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ABSTRACT 

 

All organisms encode enzymes that replicate, maintain, pack, recombine, and repair their genetic 

material. For this reason, mutation rates and biases also evolve by mutation, variation, and 

natural selection. By examining metagenomic time series of the Lenski long-term evolution 

experiment (LTEE) with Escherichia coli (Good, et al. 2017), we find that local mutation rate 

variation has evolved during the LTEE. Each LTEE population has evolved idiosyncratic 

differences in their rates of point mutations, indels, and mobile element insertions, due to the 

fixation of various hypermutator and antimutator alleles. One LTEE population, called Ara+3, 

shows a strong, symmetric wave pattern in its density of point mutations, radiating from the 

origin of replication. This pattern is largely missing from the other LTEE populations, most of 

which evolved missense, indel, or structural mutations in topA, fis, and dusB— loci that all affect 

DNA topology. The distribution of mutations in those genes over time suggests epistasis and 

historical contingency in the evolution of DNA topology, which may have in turn affected local 

mutation rates. Overall, the replicate populations of the LTEE have largely diverged in their 

mutation rates and biases, even though they have adapted to identical abiotic conditions.  
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INTRODUCTION 

 

Loci that modify DNA repair and recombination modify the evolutionary process. 

Therefore, one might ask whether natural selection adaptively tunes mutation and recombination 

rates. This idea— that second-order selection adaptively modifies the evolutionary process 

itself— is debated (Tenaillon, et al. 2001; Lynch, et al. 2016). Nonetheless, populations of 

Escherichia coli, engineered to have constitutive sexual recombination and elevated mutation 

rates, adapt faster than control populations in the laboratory (Cooper 2007; Peabody, et al. 2016; 

Peabody, et al. 2017).  

In order to study second-order selection on mutation rates, one can use experimental 

evolution. By running experiments in which replicate populations evolve under controlled 

conditions, with different starting mutation rates, one can ask whether particular mutation rates 

are favored over others (Chao, et al. 1983; Loh, et al. 2010; Sprouffske, et al. 2018). Here, we 

use metagenomic time series data from the Lenski long-term evolution experiment with 

Escherichia coli (LTEE) to study how mutation rates evolve in real-time.  

In the LTEE, 12 populations of Escherichia coli, descended from a common ancestral 

strain, have adapted for more than 73,000 generations to carbon-limited minimal media. The 

LTEE populations are strictly asexual. Some populations have evolved defects in DNA repair 

which vastly increase their mutation rate. Those hypermutator alleles likely went to fixation by 

linkage with highly beneficial mutations, rather than being beneficial per se (Sniegowski, et al. 

1997; Tenaillon, et al. 2016). 

Molecular evolution in the hypermutator populations of the LTEE is dominated by 

“genetic draft”, in which large numbers of nearly neutral passenger mutations hitchhike with a 

small number of beneficial driver mutations. This phenomenon has obscured the genomic 

signatures of adaptation in those populations (Tenaillon, et al. 2016; Couce, et al. 2017; Good, et 

al. 2017; Maddamsetti, et al. 2017). In this regime, also called “emergent neutrality” (Schiffels, 

et al. 2011), the evolutionary dynamics inferred from whole-population samples of the 

hypermutator populations (Good et al. 2017) provides good data on mutation rates and biases, 

even though natural selection drives the dynamics. Here, we examined LTEE metagenomics data 

(Good, et al. 2017) for the mutation biases that have been reported by several research groups, 
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albeit under different experimental conditions and with different strains (Foster, et al. 2013; Paul, 

et al. 2013; Jee, et al. 2016; Niccum, et al. 2019). 

 

RESULTS 

 

Cumulative number of observed mutations in each population reveals dynamics caused by both 

hypermutator and antimutator alleles 

 

We examined the number of observed mutations over time in each LTEE population 

(Figure 1, Supplementary Figures S1–S3). These results show that mutation rates have evolved 

idiosyncratically over the LTEE. Figure 1A shows the number of point mutations over time in 

each population. The rate of observed point mutations decreased in three of the six hypermutator 

populations (Ara−2, Ara+3, and Ara+6). The decrease in the rate of molecular evolution in these 

populations was previously ascribed to the evolution of antimutator alleles (Tenaillon, et al. 

