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Abstract

Chagas disease affects 8–11 million people worldwide, most of them living in Latin

America. Moreover, migratory phenomenon have spread the infection beyond endemic

areas. Efforts for the development of new pharmacological therapies are paramount, as

the pharmacological profile of the two marketed drugs currently available, nifurtimox

and benznidazole, needs to be improved. Cruzain, a parasitic cysteine protease, is one of

the most attractive biological targets due to its roles in parasite survival and immune

evasion. In this work, we generated Quantitative Structure-Activity Relationship linear

models for the prediction of pIC50 values of cruzain inhibitors. The statistical

parameters for internal and external validation indicate high predictability with a

cross-validated correlation coefficient of q2cv = 0.77 and an external correlation

coefficient of r2ex = 0.71. The applicability domain is quantitatively defined, according

to QSAR good practices, using the leverage method. A qualitative interpretation of the

model is provided based on protein-ligand interactions obtained from docking studies

and structural information codified in the molecular descriptors relevant to the QSAR
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model. The model described in this work will be valuable for the discovery of novel

cruzain inhibitors.

Author summary

Chagas disease is a major health problem in Latin America. The disease involves a

long-lasting silent phase that usually culminates in serious or fatal heart damage.

Despite its prevalence, there are only two antichagas approved drugs available. Despite

these drugs have been in the market for more than 50 years, significant undesirable side

effects and modest effectiveness in the chronic phase are prevalent. The need of new

drugs to treat this disease is evident. Cruzain is a vital protein for the survival of

Trypanosoma cruzi, the parasite causative of Chagas disease. Inhibition of this

species-specific protein has been associated with improvements in pharmacological

effects in animal models. Thus, blocking the activity of cruzain is an attractive

approach for the development of antichagas agents. In this work, we present a validated

mathematical model capable of predicting the cruzain inhibition value of a molecule

from its chemical structure. This model can contribute to the identification of potential

pharmacological alternatives against Chagas disease.

Introduction 1

Chagas Disease affects 8 - 11 million people in 21 Latin American countries, there is an 2

estimation of 70 - 150 million people at risk of infection [1, 2]. Migration phenomenon 3

have contributed to the spread of the parasite into non-endemic areas such as the 4

United States, Europe, New Zealand, and Australia [1]. Chagas disease is a 5

vector-borne parasitic infection caused by Trypanosoma cruzi and it is transmitted by 6

the three main genera of triatomine bug, Triatoma, Rhodnius, and Panstrongylus. 7

World Health Organization has recognized this infection as a Neglected Tropical Disease 8

(NTD) because of its persistence in developing countries, being a major economic and 9

social problem in these regions, and one of the main causes of premature death for heart 10

failure [2–4]. It was previously reported that this disease causes an estimated loss of 752 11

000 working days in southern American countries [4], which implies an economic burden 12
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of about US$1.2 billion in productivity. Globally, this parasitic infection has an 13

estimated annual cost of $627.46 million, and 10% of this affects non-endemic 14

countries [4]. Currently, there are only two approved drugs for the treatment of Chagas 15

Disease: Nifurtimox (NFX) and Benznidazole (BZ). Both NFX and BZ have similar 16

efficacy during the acute phase of infection, with 88 – 100 % of negative parasite 17

detection after treatment with NFX and up to 80 % for BZ [5]. However, in the chronic 18

phase, the rate of negative tests for the disease after treatment falls to 7 - 8 % [5], and 19

there are significant side effects, including anorexia, weight loss, paresthesia, nausea, 20

and vomiting, among others [3, 5]. Recent therapeutic research is focused on specific 21

biological targets, which include cysteine proteases, enzymes in trypanothione 22

metabolism, enzymes in ergosterol biosynthesis and the kinetoplastid proteasome [5]. 23

