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Abstract  

 

Triple-negative breast cancer (TNBC) heterogeneity represents one of the main impediment to 

precision medicine for this disease. Recent concordant transcriptomics studies have shown that 

TNBC could be splitted into at least three subtypes with potential therapeutic implications. 

Although, a few studies have been done to predict TNBC subtype by means of transcriptomics 

data, subtyping was partially sensitive and limited by batch effect and dependence to a given 

dataset, which may penalize the switch to routine diagnostic testing. Therefore, we sought to build 

an absolute predictor (i.e. intra-patient diagnosis) based on machine learning algorithm with a 

limited number of probes. To this end, we started by introducing probe binary comparison for each 

patient (indicators). We based predictive analysis on this transformed data. Probe selection was 

first performed by combining both filter and wrapper methods for variable selection using cross 

validation. We thus tested three prediction models (random forest, gradient boosting [GB] and 

extreme gradient boosting) using this optimal subset of indicators as inputs. Nested cross-

validation allowed us to consistently choose the best model. Results showed that the 50 selected 

indicators highlighted biological characteristics associated with each TNBC subtype. The GB 

based on this subset of indicators has better performances as compared to the other models.  
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Introduction 

 

Triple-negative breast cancer (TNBC), which lacks the expression of estrogen receptor, 

progesterone receptor, and HER2, accounts for 12 to 17% of primary breast cancers, and is one of 

the most aggressive and deadly breast cancer subtypes [1]. Furthermore, heterogeneity and lack 

of targeted therapies represent the two main issues for precision treatment of TNBC patients. 

Molecular subtyping and identification of therapeutic pathways are therefore required to optimize 

medical care of these patients. Recently, we identified three TNBC subtypes with potential 

therapeutic implications: molecular apocrine (C1) and two basal-like enriched with opposite 

immune responses (C2: immunosuppressive response; C3: adaptive immune response) [2-4]. 

These results were based on transcriptomic data (Affymetrix® Human Genome U133 Plus 2.0 

Arrays) and validated by means of external data and protein expression using 

immunohistochemistry and proteomic data. Therefore, transition to precision medicine and 

selection of targeted treatments for TNBC depends on the establishment of a TNBC subtype 

predictor.  

The aim of the present work was to build such a predictor able to classify new patients by 

means of an algorithm that uses a set of Affymetrix® probeset intensities. In order to optimize the 

robustness of the algorithm and the likely manufacture of a diagnostic test, the following 

methodological guidelines have been imposed: Absolute assignment of TNBC subtypes, 

independent of external data (“intra-patient diagnosis” or “universal predictor”), and limited number 

gene probes, respectively. The first requirement was made to avoid the need for external data 

and/or normalization, and to circumvent molecular subtyping shortcomings [5-8]. The second 

requirement took into account the optimization of the diagnostic test from an industrial point of 

view, implying that it is preferable to select a low number of gene probes. 

The identification of TNBC subtypes can be seen as a classification task, which can be 

addressed with machine learning methods. In the healthcare field, these techniques are popular 

and even essential to analyze the large volumes of data produced for a patient. In fact, the 

healthcare data generated are sometimes too complex and voluminous to be processed by 

traditional methods. Analytical methods then provide tools to turn this data into useful information 

for decision-making and useful knowledge for biomedical research [9,10]. 

Our main objective was to build a predictive model based on the observation of 54.675 

probes for providing the probabilities of belonging to each TNBC subtypes for each patient. Note 

that this objective is different and more tricky than only predicting the TNBC subtype. Probability 

estimation for classification has a long-standing tradition in biostatistics and machine learning, see 

for instance Kruppa et al. [11,12]. For our issue, this strategy was justified not only by the fact that 

our targets represent a membership value for each patient belonging to each of the TNBC subtype 

(one score by subtype), but also, by the existence of biological gradients between the two basal-
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like TNBC subtypes (C2 and C3). Two biological characteristics stood out: immune response and 

PIK3CA mutation status. Concerning the first one, two opposite immune response gradients were 

observed. Archetypal C2 tumors displayed the highest pro-tumorigenic response (high M2/M1 

ratio), decreasing steadily from C2 to C3. To the contrary, archetypal C3 tumors displayed the 

highest anti-tumorigenic responses (T-cell, B-cell, T-cell cytolytic activity, STAT1, MHC-2, Type I 

interferon, MHC-1), decreasing steadily from C3 to C2. The PIK3CA mutation status gradient 

showed a profile comparable to that observed for anti-tumorigenic ones. C2 and C3 tumors have a 

common basal-like background but mainly differ by the direction and the level of the immune 

response, and the level of PIK3CA mutation status. Probabilities were very close in the border 

between C2 and C3 and can lead to ambiguity in group memberships. It is thus of first importance 

to estimate these probabilities. 

