderAI outperforms HHpred, CNFpred, and CEthreader by 18%, 9%, and 289

14% in terms of TM-score, respectively. 290

 291

We also used a t-test to assess the statistical significance of the comparison results. On 3206 292

template-query pairs, in terms of TM-score, the p-values between ThreaderAI and HHpred, 293

CNFpred, and CEthreader are 2e-65, 9e-16, and 5e-29, respectively. Figure 2 shows more details 294

on the difference of alignment accuracy between ThreaderAI and the competing methods. In 295

terms of TM-score, ThreaderAI achieved better alignment quality than CNFpred for 2743, 2395, 296

and 2343 pairs, while worse for 363, 711, and 763 pairs, respectively. It confirms that 297

ThreaderAI can generate better alignments than our competing methods. 298

 299

3.2 Threading performance on CASP13 data 300

Figure 2. Comparison of ThreaderAI and previously published methods using alignment accuracy on
SCOPe3K. Each point in the figure represents alignment accuracy of ThreaderAI versus the other
competing method.

Table 3. Threading performance on 61 CASP13 TBM domains. Each cell shows the average quality of the
3D models built from the first-ranked and the best of top five templates.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.02.129270doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.02.129270

We further evaluated the threading performance of our method on the 61 CASP13 TBM domains. 301

Among the TBM domains, 40 and 21 domains belong to the categories of TBM-easy and TMB-302

hard, respectively. Here ThreaderAI and all competitors used the same template database (see 303

section 2.8.2). 304

 305

As shown in Table 3, on all TBM targets, ThreaderAI outperforms all the competing methods no 306

matter whether the models are built from the first-ranked or the best of top five templates. 307

ThreaderAI achieves a TM-score 0.761 for first-ranked models, which outperforms HHpred, 308

CNFpred, and CEthreader 10%, 5%, and 6%, respectively. Overall, ThreaderAI shows larger 309

advantages on the TBM-hard group in which only remote homologs are available. Specifically, 310

on TBM-hard group, ThreaderAI outperforms HHpred, CNFpred, and CEthreader by 16%, 9%, 311

and 8%, respectively. This again indicates ThreaderAI’s great advantages in modelling of remote 312

homologs. 313

 314

3.3 Running time 315

With the help of GPUs’ computational power, ThreaderAI is very efficient in protein threading 316

(Figure 3). As far as we know, ThreaderAI is the first template-based modelling method which 317

can take advantage of GPUs. ThreaderAI first uses 3 GeForce-1080 GPUs to generate the 318

scoring matrices for all templates in the template library and meanwhile uses 4 CPU cores to 319

Figure 3. The running time of ThreaderAI searching query protein in CASP13 data against PDB90. Here we
split the data into several groups based on protein lengths. Y-axis is the mean running time in minutes for
each group.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.02.129270doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.02.129270

maintain the data stream for the model. And then ThreaderAI runs the Maximum Accuracy 320

Algorithm for all scoring matrices on 1 CPU core. 321

 322

The running time of ThreaderAI mainly depends on protein length. The protein threading can be 323

finished within 20 minutes for proteins with less than 200 amino acids. And it takes ThreaderAI 324

less than 1 hour to finish protein threading even for the proteins with length larger than 500. 325

ThreaderAI is highly scalable as it can use more GPUs. 326

 327

4 Discussion 328

We developed ThreaderAI, a new template-based method for predicting protein structure using a 329

deep residual neural network. We show that Threader outperforms the existing popular TBM 330

methods including HHpred, CNFpred, and CEthreader, in both alignment accuracy and threading 331

performance, especially on proteins that only have remote homologs with known structure. In 332

particular, ThrederAI outperforms CNFpred, another neural network based-method, in which 333

only one dense layer is used. This demonstrates that advanced neural network models are more 334

capable of capturing complex sequence-structure relationship. 335

 336

ThreaderAI formulates the template-query alignment problem as the classical pixel classification 337

problem in computer vision. To fulfill this, residue-residue pair scoring is separated from 338

alignment generation. It’s still possible to design an end-to-end model to produce template-query 339

alignment by combining a deep residual neural network and a chain graphical model such as 340

Hidden Markov Model30 and Condition Random Fields31. However, in the hybrid model, the 341

gradients of neural network will entangle with the gradients of chain graphical model which 342

makes it very inefficient to train a deep model on a large scale of training samples32. 343

 344

ThreaderAI could be improved in several directions. First, besides deep residual neural network, 345

other deep learning models such as deep autoregressive models33 may improve alignment 346

accuracy. Second, deep attention model34 may provide a more efficient way to integrate residue-347

residue contact information. ThreaderAI integrates residue-residue contacts indirectly by 348

including the eigenvectors of the contact matrix in which the sign of eigenvectors are decided 349

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.02.129270doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.02.129270

very heuristically. Local potentials and pairwise potentials related to the residue-residue contact 350

pairs and non-contacting pairs can be weighted directly with the help of attention mechanisms. 351

 352

 353

References 354

 355

1 Yang, J. Y. et al. Improved protein structure prediction using predicted interresidue 356

orientations. P Natl Acad Sci USA 117, 1496-1503, doi:10.1073/pnas.1914677117 (2020). 357

2 Senior, A. W. et al. Improved protein structure prediction using potentials from deep 358

learning. Nature 577, 706-+, doi:10.1038/s41586-019-1923-7 (2020). 359

3 Xu, J. B. Distance-based protein folding powered by deep learning. P Natl Acad Sci USA 360

116, 16856-16865, doi:10.1073/pnas.1821309116 (2019). 361

4 Xu, J. B. & Wang, S. Analysis of distance-based protein structure prediction by deep 362

learning in CASP13. Proteins 87, 1069-1081 (2019). 363

5 Zhu, J. W., Wang, S., Bu, D. B. & Xu, J. B. Protein threading using residue co-variation and 364

deep learning. Bioinformatics 34, 263-273, doi:10.1093/bioinformatics/bty278 (2018). 365