Cruzain is a cathepsin L-like cysteine protease present in all stages of the parasite 24

life cycle. It plays significant roles in the trypanosomal growth, survival and evasion 25

from the host immune response. Plasma membrane-anchored cruzain degrades the Fc 26

fraction of antibodies, overcoming the classic path of complement activation [3, 6]. In 27

the amastigotic intracellular stage, this cysteine protease degrades transcription factors, 28

such as NFkB and thus prevents the activation of macrophages [3]. Cruzain generates 29

the bloodstream pro-inflammatory peptide Lys-bradykinin, which activates host 30

immune cells, promoting the parasite uptake and spread by phagocytosis [6]. The use of 31

cruzain inhibitors in animal models has shown to be effective in clearing the parasite 32

burden, even in the chronic phase. The vinyl-sulphonic compound known as K777 was 33

one the first proof-of-concept studies about anti-tripanosomal activity of cruzain 34

inhibitors in animal models [7, 8]. Parasite death induced by cruzain inhibitors is 35

attributed to the accumulation of a peptide precursor in the Golgi complex. Therefore, 36

these in vitro and in vivo evidence have validated cruzain as a potential biological 37

target for Chagas Disease [3, 6]. A variety of chemotypes for cruzain inhibition have 38

been explored through Structure-Activity Relationships (SAR) analysis, 39

high-throughput screening and docking methods. The most potent molecules belong to 40

the vinyl-sulfone derivatives, oxadiazoles, nitrile-containing peptidomimetics, and 41

thiosemicarbazones, with a broad range of biological activities among chemical 42

families [2]. These molecules should be further optimized by increasing their selectivity 43

towards parasite vs human cathepsins, and they should be neutral at physiological pH, 44
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to avoid concentration in lysosomes and off-target effects [2]. 45

Quantitative Structure-Activity Relationships (QSAR) is a ligand-based approach 46

that mathematically correlates structural properties of molecules with their biological 47

activity. QSAR modeling is widely used in drug discovery, especially in the prediction of 48

enzyme inhibition and ADME-Tox properties [9]. In virtual screening, validated QSAR 49

models are used for prioritizing molecules for experimental evaluation. Carefully 50

validated QSAR models have rendered novel chemotypes and scaffolds with a desirable 51

biological activity [10]. The quality of a QSAR model can be evaluated using the OECD 52

principles [11]. These principles are a series of guidelines originally developed for the use 53

of QSAR modelling for regulatory purposes, but they became a valuable tool in the 54

standard QSAR practice [11,12]. In this work, we explored public databases of 55

structurally diverse cruzain inhibitors for the generation of QSAR predictive models of 56

this biological endpoint. The structural properties, encoded by molecular descriptors, 57

are rationalized in terms of protein-inhibitor interactions, using molecular docking, thus 58

providing a possible mechanistic interpretation of the model. This work will be useful in 59

the search of cruzain inhibitors. 60

Materials and methods 61

Data compilation, curation, and pre-processing 62

Cruzain inhibitors were collected from the ChEMBL (release 24) database, searching by 63

molecular target using the keyword cruzain. Molecules annotated with IC50 values were 64

selected and duplicated or missing values compounds were eliminated. Finally, a 65

selection based on the same experimental protocol for IC50 determination was 66

performed. The selected experimental procedure is a competitive fluorescence assay in 67

the presence of detergent, as reported by Babaoglu et al [13]. The detergent is used to 68

avoid aggregation, which is the main cause of false positives in exploratory and high 69

throughput screens [2, 14]. Structural and biological information of the compounds was 70

verified in the corresponding original publications, and when required, the discrepancies 71

were fixed. IC50 values were transformed to pIC50. The final dataset consisted of 110 72

structurally diverse cruzain inhibitors. The 2D and 3D coordinates of these molecules 73

May 26, 2020 4/19

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.02.129411doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.129411
http://creativecommons.org/licenses/by/4.0/


were calculated from their SMILES representation, using the wash tool in the software 74

Molecular Operating Environment 2019.01 (MOE) [15]. Lastly, the structures were 75

energy minimized using the MMFF94x force field. The curated database is available in 76

S1 Table. 77

To summarize the chemical diversity in the set, the MACCSKeys fingerprints as 78

implemented in RDKit [16] package were calculated for every molecule. A clustering 79

calculation was performed using the affinity propagation algorithm, with the Tanimoto 80

similarity matrix as affinity measure. The chemical structures for the representative 81

molecules in every cluster are presented below. 82

QSAR modeling 83

Descriptor calculation and feature selection 84

All molecular descriptors available in MOE were calculated, including topostructural 85

and topochemical indices, subdivided Van der Waals surface areas, VolSurf potentials, 86

and physicochemical properties such as dipolar and hydrophobic moments. The dataset 87

was randomly split into a training set (88 molecules, 80%) and a test set (22 molecules, 88