Our prediction method takes as an input a given fuzzy clustering and more specifically the 

probabilities of belonging to each cluster. In the paper, we illustrate the method on the results of 

Jézéquel et al. which provide a fuzzy clustering of the TNBC subtypes and the corresponding 

TNBC subtype probabilities over 693 patients [4]. The problem then boils down to a multi target 

regression methodology based on 54.675 probes and can be solved by various methods in 

machine learning. Note that the method could be applied to the results of other clustering 

algorithms of TNBC and in particular with more clusters. 

There are two distinct reasons to apply variable selection for reducing the number of 

variables (probes): first because from the industrial point of view we want a low number of gene 

probes and corresponding measures (the parsimony principle), second because we want to control 

the overfitting of models fitted on the data. After variable selection, three machine learning 

methods were applied: 1) random forest (RF); 2) gradient boosting (GB); 3) XGBoost (XGB) 

(extreme gradient boosting) [13-15]. The three models have many parameters which can be 

optimized in order to improve model’s performance. The best model was then selected: Cross 

validation (CV) for both model selection and tuning parameters, however two different CV are 

required. Thus, nested CV (NCV) was performed to get an unbiased estimate of performance of 

predictive model [16-18]. 
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Materials and methods  

 

TNBC cohorts 

We looked for TNBC cohorts with available genomic data. To avoid cross-platform normalization 

issues, we exclusively looked for Affymetrix® genomic datasets using the same platform, here the 

HG U133Plus2 microarray, in repositories such as Gene Expression Omnibus (GEO) and 

ArrayExpress, selecting those with a medium to large sample size. All datasets were MAS5-

normalized using the Affymetrix Expression Console software with default analysis parameters and 

then log2-transformed. 

 

Experimental design  

We aimed at identifying TNBC subtypes and to establish an universal predictor able to predict the 

subtype of a new patient. To do this, we carried out this study in two steps. In the first step, 

clustering analysis was conducted based on several transcriptomic datasets. We have been 

careful to remove batch effect before unsupervised analysis. In the second step, we selected 

variables to include to predictive models (Figure 1). We built several predictive models and then 

chose the best one able to predict the TNBC subtype of new patients.  

 

Cluster analysis to identify subtypes of TNBC 

 

Data integration and batch effect removal 

All cohorts were merged into a single one to produce an information-rich dataset and hence to 

increase the quality and performance of statistical analysis. However, the main problem of 

microarray data integration is batch effect due to different studies. Many methods exist for 

removing batch effects from data [19,20]. We tested two of the most used methods: 

“removeBatchEffect” (RBM) in the “limma” package and “Combat” [21,22]. Guided principal 

component analysis (gPCA) was used to evaluate them and then to choose the best one for our 

dataset [23].  

 

Class partition 

Fuzzy C-means (FCM) clustering was used to cluster data into homogeneous subgroups with 

similar biological characteristics [2,4,24]. We performed FCM clustering with centered Pearson 

distance based on the 5% most variable probe sets (n = 2,734 probes) after batch effect removal. 

FCM provides for each patient the corresponding probabilities of the TNBC subtypes.  

 

Subtypes prediction and variable selection  
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For improving the robustness of our method, we built prediction rules on comparison variables 

between all pairs of probes, rather than on the raw variables (MAS5 normalized data) by 

introducing comparison variables. These binary comparisons have been named “indicators”. The 

indicator “A > B” were equal to “1” if the expression value of probe A was greater than the 

expression value of probe B, and “0” otherwise. In consequence, analyses were less sensitive to 

standardization methods or batch effect removal methods [25-28]. This approach met our first 

requirement. However, it increased the number of new variables (indicators) significantly and 

consequently increased both training time and risk of overfitting. So, in order to optimize machine 

learning models and to reduce the numbers of variables, we performed variable selection methods. 