2016; Good, et al. 2017). While antimutator alleles of mutY compensating for defects in mutT 

have been reported in Ara–1 (Wielgoss, et al. 2013), the change in slope seen around 40,000 

generations in Ara−1 is subtle compared to the changes in slope seen in Ara−2, Ara+3, and 

Ara+6. The antimutator allele in Ara−2 will be discussed shortly, while those in Ara+3 and 

Ara+6 remain unknown. 

 In examining mutT, we noticed that two of the three cases of mutT alleles arising to high 

frequency in the LTEE occur on a uvrA background (Ara−2 and Ara+6), while the third, in 

Ara−1, occurs on a uvrC background (Figure 2). Might this indicate epistasis between mutT and 

uvrABC? It has been reported that uvrA/mutT and uvrB/mutT double mutants have a substantially 

lower mutation rate than a mutT mutant in the presence of hydrogen peroxide (Hori, et al. 2007). 

Thus, it is possible that the mutT alleles that successfully went to fixation in the LTEE evolved 

on an epistatic genetic background that reduces the intensity of their mutator phenotype.  

Figure 1B shows the number of observed indel mutations over time in each population. 5 

of the 6 point-mutation hypermutator populations also show an indel hypermutator phenotype. 

These 5 populations all evolved defects in mismatch repair (Figure 3). The exception is Ara−1, 

which evolved alleles of uvrA and mutT (Figure 2) that cause a high rate of point mutations, 

without a corresponding indel hypermutator phenotype.  
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The hypermutator dynamics in Ara−2 are particularly striking. An antimutator allele 

eventually fixes, and reverts both the point and indel hypermutator phenotype back to wild-type 

or near wild-type levels (Figure 1A and 1B). The hypermutator phenotype is caused by phase 

variation of a (TGGCGC)3 repeat in mutL. Reversions to the triplet state reverse the 

hypermutator phenotype. The number of new point and indel mutations in Ara−2 

(Supplementary Figures S1, S2) fluctuates with the allele frequency dynamics of this mutL repeat 

(Figure 3). 

At first glance, Figure 1B seems to show that Ara+6 fixed a mutation reverting the indel 

hypermutator phenotype. However, the allele frequency dynamics reveal that a super-

hypermutator clade evolved within the first 1000 generations. This super-hypermutator clade 

carried alleles of the mismatch repair genes xseA and mutS (Figure 3) as well as alleles of the 

nucleotide excision repair genes uvrA and uvrB (Figure 2), and persisted at low frequency until 

going extinct by 20,000 generations (Supplementary Figure S2). The majority clade in Ara+6 

evolved mutations in uvrA and mutT at ~5000 generations (Figure 2) that caused a point 

mutation hypermutator phenotype without causing an indel hypermutator phenotype. The 

coexistence of clades with different hypermutator phenotypes, and the eventual extinction of the 

super-hypermutator clade, best explains the loss of the indel hypermutator phenotype from 

Ara+6. 

Figure 1C shows the number of observed structural mutations over time. Most of these 

structural mutations are caused by the transposition of mobile genetic elements called insertion 

sequences (IS). Three of the canonical nonmutator populations (Ara−5, Ara−6, and Ara+1) show 

an IS hypermutator phenotype. The IS hypermutator phenotype in Ara+1 has been reported 

previously (Papadopoulos, et al. 1999; Tenaillon, et al. 2016). By contrast, only one of the 

canonical hypermutator populations, Ara−3, shows an IS hypermutator phenotype. The rate of 

observed structural mutations in Ara−3 shows three different slopes. Ara−3 evolved an IS 

hypermutator phenotype very early in the LTEE. Around 30,000 generations, the IS rate 

intensifies, either due to genetic evolution, or as a consequence of stress induced by the citrate 

metabolic innovation that evolved around that time (Blount, et al. 2012; Blount, et al. 2020). 

Finally, the IS rate decreases around 45,000 generations. More than 100 mutations go fixation in 

the selective sweep at 45,000 generations in Ara−3, including mutations in the DNA repair genes 

recR, recE, ligA, uvrA, and ybaZ. The distinct IS rates observed in Ara−3 may, in part, reflect the 
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relative frequency of deeply diverged, competing lineages in that population (Blount, et al. 

2012), especially if those lineages had different IS transposition rates. 