20%). Descriptors were scaled to [0,1] range using Eq (1) and those in the test set were 89

scaled according to the training set. Constant descriptors (zero variance) were filtered 90

out. 91

X ′i =
Xi −Xi,min

Xi,max −Xi,min
(1)

Feature selection and model calculation were performed in Weka 3.8 [17,18]. 92

Selection of relevant features was carried out using the Correlation-Based Feature 93

Selection (CFS) with a Greedy Stepwise algorithm [19]. Briefly, CFS calculates a merit 94

score, Ms, on a subset of variables through Eq (2), where rfc is the average pair-wise 95

correlation coefficient between features and the dependent variable, rff is the average 96

pair-wise correlation coefficient between features themselves, and k is the number of 97

features. Higher merit values involve a higher correlation with the dependent variable 98

and a less correlation between features, penalizing high-dimensional sets also. In the 99

Greedy Stepwise algorithm, the variables are sequentially added until the merit reaches 100

a maximum. 101
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Ms =
krfc√

k + k (k − 1) rff
(2)

The subset of features with the highest score were used in the generation of the 102

Multiple Linear Regression model, as implemented in Weka 3.8. 103

Model validation 104

The goodness of fit for the model was estimated by calculating the following statistical 105

parameters: coefficient of determination (R2), adjusted coefficient of determination 106

(R2 − adj), F statistic (variance ratio) and its associated p-value. Internal validation 107

was carried out through the k-fold leave-some-out cross-validation with k = 10. The 108

cross-validated correlation coefficient (q2cv) is reported to evaluate the robustness of the 109

model. Model predictability was assessed by applying the generated equation to 110

calculate the biological data of the test set. Using these results, the Golbraikh and 111

Tropsha (G&T) external validation parameters were calculated in the Enalos nodes for 112

Knime [20–22]. Golbraikh and Tropsha parameters use regression through the origin to 113

estimate the deviation of the model with respect to the ideal QSAR regression. 114

Basically, these parameters compare the differences of the coefficients of determination 115

and slopes of the fitted model and the regression forced to the origin, R0 and k. The 116

model is considered predictive if all parameters are within defined thresholds [20]. 117

Applicability Domain 118

The predictivity of a QSAR model is framed by the nature of the molecules in the 119

training set. The applicability domain is the quantitative delimitation of the chemical 120

space where predictions are reliable. In this work, the applicability domain was defined 121

using the leverage method [23]. Leverage values, hi, are computed using Eq (3), where 122

X is the descriptor matrix of the training set and xi is the descriptor vector for a query 123

molecule. 124

hi = xT
i

(
XTX

)−1
xi (3)

Basically, leverage values are proportional to the distance of the molecule from the 125

centroid of the training set. Thus, compounds above a threshold are far from the 126
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explored chemical space and therefore, their predicted biological activity will be 127

unreliable. Typically, the threshold, hmax, is computed with Eq (4), where p is the 128

number of features and n is the number of molecules in the training set. 129

hmax = 3
p

n
(4)

Leverage and limit values were computed with the Applicability Domain node 130

calculator of Enalos for Knime [24,25]. Results are presented in a Williams plot 131

(leverage vs standarized residuals), where outliers in the activity domain or structurally 132

influential, can be visually detected. The Williams plot is a representation of the 133

chemical space spanned by the model. 134

Docking calculation 135

The coordinates of cruzain were downloaded from the Protein Data Bank with PDB-ID 136

code 3KKU [26]. This structure is reported with a resolution of 1.28�A, and it is 137

co-crystalized with a benzimidazole derived, a non-covalent ligand. The protein was 138

prepared in MOE as follows: hydrogen atoms were added according to protonation 139

states at pH 7.0 and Gasteiger-Marsili charges were computed [27]. The protein 140

structure file was converted to the PDBQT format. Gasteiger charges were also 141

computed for the ligands and they were converted to PDBQT format. The docking 142

calculation was performed in AutoDock Vina [28]. The search space was extended in 143

the binding site of the cruzain with a box of size 24�A ∗ 30�A ∗ 20�A. The docking 144

calculation was performed in 10 repetitions, and the conformations with the best score 145

per molecule were selected to generate a database of bound conformations. These data 146

were used to generate protein-ligand interaction fingerprints in MOE. 147

The similarity maps tool included in the RDKit module for python was used to 148

generate partial charges and SLogP diagrams. These diagrams show the atomic 149

contributions to logP, calculated with the Wildman and Crippen algorithm [29], and the 150