This last point met the requirement of industrial application (that is, a “reasonable” number of 

probes). 

 

Variable selection 

The selection of variables is an important step of model design, especially when the number of 

variables is large. The aim of this step was to determine an optimal subset of descriptors to 

decrease model complexity and increase prediction score. 

Here, we combined two approaches: first, univariate filter methods to reduce variable space 

by selecting a subset of probes regardless of the model, and then wrapper based on this subset by 

training a learning model that determined the usefulness of this subset and selected an optimal 

sub-subset according to the evaluation criterion, which depends on the type of problem. Here it’s a 

regression task. 

Four filter approaches based on univariate statistical tests were applied to the original 

dataset MAS5 normalized: mutual information, Fisher score test, Chi-2 test and keeping probes 

with high variance (Figure 1). We used “SelectPercentile” function from “sklearn.variable_selection” 

Python module to select probes according to a percentile of the highest scores. Three arbitrary 

percentile thresholds were used to select the number of probes: 0.2% (List 1), 0.4% (List 2) and 

0.6% (List 3). And then we took the union of the probes obtained by the four filter methods, and 

this for each percentile. In the second step, we further applied forward selection (FS) to subset of 

probes, which have been selected previously in the first step. FS process, explained by pseudo-

code, is detailed in Figure 2. Briefly, it works in two steps. In the first step, the algorithm seeks for 

the best two probes to minimize the cross validation mean squared error (RMSE CV) at each step 

using “RandomForestRegressor” function from “sklearn.ensemble” Python module. In the second 

step, FS process tests the rest of the available probes. For each probe, the binary comparison 

indicators were built from the probes already chosen and a new probe. The CV error obtained was 

then calculated using old and new indicators. This step was repeated until the RMSE no longer 

decreased or until maximum number of probes was obtained, which was fixed beforehand (input 

parameter of our FS function) (Figure 2). 
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FS algorithm was also used to select the best indicators once the probes have been fixed. 

 

Probability estimation and class prediction 

Many supervised machine learning models can be used for multi target regression, that is to 

predict a d-dimensional vector of real values given a set of predictors (variables). We identified 

three of the most popular used methods to be tested in our study: 1) RF; 2) GB; 3) XGB [13-15]. 

We note that only RF satisfies the constraint, which guarantees the sum of membership values for 

each patient is equal to 1. It was therefore necessary to standardize the predictions output for GB 

and XGB. Two methods were tested. In the first one, we divided each of the values by the sum of 

the three probabilities obtained. We will use the terms GB1 and XGB1 to denote GB and XGB after 

this standardization, respectively. In the second one, we kept the greatest probability value and 

divide the two others so that the sum of the new probabilities makes one (GB2 and XGB2). 

 Prediction for the TNBC was also derived for each patient by selecting the TNBC class of 

highest probability. 

 

Model selection and evaluation 

To get an unbiased estimate performance of our predictive model, we split the dataset into a 90% 

training set and 10% test set. Machine learning models were fitted on the training data with nested 

cross validation (NCV). The nested CV has the inner loop CV nested in an outer loop CV. The CV 

inner loop is used to perform hyperparameter tuning (here executed by “GridSearchCV” from 

Python module “sklearn.model_selection”), while the outer CV is used to estimate the unbiased 

generalization performance of models. The complete workflow using stratified NCV is described in 

Figure 1. The cycle of nested CV was independently run ten times in order to obtain a reliable 

result. The metric used to evaluate prediction errors on regression models is R squared (R2) which 

represents the coefficient of adequacy of the values compared to the values of origin. Here, the R2 

score for each individual target was averaged. We used the default “uniform averaged”, which 

specifies an uniformly weighted mean over outputs. 

 In addition, since multi-outputs represent the probability of belonging to each TNBC 

subtypes, we assigned each patient to the group to which he had the highest probability of 

belonging. Then we calculated the rate of well classified, the sensitivity and specificity of each 

subtype. 