 

Evidence of mutation biases based on gene orientation on the chromosome 

 

It has been reported that genes on the lagging strand have higher mutation rates than 

genes on the leading strand in the DNA replication bubble, due to head-on collisions between the 

replication and transcription molecular machinery (Paul, et al. 2013). Based on such reports, we 

asked whether the LTEE metagenomics data showed evidence of gene-orientation mutation 

biases (Figure 4). Each distribution in Figure 4 is asymmetric over the replication origin. At the 

replication origin, one DNA strand switches from leading to lagging, while its complement 

switches from lagging to leading. This switch occurs because DNA replication is bidirectional, 

such that two replisomes move in opposite directions from the replication origin. Thus, the 

observed asymmetry over the replication origin is consistent with gene-orientation mutation 

biases. Indeed, the number of observed mutations significantly differs between genes oriented 

with or against the movement of the replisome, based on comparing the expected ratio of 

mutations to the observed ratio of mutations (binomial test: p < 10−10). 

 

The genomic distribution of observed mutations in Ara+3 shows a strong, symmetric wave 

pattern over the origin of replication 

 

Multiple studies (Sharp, et al. 1989; Lang and Murray 2011; Foster, et al. 2013; Dillon, et 

al. 2018; Niccum, et al. 2019)  have reported correlations between local mutation rates and 

distance from the origin of replication. One hypermutator LTEE population, called Ara+3, shows 

a symmetric wave pattern reflected over oriC (Figure 5). The wave in Ara+3 has a trough-to-

peak ratio of ~25:75 (Figure 5). Excluding Ara+3, the genomic distribution of observed 

mutations summed over the remaining mismatch-repair deficit LTEE populations shows a weak 

wave pattern, while the populations with defects in mutT shows no evidence of the wave pattern 

(Figure 6). 

 

Evidence for epistasis and historical contingency in the evolution of DNA topology 
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Why does a strong wave pattern only appear in Ara+3? Others have hypothesized that 

local chromatin structure affects local mutation rates (Foster, et al. 2013; Niccum, et al. 2019). 

Furthermore, DNA topology is an known target for selection in the LTEE (Crozat, et al. 2005; 

Crozat, et al. 2010). Therefore, we hypothesized that mutations in genes that affect DNA 

topology might affect the wave pattern. To test this hypothesis, we examined the timing and 

distribution of mutations in topA, fis, and dusB (yhdG), as alleles of these genes are known to 

affect DNA topology in the LTEE (Crozat, et al. 2005; Crozat, et al. 2010). We excluded 

synonymous mutations from this analysis. 

All LTEE populations evolved missense, indel, or structural mutations in topA, fis, and 

dusB within the first 10,000 generations, except two: Ara+2, and Ara+3 (Figure 7). The timing 

and distribution of mutations in these genes across populations suggests epistasis and historical 

contingency (Good, et al. 2017). The early arrival times for mutations in these genes suggests 

that there is an early, limited window of opportunity for those mutations to go to fixation. 

Quantitative evidence comes from Ara+3, which has no missense, indel, or structural mutations 

in topA, fis, and dusB whatsoever, despite its strong hypermutator phenotype. The probability of 

this event is p = (1 − (t / g))n, where t is the effective mutational target size, g is the length of the 

chromosome (g = 4,629,812), and n is the number of observed missense, indel, and structural 

mutations in Ara+3 (n = 4,368). Given the wave pattern in Ara+3, the effective mutational target 

size of topA, fis, and dusB could be smaller than their combined physical target size (3,861 bp), 

say if they occurred in the trough of the wave. To take this into account, we partitioned the 

chromosome into bins, counted mutations per bin, and calculated the effective mutational target 

size by multiplying the physical target size (length) of topA, fis, and dusB by the number of 

mutations per base pair in their respective bins. These genes are significantly depleted of 

mutations in Ara+3, for bin sizes ranging from 100 kb to the entire chromosome (p < 0.05). 

The distribution of synonymous mutations in topA, fis, and dusB across the LTEE 

populations is interesting (Supplementary Figure S4). A single, synonymous A312A substitution 

in dusB went to fixation at ~4000 generations in Ara+3, simultaneously with alleles in the 

mismatch repair genes mutS and mutH that apparently caused the early hypermutator phenotype 

in this population. No further synonymous mutations are observed in Ara+3. There is evidence of 

parallel evolution at this position in dusB. The same synonymous mutation in dusB occurs in 
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Ara+6, and another synonymous mutation, one base pair downstream in the next codon, is the 

only synonymous mutation in topA, fis, or dusB observed in Ara−2 (Supplementary Figure S4). 

This parallelism suggests that positive selection may be acting on these synonymous variants. 