Gasteiger partial charges [27]. The 2D depictions of molecules in the similarity maps 151

were generated by projecting the calculated 3D conformation of the molecules, so that 152

these depictions resemble their docked pose. 153
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Results and Discussion 154

In this work, we present the preparation and analysis of a data set of 110 cruzain 155

inhibitors annotated with pIC50 values. The distributions of the biological activity 156

values of the training and test sets are shown in Fig 1. The pIC50 values ranges from 157

3.48 to 10.0 units, from nanomolar to sub-millimolar scale. Typically, the reported 158

experimental error for this biological assay is around 2.0 µM , which implies that the 159

range of pIC50 values of this dataset is more than five times higher than the 160

experimental error, in agreement with general recommendations and best practices for 161

QSAR modeling [10]. Noteworthy, the biological activity values of the test set lie within 162

that of the training set as shown in the histogram of the Fig 1 and with no gaps within 163

bins. 164

Fig 1. Distribution of pIC50 values of 110 cruzain inhibitors. Molecules in the
training set (88) are shown in gray, and 22 molecules in the test set are shown in black.
The inhibitory potency of the test set fall within interval of pIC50 values of the training
set.

To summarize the chemical diversity contained in the dataset, we performed a 165

clustering analysis with the affinity propagation algorithm, using Tanimoto similarity 166

from MACCSKeys fingerprints as affinity measure, in the RDKit and Sci-Kit learn 167

modules in Python. Fig 2 depicts the calculated clusters, along with the representative 168

structure from every cluster. The chemical families include thiosemicarbazones, 169

acylhydrazines, oxadiazoles and nitrile-containing peptidomimetics. Thiosemicarbazones 170

are the most numerous compounds in the set and peptidomimetics are the most potent 171

known inhibitors, as has been reported previously [2]. 172

Fig 2. Representation of the molecular diversity in the dataset. Molecules
are grouped according to the clustering results by affinity propagation. Structures for
representative molecules, highlighted with a cross-shaped mark, are shown for every
cluster.

The MLR algorithm generates an explicit equation, consisting of a linear 173

combination of molecular descriptors. After selecting the feature subset which renders 174

the maximum merit score, as described in the methods section, Eq 5 was obtained for 175

the estimation of pIC50 values. A brief definition of the descriptors involved in the 176

model is presented in Table 1. In general, these descriptors account for electrostatic 177
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(Eele and PEOE descriptors), hydrophobic (SLOGP and vsurf ID8 descriptors) and 178

hydrophilic (vsurf W related descriptors) properties. These features are crucial for the 179

establishment of potential intermolecular interactions required for the binding of ligands 180

into the active site. Therefore, the linear equation may be related to the presence of 181

such features in the binding process. 182

−log (IC50) = pIC50 = −1.30a nF+3.62Eele+2.34GCUT SLOGP2+2.46PEOE V SA(−1)

+2.18PEOE V SA(−3)−1.24SLOGP V SA4+0.69SLOGP V SA9−1.07vsurf DW12

− 1.56vsurf EWmin1 + 1.69vsurf ID8 + 1.21vsurf Wp5 + 1.06 (5)

Table 1. Definition of molecular descriptors selected in the linear equation of the model.

Descriptor Definition

a nF Number of fluorine atoms
Eele Electrostatic component of potential energy
GCUT SLOGP 2 The GCUT descriptors using atomic contribution to logP using the Wildman and Crippen SlogP method.
PEOE VSA -1 Sum of vi where qi is in the range [−0.10,−0.05).
PEOE VSA-3 Sum of vi where qi is in the range [−0.20,−0.15).
SLOGP VSA4 Sum of vi such that Li is in [0.1, 0.15).
SLOGP VSA9 Sum of vi such that Li > 0.40
vsurf DW12 Contact distances of vsurf EWmin
vsurf EWmin1 Lowest hydrophilic energy
vsurf ID8 Hydrophobic integy moment (-1.6 kcal/mol)
vsurf Wp5 Polar volume (-3.0 kcal/mol)
vi is the atomic Van der Waals surface area of atom i, qi is the Gasteiger-Marsili partial charge over the atom i, and Li is the
Wildman-Crippen atomic contribution to LogP.