 

Statistical analysis 

Clustering and figures’ generations were performed using R (R Core Team 2018) version 3.6.1 for 

Windows® [29] and the packages “amap” 0.8.16, “cluster” 2.0.7 and “ggplot2” 3.3.0 packages. The 

subtypes prediction and variable selection statistical analysis was performed in python version 
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3.7.3 in Jupyter notebooks version 6.0.0 with modules like “SKLearn” 0.21.2 [30], “XGBoost” 0.90 

and other functions that we wrote ourselves.  
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Results  

 

TNBC cohorts 

Seven cohorts were selected, including a total of 693 TNBC patients (Table S1). 

 

Unsupervised analysis 

Two methods of removing batch effects were tested: RBM and Combat. To evaluate batch effect 

removal efficacy of each method, gPCA was used. Test statistic δ for Combat method was very 

close to zero compared to RBM (δ = 0.0861; P = 0.953 and δ = 0.2743; P = 0.1 for RBM, 

respectively). This result allowed us to choose Combat method to remove batch effects, exclude 

the hypothesis of technical biases and permits us to merge all cohorts. Principal component 

analysis (PCA) with the projection of the different cohorts onto the first principal plane showed a 

homogeneous distribution of patients and that there is no apparent variability related to different 

studies (Figure S1). 

Biological significance of the clusters found in our previous studies lead us to choose the 

number of three clusters by means of FCM: C1 (n = 169; 24.4%); C2 (n = 252; 36.4%); C3 (n = 

272; 39.2%) [2,4] (Figure S2). 

 

Variable selection 

Table 1 summarizes and shows the number of probes and indicators selected after each step of 

our pipeline. 

Three probe lists were obtained containing 361, 675 and 975 probes for the three arbitrary 

threshold filters, 0.2%, 0.4% and 0.6%, respectively. Each of them represents the union of the top 

ranked probes generated by the four univariate filter methods (Figure 1). In the following, for 

convenience purposes only, we will use the terms “List 1”, “List 2” and “List 3” for each calculation 

step according to 0.2%, 0.4% and 0.6% threshold filters, respectively.  

To visualize the results of the FS applied to the three lists of probes, we plotted the RMSE 

CV as a function of the number of probes in the model (Figure 3A, C and E). The three curves 

decreased first and then remained stable between 30 and 50 probes. We selected 32, 36 and 34 

probes for List 1, List 2 and List 3, respectively (Table S2). Indeed, for List 2 and 3, the number of 

selected probes corresponded to the minimum value of RMSECV. However, for the List 1, the 

smallest RMSECV (0.1108) value was obtained when the number of probes was equal to 41, 

which generated 820 indicators. This number was relatively high according to our criteria. 

However, with 32 probes we also got a value close to the smallest RMSECV (0.1134), and we 

reduced the number of indicators by almost half (496 indicators). Selected probes were linked to 

cluster biological characteristics: molecular apocrine for C1, basal-like for C2 and C3, and immune 

response for C3 (Table 2). 
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 We proceeded in the same way for FS on the 496, 630 and 561 indicators formed by the 

previously selected probes for List 1, List 2 and List 3, respectively (Table 1). The relation between 

the number of indicators used for the construction of the model and the corresponding 

performances measured by R2 score obtained from CV are displayed in Figure 3B, D and F. A 

considerable increase in score CV was observed, but ultimately it was generally flat and stabilized 

with just over 30 indicators, indicating that an appropriate number of indicators was reached. We 

restricted the number of indicators to 50 for each of the three lists (Table S3). Overall, all indicators 

contributed relevant information to discriminate the three TNBC subtypes (Figure S3, S4 and S5). 

Each barplot highlighted a significant difference in the distribution of the TNBC subtypes between 

the indicator values. Taking for example the indicator “FOXA1 > TTK”, it took the value “1” at high 

frequency in C1 while relatively low in C2 or C3. This initial impression was confirmed by Fisher's 

exact statistical test (P < 0.001). All selected indicators can be classified into four categories 

based on cluster separation information: C1 versus C2/C3; C2 versus C1/3; C3 versus C1/C2; C1 

versus C2 versus C3 (Table 3). Distributions of the numbers of indicators between the four 

categories was similar, as performed by the Fisher's exact test (P = 0.6642).  