Overall, it is striking how few synonymous mutations in topA, fis, and dusB occur in the 

hypermutator LTEE populations, which implies that synonymous variants in these genes may not 

be evolving neutrally. Indeed, STIMS (Maddamsetti and Grant 2020) finds a significant signal of 

purifying selection on synonymous mutations in topA, fis, and dusB in Ara−1 and Ara−3 (one-

tailed randomization test with 10,000 bootstraps; p < 0.0001). 

 

Synonymous nucleotide diversity in natural E. coli populations does not predict mutation rate 

variation in the LTEE 

 

Finally, we used the LTEE metagenomic data to revisit previous work, which found that 

the distribution of synonymous mutations in the LTEE does not reflect patterns of synonymous 

variation among natural E. coli isolates (Maddamsetti, et al. 2015). During our reanalysis, we 

found that the usage of the Kolmogorov-Smirnov test in that paper was problematic. Therefore, 

we used Poisson regression to ask whether the estimates of synonymous nucleotide diversity qs 

published in (Martincorena, et al. 2012), when treated as gene-specific estimates of the point-

mutation rate per base pair, predicts the distribution of synonymous mutations observed in the 

LTEE. A null model in which mutations occur uniformly over the chromosome (Akaike’s 

Information Criterion = 8529.6) fits the data far better than the qs model (Akaike’s Information 

Criterion = 9171.3). The same conclusion holds when we fit both models to Ara+3 (AIC = 

2168.2 for null model versus AIC = 2190.8 for qs model). 

 

DISCUSSION 

 

By examining the distribution of observed mutations over more than 60,000 generations 

of the LTEE (Good, et al. 2017), we find that mutation rates and biases have diverged 

idiosyncratically, despite identical abiotic conditions. One LTEE population, Ara+3, shows 

strong evidence of the wave pattern in mutation rate variation. Similar patterns have been seen in 

mutation accumulation experiments with MMR-deficient strains of E. coli as well as in Vibrio 
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bacteria (Dillon, et al. 2018; Niccum, et al. 2019). Our result shows that genomic biases in 

mutation rates evolve dynamically on laboratory timescales. 

The divergence in the rates, biases, and spectra of mutations across replicate populations 

in this simple long-term evolution experiment makes one wonder about the scope of natural 

variation in mutation rates, biases, and spectra. An evolution experiment with replicate mouse 

microbiomes has indicated that microbial evolution in the gut is probably characterized by long-

term maintenance of intraspecies genetic diversity, including mutation rate polymorphism 

(Ramiro, et al. 2020). Phylogenomic studies have also found extensive evidence for horizontal 

gene transfer in DNA repair genes (Denamur, et al. 2000), which suggests that polymorphism in 

DNA repair genes may cause extensive natural variation in mutation and recombination rates 

within and across bacterial (meta-)populations and communities. 

We find statistical evidence for historical contingency and epistasis in the evolution of 

DNA topology in the LTEE, and for Ara+3 in particular. These findings suggest a relationship 

between local DNA topology and local mutation rate variation, consistent with the experiments 

reported by Niccum et al (2019). These findings immediately suggest the need for experiments to 

test whether local DNA topology causes local mutation rate variation. 

A comparison of synonymous genetic variation estimated from natural E. coli isolates to 

the distribution of observed synonymous mutations in the LTEE confirms the main result in 

earlier work (Maddamsetti, et al. 2015) using richer data, and is consistent with other reports as 

well (Lee, et al. 2012; Chen and Zhang 2013; Lynch, et al. 2016). In sum, gene-specific variation 

in synonymous nucleotide diversity qs, estimated from natural isolates of E. coli, does not predict 

the genomic distribution of synonymous mutations observed in the LTEE. In any case, the other 

results that we have presented, in addition to prior reports (Foster, et al. 2013; Paul, et al. 2013; 

Jee, et al. 2016; Niccum, et al. 2019), strongly indicate that mutation rates vary over the E. coli 

chromosome. 