Statistical parameters describing the goodness of fit for the model are presented in 183

Table 2. Coefficients of determination near to 1 indicates that a high ratio of variance 184

present in the original data is explained by the model. In this case, 83% of the variance 185

already present in the pIC50 of the training set is explained by Eq 5. The ratio of the 186

mean squared error of the one-parameter model and the generated model is measured 187

by the F statistic. If this ratio is high enough, the prediction made by Eq 5 has an error 188

less than the native variability in the data. The F value for this model is presented in 189

Table 2 along with its associated p− value. Making the assumptions of the linear 190

model, the probability of finding an F ratio of 34.08 or higher, for a 10 parameter 191

equation, is less than 0.001, if the model error is equal to the variability in data. Given 192
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this low probability value, this hypothesis can be rejected and accept that predictions 193

made by the model equation are more accurate than just the mean value around the 194

standard deviation for the original data. 195

Table 2. Statistical parameters describing the goodness of fit for the model.

Parameter Value

R2 0.83
R2-adjusted 0.81
F ratio 34.08
p-value < 0.001

Since conclusions derived from statistical parameters rely on the parametric 196

assumptions, their fulfillment were tested by means of an analysis of residuals, shown in 197

Fig (3). In the linear model, the dependent variable, Yi, has a normal distribution 198

around the predicted value Ŷi, thus the prediction error, Yi − Ŷi, must follow a normal 199

distribution with a mean of 0. The lower panel of Fig (3) shows the quantile plot for the 200

calculated errors and the theoretical normal distribution. Most of the values in the 201

quantile plot follow a straight line, suggesting a very near behavior to a normal 202

distribution, achieving the normality requirement. 203

Fig 3. Histograms with the distibution of residuals, as predicted with Eq 5.
The quantile plots, comparing to a normal distribution are also presented, for both the
training and the test set. The regression line shows a near behavior to a normal
distribution.

Observed and predicted activity values for both training and test sets are shown in 204

Fig (4). The pIC50 values for the training set were calculated in a 10-fold cross 205

validation step, thus the coefficient of determination in Fig (4) corresponds to 206

Q2 − LSO. The test set, not used for the model construction, has a clear behavior near 207

to the linear fit. The R2 for this external set is 0.71, above the typical threshold of 0.6. 208

However, although a high value of both Q2 and R2 is required, it is not sufficient for the 209

predictability estimation since these parameters just measure the linear correspondence 210

between predicted and experimental values but not their 1:1 identity relationship [20]. 211

Since there is not consensus in the establishment of an universal predictability criteria 212

for QSAR modeling, one of the proposed practices is to calculate a set of parameters 213

that could characterize the deviation from an ideal prediction, as suggested by Chirico 214

et al [30] and Gramatica et al [31]. 215
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Fig 4. Regression plot for the results of predicted pIC50 values. The training
set values shown were obtained in a 10-fold cross validation step. The coefficients of
determination for both sets (Q2 − LSO and R2 − ext) are also presented. Continuous
and dashed gray lines are the linear fits for training and test set, respectively.

The G&T criteria measure the agreement between experimental and predicted 216

values [20,30,31]. These validation parameters were developed following the idea that 217

the regression line for a predictive model should be the identity relation, Yi = Ŷi. Thus, 218

the values of the G&T criteria measure the deviation of the least-squares line for the 219

model from the identity straight line. Table 3 shows the results of these criteria, for the 220

external evaluation used in this work, along with their acceptance thresholds as 221

suggested by the authors. All the values are within the acceptable range, indicating a 222

good agreement between the experimental information and the predictions of the model 223

using the external test set. 224

Table 3. Golbraikh and Tropsha parameters and criteria for external
validation calculated for the model

G&T Criterion Value

R2 > 0.6 0.71
R2

cvext > 0.5 0.66
(R2 −R2

0)/R2 < 0.1 0.05

(R2 −R
′2
0 )/R2 < 0.1 0.02

ABS(R2
0 −R

′2
0 ) < 0.1 0.02

0.85 < k < 1.15 0.95
0.85 < k′ < 1.15 1.03

Applicability domain was defined using the leverage method, using both the training 225

set and the test set. Williams plot for the dataset is presented in Fig (5). Because 226

leverage is a projection of the distance from the training set, the distribution of the 227

molecules in the Williams plot is a representation of the chemical space covered by the 228

model. Standardized residuals are distributed around the expected value of 0, as was 229

shown previously, for both the training and test sets. It is interesting to note that most 230

of the test molecules follow a distribution similar to those in the training set, and their 231

residuals are inside the expected errors predicted for the training set. It is also 232

remarkable that two molecules in the training set and three in the test set display 233

leverage values higher than the calculated limit. In these regions, any prediction made 234

by the model is considered an extrapolation and its reliability is low. 235

Most of the molecular descriptors shown in Table 1 are related to potential 236
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Fig 5. Williams plot for the applicability domain definition, using the
leverage method.