6 Zheng, W. et al. Detecting distant-homology protein structures by aligning deep neural-366

network based contact maps. Plos Comput Biol 15, doi:ARTN e1007411 367

10.1371/journal.pcbi.1007411 (2019). 368

7 Croll, T. I., Sammito, M. D., Kryshtafovych, A. & Read, R. J. Evaluation of template-based 369

modeling in CASP13. Proteins 87, 1113-1127, doi:10.1002/prot.25800 (2019). 370

8 Söding, J. Protein homology detection by HMM–HMM comparison. Bioinformatics 21, 371

951-960 (2005). 372

9 Ma, J. Z., Peng, J., Wang, S. & Xu, J. B. A conditional neural fields model for protein 373

threading. Bioinformatics 28, I59-I66, doi:10.1093/bioinformatics/bts213 (2012). 374

10 Yang, Y. D., Faraggi, E., Zhao, H. Y. & Zhou, Y. Q. Improving protein fold recognition and 375

template-based modeling by employing probabilistic-based matching between 376

predicted one-dimensional structural properties of query and corresponding native 377

properties of templates. Bioinformatics 27, 2076-2082, 378

doi:10.1093/bioinformatics/btr350 (2011). 379

11 Buchan, D. W. A. & Jones, D. T. Eigen THREADER: analogous protein fold recognition by 380

efficient contact map threading. Bioinformatics 33, 2684-2690, 381

doi:10.1093/bioinformatics/btx217 (2017). 382

12 Peng, J. & Xu, J. B. Boosting Protein Threading Accuracy. Research in Computational 383

Molecular Biology, Proceedings 5541, 31-+ (2009). 384

13 Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Current 385

protocols in bioinformatics 54, 5.6. 1-5.6. 37 (2016). 386

14 Remmert, M., Biegert, A., Hauser, A. & Soding, J. HHblits: lightning-fast iterative protein 387

sequence searching by HMM-HMM alignment. Nat Methods 9, 173-175 (2012). 388

15 Kabsch, W. & Sander, C. Dictionary of Protein Secondary Structure - Pattern-Recognition 389

of Hydrogen-Bonded and Geometrical Features. Biopolymers 22, 2577-2637 (1983). 390

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.02.129270doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.02.129270

16 Klausen, M. S. et al. NetSurfP-2.0: Improved prediction of protein structural features by 391

integrated deep learning. Proteins 87, 520-527 (2019). 392

17 Li, Y., Hu, J., Zhang, C. X., Yu, D. J. & Zhang, Y. ResPRE: high-accuracy protein contact 393

prediction by coupling precision matrix with deep residual neural networks. 394

Bioinformatics 35, 4647-4655 (2019). 395

18 He, K., Zhang, X., Ren, S. & Sun, J. in Proceedings of the IEEE conference on computer 396

vision and pattern recognition. 770-778. 397

19 Clevert, D.-A., Unterthiner, T. & Hochreiter, S. Fast and accurate deep network learning 398

by exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015). 399

20 Wang, S., Ma, J., Peng, J. & Xu, J. Protein structure alignment beyond spatial proximity. 400

Scientific reports 3, 1448 (2013). 401

21 Zhang, Y. & Skolnick, J. TM-align: a protein structure alignment algorithm based on the 402

TM-score. Nucleic Acids Res 33, 2302-2309 (2005). 403

22 Loshchilov, I. & Hutter, F. Fixing weight decay regularization in adam. (2018). 404

23 Abadi, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous 405

Distributed Systems. arXiv e-prints (2016). 406

<https://ui.adsabs.harvard.edu/abs/2016arXiv160304467A>. 407

24 Durbin, R., Eddy, S. R., Krogh, A. & Mitchison, G. Biological sequence analysis: 408

probabilistic models of proteins and nucleic acids. (Cambridge university press, 1998). 409

25 Long, J., Shelhamer, E. & Darrell, T. in Proceedings of the IEEE conference on computer 410

vision and pattern recognition. 3431-3440. 411

26 Fox, N. K., Brenner, S. E. & Chandonia, J.-M. SCOPe: Structural Classification of 412

Proteins—extended, integrating SCOP and ASTRAL data and classification of new 413

structures. Nucleic Acids Res 42, D304-D309 (2014). 414

27 Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for 415

the analysis of massive data sets. Nature biotechnology 35, 1026-1028 (2017). 416

28 Zhang, Y. & Skolnick, J. Scoring function for automated assessment of protein structure 417

template quality. Proteins: Structure, Function, and Bioinformatics 57, 702-710 (2004). 418

29 Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database 419

search programs. Nucleic Acids Res 25, 3389-3402 (1997). 420

30 Sisson, S. Hidden Markov models for bioinformatics. J Roy Stat Soc a Sta 167, 194-195, 421

doi:DOI 10.1111/j.1467-985X.2004.298_13.x (2004). 422

31 Lafferty, J., McCallum, A. & Pereira, F. C. Conditional random fields: Probabilistic models 423

for segmenting and labeling sequence data. (2001). 424

32 Johnson, M. J., Duvenaud, D., Wiltschko, A. B., Datta, S. R. & Adams, R. P. Composing 425

graphical models with neural networks for structured representations and fast inference. 426

Adv Neur In 29 (2016). 427

33 Yang, Z. et al. in Advances in neural information processing systems. 5754-5764. 428

34 Vaswani, A. et al. in Advances in neural information processing systems. 5998-6008. 429

 430

 431

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.02.129270doi: bioRxiv preprint

https://doi.org/10.1101/2020.06.02.129270