 

Probability estimation and class prediction  

The evaluation metrics are reported in the two boxplots Figure 4A and B, which show the average 

R2 score (i.e. inference of the probabilities) and average accuracy (i.e. classification into TNBC 

subtypes) over NCV over 10 runs, respectively. The predictive score and accuracy across the five 

models were consistently high. This is valid for the three lists. However, List 2 showed the best 

performances, both in terms of R2 scores and accuracy regardless the models. Results are 

summarized in Table S4 and S5. 

 For this list of indicators (List 2), the two predictive models based on gradient boosting 

contributed the best. They showed similar performances. So, we chose to aggregate the results of 

these two models instead of selecting one. We take the average of the probabilities obtained by 

each GB model. 

The aggregation of the two models gave a slightly higher R2 score and built a compromise 

between the two models regarding the accuracy (Figure 5). This model was worthy of further study, 

it was the best and was then selected. 

 Figure 6 shows the detailed results of the less performant run of all (run 9) obtained with the 

best model. The confusion matrix shows predictions about 623 TNBC breast cancer patients 

(Figure 6A). We were able to distinguish the TNBC subtypes with a high score of accuracy of 

94.22%. The three TNBC subtypes had both a high sensitivity and a high specificity (Figure 6B). 

More particularly, patients belonging to C1 subtype were identified with a sensitivity of 97.39% and 

specificity of 99.57% (Figure 6B). It results from the biological characteristics of C1 which are 
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hugely different from C2 and C3. The most incorrectly cluster assignments were in the overlap 

between C2 and C3 (Figure 6A and C). 

 This result comes as no surprise since C2 and C3 are both basal-like subtypes mainly 

distinguished by the direction of the immune response (that is, pro-tumorigenic in C2 and anti-

tumorigenic in C3). Furthermore, we demonstrated that immunological response gradients existed 

between these two clusters [4]. On the contrary, biological characteristics of C1, which is a 

molecular apocrine cluster, are very different from those of C2 and C3.  

 We used this best model to predict TNBC subtypes of 70 patients of the test set. Finally, 

our model predicted 64 correct classifications among 70. The matrix confusion was used to 

summarizing the performance of the model (Figure 7A).  

 Overall, we can conclude that our model with aggregation of the two GB based on the 

List 2 of indicators is robust with a good generalization performance to predict TNBC subtypes. 
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Discussion  

 

In this work, we propose a method able to distinguish TNBC subtypes independent of external 

data, and with a restricted number of probes. Microarray expression studies are often 

compromised by the presence of batch effect and normalization step and methods. The choice to 

work from binary comparisons allowed us to propose a robust model which is independent of these 

sources of variability.  

We adapt machine learning algorithms to solve a multi-target regression problem. The 

number of probes and the number of indicators based on these probes are reduced for both 

industrial and statistical performance reasons. The number of indicators was reduced from more 

than one billion to only 50 strongly relevant indicators, through the application of a hybrid method 

of variable selection on the training data (90% of full data). These indicators were generated by 36 

probes. From a biological standpoint, selected probes/genes and indicators are very pertinent. 

These results are in total concordance with biological characteristics of the three TNBC clusters. 

We found that the model with aggregation of the two GB has achieved the best NCV score 

performances across 10 runs of all tested models. The model’s generalization performance was 

approved; it generalized well to test data set. We can safely assume that it is no overfitted to the 

training data. Misclassified cases relate to tumors which locate at the border of fuzzy clusters, and 

more specially between C2 and C3. Indeed, these two basal-like clusters are very similar. The 

main biological trait that differentiates them is the direction of the immune response, with a 

decreasing pro-tumorigenic immune response from C2 to C3 and a decreasing anti-tumorigenic 

immune response from C3 to C2. These biological gradients create a kind of overlap between C2 

and C3, which complicates prediction analysis when fuzzy clustering probabilities are close to 0.5.  

In future works, we intend to adapt some approaches of structured regularizers for different 

types of high-dimensional problems to provide a penalization method for the problem studied in 

this paper [31].  
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Table 1 Summary of the number of probes and indicators in function of the three probe 

threshold filter lists. List 1: 0.2%; List 2: 0.4%; List 3: 0.6%.  