intermolecular interactions. To rationalize the binding recognition process of cruzain 237

inhibitors, based on the analysis of the molecular descriptors obtained in the QSAR 238

model, molecular docking simulations were performed. PLIF histograms in Fig (6) 239

summarize these results from the database of bound conformations. Fig (6A) shows 240

interactions involving atom pairs between the protein and the ligand, whereas Fig (6B) 241

summarizes surface contact interactions. These histograms show that hydrogen bond 242

formation and polar contacts are predominant in the S1 subsite and near the catalytic 243

site, whereas in S2 and S1’ subsites, hydrophobic contacts and π interactions are more 244

favorable. Regarding with such interactions, molecular descriptor vsurf ID8 is the 245

hydrophobic integy moment (INTEraction enerGY) at -1.6 kcal/mol as defined by 246

Cruciani et al [32]. Basically, the hydrophobic integy moment is the unbalance between 247

the center of mass of the molecules and the hydrophobic regions. Thus, the descriptor 248

may be related to the complementariety of inhibitors with the binding site, i.e. the 249

ability to form hydrogen bonds or polar contacts with the catalytic site or the S1 250

subsite and hydrophobic or π interactions in the S2 or S1’ subsites. 251

Fig 6. PLIF results for the docking calculation of the cruzain inhibitors in
the dataset. A: PLIF histogram for potential contacts. The color of the bars
represents the binding subsite in the cruzain. The code on the top of the bar is the kind
of interaction: D, A, side chain hydrogen bond donors or acceptors; d, a, backbone
hydrogen bond donors or acceptors, and R, arene or π interactions. B: PLIF histogram
for surface contacts. The color of the bars represents the binding subsite in the cruzain.
The code on the top of the bar is the kind of surface contact: H, hydrophobic; P, partial
hydrophobic; Q, charged; X, other, and C total

Subdivided Van der Waals surface area descriptors are defined in terms of properties 252

which can be divided into atomic contributions. In this case, partial charges and logP 253

contributions take into consideration the total available surface area for certain types of 254

electrostatic and hydrophobic contacts. Fig (7) shows the predicted conformations for 255

some of the molecules in the set, along with their 2D representation depicting the 256

partial charges and the atomic contributions to logP. PEOE VSA -1 and PEOE VSA -3 257

account the total surface area for atoms whose partial charges are in the ranges 258

[−0.10,−0.05) and [−0.20,−0.15), respectively. Atoms with partial charges related to 259

PEOE VSA -1 are often carbon atoms in aromatic rings and saturated chains. These 260
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molecular fragments bind to hydrophobic cavities, mainly in S2 and S1’ subsites and 261

remarkably they have close contacts with TRP-184. On the other hand, partial charges 262

accounted by PEOE VSA -3 are related to nitrogen-nitrogen containing groups, such as 263

thiosemicarbazones, acylhydrazines and oxadiazoles. This partial charge is also 264

associated with nitrile nitrogen, which is a chemical group present in the 265

peptidomimetics, the most active compounds in the set. All these groups are frequently 266

used as mimetics of the peptide bond since they can exert polar interactions required for 267

the backbone recognition near the catalytic and S1 subsites. 268

Fig 7. Binding conformations predicted by docking and visualization of
descriptors related to partial charges and logP contributions. 2D depictions
were generated as projections of their 3D conformations. The lines inside color bars are
the ranges which contribute to the binned Van der Waals surface area descriptors in the
QSAR model. In the 3D representation, cruzain subsites are shown in colors: yellow for
the catalytic triad, red for S1 subsite, raspberry for the S2 subsite, deepsalmon for S3
subsite, tv blue for S1’ subsite and lightblue for S2’ subsite (colors as defined by Pymol).

Regarding with surface descriptors, SLOGP VSA4 and SLOGP VSA9 measure the 269

total surface area for logP atomic contributions in the ranges [0.1, 0.15) and > 0.4, 270

respectively. Most of the atomic fragments related to SLOGP VSA4 are oxygen atoms 271

in carbonyl groups directly attached to aromatic rings. However, the coefficient for this 272

descriptor in the model equation is negative, indicating that this feature is unfavorable 273

for biological activity. The last of the subdivided Van der Waals surface area descriptor 274

takes into consideration mostly halogen atoms bound to aromatic or aliphatic groups. 275

The most potent compounds in the data set are also rich in halogen-containing groups. 276

Halogenated substituents are frequently used, among with other effects, to fulfill steric 277

contacts into protein cavities, so they can exert a shape-complementary effect with the 278

cruzain binding site, particularly in the well-defined S2 cavity and in the clefts formed 279

by the S1 and S1’ subsites. 280

Volsurf descriptors are calculated from grids extended around the molecule, and then 281

computing the interaction energy of this molecule with a probe on each of the grid 282

points. DW12, EWmin1 and Wp5 are calculated using a water molecule as a probe, and 283

thus are representative of polar interactions. For an energy isovalue of -3.0 kcal/mol, the 284

field is representative of favorable polar and hydrogen bond donor-acceptor regions [32]. 285

The total polar volume at this energy (Wp5) is positively correlated with biological 286
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activity, as can be deduced from its coefficient in the model equation. Futhermore, 287

EWmin1 indicates that a lowest hydrophilic interaction energy is more favorable for 288

cruzain inhibition. Fig (8) shows isosurfaces for the interaction fields at a level of -3.0 289

kcal/mol, with the same molecules as in Fig (7). It is clear from these representations 290

that polar volumes extend around hydrogen bond donors and acceptors, mainly on 291

those groups that mimic the peptide bond. Thus, these grid-based descriptors account 292

for the ability of inhibitors to form hydrogen bonds in the binding site for the peptide 293

bond recognition. 294

Fig 8. Polar surfaces at an isovalue of -3.0 kcal/mol. These interaction grids are
calculated using a water molecule in every point and are indicative of polar interactions.

The interpretation provided above is based on the physical meaning of descriptors in 295

terms of protein-ligand interactions. The model equation summarizes the presence of 296

chemical fragments whose atoms meet the electrostatic and hydrophobic requirements 297

for the binding into cruzain subsites but also their spatial distribution, as described by 298

their integy moments and polar molecular fields. These requirements resemble a 299

pharmacophore model that molecules within the applicability domain must meet to 300

bind into the protein and exert its inhibitory effect. 301

In summary, we have presented a QSAR model with a well-defined endpoint, as 302

described in methodology section for the criteria of data selection. The algorithm is 303

unambiguously presented, which consists in the application of Eq 5 to calculate the 304

predicted pIC50 for cruzain inhibition, given the required descriptors. The applicability 305

domain is defined using the leverage method, and a limit value is also given for the 306

reliability of predictions. The statistics for the goodness-of-fit, robustness and 307

predictability were calculated and all of them fall within the generally accepted 308

thresholds. Finally, a possible mechanistic interpretation of the model is proposed, in 309

terms of intermolecular interactions. Thus, in this study, the five OECD principles for 310

good practices in QSAR modeling are fulfilled. These principles are quality standards 311

for QSAR developement, mainly in regulatory purposes. Under these criteria, our 312

QSAR model is predictive and could be used in the search of new inhibitors or in the 313

rational design of new compounds with this biological activity. 314
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Conclusion 315

A Quantitative Structure-Activity Relationship model was developed for the calculation 316

of pIC50 values of cruzain inhibitors using multiple linear regression. The statistical 317

parameters describing its performance agree with the general recommendations for 318

QSAR modeling. In particular, the external validation demonstrates high predictability, 319

since the calculated statistical parameters are above the recommended thresholds, 320

considering its applicability domain. The molecular descriptors selected in the model 321

equation are related to the potential formation of intermolecular interactions as shown 322

in the binding modes calculated by docking. The linear equation integrates partial 323

charge, hydrophobic potentials, and energy with spatial distribution and volume 324

availability for polar interactions, indicating that there is a pharmacophoric-like 325

recognition in the core of this QSAR model. The use and interpretation of this model 326

could guide in the search, development and rational design of cruzain inhibitors as 327

possible pharmacological treatment of Chagas disease. 328

Supporting information 329
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