 

 
List 1 List 2 List3 

Threshold percentile  0.2% 0.4% 0.6% 

Probes generated per univariate filter method 109 219 328 

Union of the four univariate filter methods (probes) 361 675 975 

FS based on probes 32 36 34 

Indicators generated  496 630 561 

FS based on indicators 50 50 50 
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Table 2 TNBC subtype specificity (C1, C2, C3) of selected probes/genes in function of the 

three probe threshold filter lists. List 1: 0.2%; List 2: 0.4%; List 3: 0.6%.  

 
List 1 (n = 32) List 2 (n = 36) List 3 (n = 34) 

C1 (n = 9): 
AGR2; ALCAM; AR; FOXA1; 
ITGB5; NQO1; PRICKLE2; 
SMIM14; TTC8 

C1 (n = 9): 
ADH1B; APBB2; ALCAM; AR; 
DUSP4; FOXA1; KIAA1324; 
SLC7A8; UGDH 
 

C1 (n = 7): 
APBB2; AR; ERBB4; FAM214A; 
FOXA1; KIAA1324; MEGF9  

C2 and C2/C3 (n = 11): 
BCL11A (x2); CDCA2; CDCA7; 
COL2A1; FOXC1; KNCK5; 
220425_x_at; TAF4B; 
TFCP2L1; TTK 

C2 and C2/C3 (n = 13): 
ACTG2; BCL11A (x2); CDCA2; 
CDCA7; FOXC1; IQCG; KRT23; 
MIA; PIMREG; SHC4; TTK; 
TFCP2L1 

C2 and C2/C3 (n = 15): 
ABCC11; ACTB; BCL11A; CCNE1; 
CENPF; FOXC1; MAP2; PIMREG; 
PRKX; SHC4; SOX6; SOX10; 
SUV39H2; TFCP2L1; YEATS2 
 

C3 (n = 12): 
CD3D; CYTIP; GZMA; 
214916_x_at; IGKC; 
216401_x_at; IKZF1; JCHAIN; 
NKG7; P2RY10; POU2AF1; 
SLA2  

C3 (n = 14): 
APOBEC3G; CD2; CD38; CD3D; 
CD52; CYSLTR1; 216401_x_at; 
IGLV2-14; JCHAIN; NKG7; 
POU2AF1; PVRIG; RHOH; 
SAMSN1 
 

C3 (n = 11): 
217157_x_at; 217281_x_at; 
217480_x_at; AIM2; CD2; GIMAP4; 
IFIH1; IGLL3P; IL10RA; POU2AF1; 
SLAMF7 

  Unknown (n = 1): 
200099_s_at 
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Table 3 TNBC subtype specificity (C1, C2, C3) of selected indicators in function of the three 

probe threshold filter lists. List 1: 0.2%; List 2: 0.4%; List 3: 0.6%.  

 
 
List 1 (n = 50) List 2 (n = 50) List 3 (n = 50) 

C1 versus C2/C3 (n = 15): 
 
FOXA1 > TTK; BCL11A > AR; 
KCNK5 > AGR2; FOXA1 > BCL11A; 
FOXA1 > CDCA7; FOXC1 > ITGB5; 
KCNK5 > ITGB5; CDCA2 > AR; 
FOXA1 > IGKC; AGR2 > AR;  
BCL11A > ITGB5; FOXA1 > TAF4B; 
PRICKLE2 > CDCA2; BCL11A > PRICKLE2; 
TTK > AR  
 

C1 versus C2/C3 (n = 19): 
 
FOXA1 > TTK; FOXA1 > CDCA7;  
CD2 > FOXC1; FOXA1 > TFCP2L1; 
MIA > RHOH; FOXA1 > BCL11A; 
AR > IQCG; ADH1B > APOBEC3G;  
CDCA7 > AR; TTK > APBB2;  
FOXA1 > CDCA2; BCL11A > TFCP2L1; 
CYSLTR1 > BCL11A; AR > KRT23;  
AR > FOXC1; TTK > CYSLTR1;  
CD2 > ADH1B; DUSP4 > CDCA2; 
UGDH > KRT23   
 

C1 versus C2/C3(n = 17): 
 
FOXA1 > BCL11A; KIAA1324 > IFIH1; 
CENPF > AR; FOXA1 > 217281_x_at; 
AR > 217157_x_at; PRKX > MEGF9; 
FAM214A > IFIH1; FOXA1 > PIMREG; 
PRKX > FOXA1; FOXA1 > CENPF; 
GIMAP4 > AR; BCL11A > AIM2;  
AR > SOX10; AR > FOXC1;  
SOX10 > ERBB4; YEATS2 > FAM214A; 
MEGF9 > IFIH1   
 
 

C2 versus C1/C3 (n = 19): 
 
KCNK5 > CD3D; JCHAIN > 220425_x_at;  
BCL11A > 214916_x_at; CYTIP > TAF4B; 
POU2AF1 > FOXC1; COL2A1 > P2RY10; 
POU2AF1 > TFCP2L1; JCHAIN > BCL11A; 
220425_x_at > CD3D; BCL11A > IGKC;  
NKG7 > KCNK5; COL2A1 > 216401_x_at; 
KCNK5 > GZMA; POU2AF1 > BCL11A; 
TFCP2L1 > IKZF1; BCL11A > GZMA; 
POU2AF1 > TAF4B; TAF4B > CD3D;  
NKG7 > COL2A1      
 

C2 versus C1/C3 (n = 15): 
 
POU2AF1 > BCL11A; SHC4 > CD52; 
216401_x_at > CDCA2; IGLV2-14 > KRT23; 
TTK > JCHAIN; CD38 > PIMREG;  
MIA > JCHAIN; TFCP2L1 > APOBEC3G; 
216401_x_at > ACTG2; MIA > CD3D; 
SHC4 > ADH1B; TTK > CD2; 
MIA > APOBEC3G; CD2 > PIMREG; 
SHC4 > AR 
 

C2 versus C1/C3 (n = 16): 
 
SHC4 > 217157_x_at; SOX6 > GIMAP4; 
SOX10 > IGLL3P; SOX6 > SLAMF7; 
BCL11A > GIMAP4; CD2 > TFCP2L1; 
217157_x_at > TFCP2L1; GIMAP4 > SHC4; 
IL10RA > MAP2; YEATS2 > IL10RA;  
GIMAP4 > SOX10; CD2 > BCL11A;  
CD2 > PIMREG; SHC4 > 217281_x_at;  
MEGF9 > FAM214A; SHC4 > SLAMF7  
 

C3 versus C1/C2 (n = 15): 
 
ITGB5 > P2RY10; POU2AF1 > ALCAM; 
PRICKLE2 > P2RY10; PRICKLE2 > GZMA; 
TTC8 > 216401_x_at; TTC8 > CD3D;  
ALCAM > 216401_x_at; ITGB5 > GZMA;  
TTC8 > 214916_x_at; TTC8 > P2RY10;  
NKG7 > ITGB5; CYTIP > NQO1;  
TTC8 > CYTIP; NQO1 > CD3D;  
AR > P2RY10 
 

C3 versus C1/C2 (n = 14): 
 
APBB2 > CD2; POU2AF1 > AR; 
SLCA8 > RHOH; APBB2 > 216401_x_at; 
ALCAM > CD38; ALCAM > CD52;  
CYSLTR1 > DUSP4; CD2 > UGDH;  
KIAA1324 > NKG7; ADH1B > 216401_x_at;  
POU2AF1 > KIAA1324; UGHD > 216401_x_at; 
POU2AF1 > UGDH; CYSLTR1 > AR  
 

C3 versus C1/C2 (n = 12): 
 
CD2 > MEGF9; POU2AF1 > APBB2; 
CD2 > APBB2; POU2AF1 > YEATS2; 
APBB2 > 217480_x_at; AR > AIM2;  
YEATS2 > 217157_x_at; AIM2 > KIAA1324;  
CD2 > FAM214A; APBB2 > 217281_x_at;  
217480_x_at > FAM214A; 217281_x_at > MAP2 

C1 versus C2 versus C3 (n = 1): 
 
ALCAM > SLA2 
 

C1 versus C2 versus C3 (n = 2): 
 
UGDH > IQCG; NKG7 > APOBEC3G 
 

C1 versus C2 versus C3 (n = 5): 
 
IFIH1 > ACTB; APBB2 > SLAMF7;  
POU2AF1 > ACTB; SHC4 > MAP2; 
YEATS2 > SLAMF7 
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Figure legends: 

 

Figure 1 Flowchart of subtype prediction and variable selection  

The study can be divided into two mains steps: variable selection and model selection and 

evaluation. For the optimal variable selection, several univariate filter methods were used to select 

preliminary probes subset, which was then used as input for the wrapper method (Forward 

selection) after binarization using indicator function. Prediction subtype using several models with 

the optimal selected indicators was applied. Nested cross-validation was used to train and evaluate 

models. Based on the optimal subsets of indicators, the best predictive model was applied to the 

test set after binarization. 

 

Figure 2 Forward selection explained by pseudo-code for identifying probes and indicators 

 

Figure 3 Forward selection on the probes preselected by univariate filter methods 

The variation of RMSECV with the number of probes selected by forward selection on the probes 

using List 1 (A), List 2 (C) and List 3 (E). Score depending on the number of indicators selected by 

forward selection based on the probes selected previously using List 1 (B), List 2 (D) and List 3 (F).  

 

Figure 4 Performance comparisons of different models using different list of indicators and 

10 runs of NCV. 

A. Boxplots showing the distribution of average R2 scores; B. Boxplots showing the distribution of 

average accuracy. Random Forest (RF) (yellow), Gradient Boosting 1 (GB1) (green), Gradient 

Boosting 2 (GB2) (blue), XGBoost 1 (XGB1) (pink) and XGBoost 2 (XGB2) (red). 

 

Figure 5 Performance comparisons of the two GB models and their aggregation across 10 

runs. 

A. Comparison of average NCV R2 score of different models of each run. B. Comparison of 

average NCF accuracy of different models of each run. Gradient Boosting 1 (GB1) (green), 

Gradient Boosting 2 (GB2) (blue) and aggregation (purple). 

 

Figure 6 Aggregative model performance based on training data for the run 9 of NCV. 

A. Confusion matrix for C1, C2 and C3 TNBC subtypes. The number of correct and incorrect 

prediction are summarized with count and subdivided by their actual and predicted TNBC 

subtypes. B. Bar chart comparison of sensitivity and specificity among the three TNBC subtypes. 
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C. Distribution of misclassified patients based on probability of belonging to TNBC subtypes. Actual 

probabilities (dots) were connected with prediction values (triangles) using grey segments. 

 

Figure 7 Aggregative model performance based on testing data. 

A. Confusion matrix for C1, C2 and C3 TNBC subtypes. The number of correct and incorrect 

prediction are summarized with count and subdivided by their actual and predicted TNBC 

subtypes. B. Bar chart comparison of sensitivity and specificity among the three TNBC subtypes. 

C. Distribution of misclassified patients based on probability of belonging to TNBC subtypes. Actual 

probabilities (dots) were connected with prediction values (triangles) using grey segments. 
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Figure 1  
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Figure 2 
 
  // Step 1: We seek for the best two probes to minimize the cross validation (RMSE) // 
 
best_error = 100 

best_indicator = None 

for each indicator in all indicators : { 
error = get the cross validation RMSE (indicator) 

           if error < best_error : { 
            best_error = error 

            best_indicator = indicator 

           } 
} 
//Step 2: We test the rest of the available probes // 
 

get best_probes 

new_best_probe = None 

new_best_error = best_error  
best_indicators = best_indicatror 

for each probe in available probes : { 
            new_indicators = create indicators between best_probes and probe 

            indicators = aggregation of best_indicators and new_indicators 

            error = get the cross validation RMSE (indicators) 
            if error < new_best_error : { 
            new_best_error = error 

                      add probe to best_probes 

                      best_indicators = indicators 

           } 
} 

return new_best_error, best_probes and best_indicators    
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Figure 3 
 
 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.129544doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.129544


28 
 

Figure 4  
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Figure 5 
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Figure 6  
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Figure 7  
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