These results add to the robust debate on the causes and consequences of mutation rate 

evolution. It is clear that a deeper understanding of the relationships among chromatin structure, 

genomic variation in mutation and recombination rates, and natural selection, and their 

consequences for short-term and long-term genome evolution, will be a fruitful goal for further 

research. 
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MATERIALS AND METHODS 

 

 Pre-processed LTEE metagenomics data, and associated analysis and visualization code 

was downloaded from:  https://github.com/benjaminhgood/LTEE-metagenomic. Analysis codes 

are available at: https://github.com/rohanmaddamsetti/LTEE-purifying-

selection/blob/master/mutation-rate-analysis.R and https://github.com/rohanmaddamsetti/LTEE-

purifying-selection/blob/master/metagenomics-library.R. We systematically examined DNA 

repair genes in E. coli (Eisen and Hanawalt 1999; Lee, et al. 2016; Deatherage, et al. 2018), as 

well as annotated DNA polymerases, and other proteins of the replisome. A table of these genes 

and their annotations are in Supplementary Data File 1. Datasets and analysis codes are available 

on the Dryad Digital Repository (DOI pending publication). 
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FIGURES 

 

Figure 1. Divergent evolution of mutation rates in the LTEE. Each panel shows the 
cumulative number of observed mutations, subdivided by mutation class, over time in each 
LTEE population. The top six panels show the nonmutator LTEE populations, and the bottom six 
panels show the hypermutator LTEE populations. A) Point mutations are shown in black. B) 
Indel mutations are shown in purple. C) Structural mutations are shown in green. 
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Figure 2. Oxidative damage repair alleles in hypermutator LTEE populations. This 
visualization uses computer code from Good et al. (2017). Stars indicate the time (and allele 
frequency) at which mutations are reliably estimated to appear in the time series. The allele 
frequency trajectories for all observed mutations in the hypermutator populations are shown in 
grey. The allele frequency trajectories of de novo mutations (excepting synonymous mutations) 
in oxidative damage repair genes (Supplementary File 1) are colored and labeled in each 
population. 
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Figure 3. Mismatch repair alleles in the hypermutator LTEE populations. This visualization 
uses computer code from Good et al. (2017). Stars indicate the time (and allele frequency) at 
which mutations are reliably estimated to appear in the time series. The allele frequency 
trajectories for all observed mutations in the hypermutator populations are shown in grey. The 
allele frequency trajectories of de novo mutations (except synonymous mutations) in mismatch 
repair genes (Supplementary File 1) are colored and labeled in each population. 
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Figure 4. Evidence for gene-orientation mutation bias in the LTEE. Each panel shows the 
genomic distribution of mutations within genes, summed over all LTEE populations. The x-axis 
is the reference genome, centered on the replication origin, partitioned into 46 equally-sized bins 
of ~100 kb. The two panels show genes occurring on each of the two strands of the chromosome, 
with the arbitrary labels 1 and −1. Indels are in purple, missense mutations are in dark blue, 
noncoding mutations are blue green, nonsense mutations are sea green, structural variants (sv) 
are green, and synonymous mutations are yellow. 
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Figure 5. One hypermutator LTEE population, Ara+3, shows a strong wave pattern of 
mutation rate variation centered on the replication origin. Each panel shows the genomic 
distribution of mutations observed in each hypermutator LTEE population in the metagenomics 
data. The x-axis is the reference genome, centered on the replication origin, partitioned into 46 
equally-sized bins of ~100 kb. Indels are in purple, missense mutations are in dark blue, 
noncoding mutations are blue green, nonsense mutations are sea green, structural variants (sv) 
are green, and synonymous mutations are yellow. 
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Figure 6. Mismatch-repair deficient LTEE populations (excluding Ara+3) show a weak 
wave pattern, while MutT-deficient LTEE populations show no wave pattern. The left panel 
shows the genomic distribution of mutations observed in Ara−2, Ara−3, and Ara−4. The right 
panel shows the genomic distribution of mutations observed in Ara−1 and Ara+6. The x-axis is 
the reference genome, centered on the replication origin, partitioned into 46 equally-sized bins of 
~100 kb. Indels are in purple, missense mutations are in dark blue, noncoding mutations are blue 
green, nonsense mutations are sea green, structural variants (sv) are green, and synonymous 
mutations are yellow. 
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Figure 7. The strong wave pattern in Ara+3 anti-correlates with mutations (excluding 
synonymous changes) in the DNA topology genes topA, fis, and dusB (labeled as yhdG). This 
visualization uses computer code written by Good et al. (2017). The allele frequency trajectories 
for all observed mutations in the twelve LTEE populations are shown in grey. The allele 
frequency trajectories of de novo mutations in topA, fis, and dusB (excepting synonymous 
mutations) are colored and labeled in each population.  
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SUPPLEMENTARY INFORMATION: 
 
Supplementary File 1: Annotated DNA repair and replication genes in Escherichia coli. 
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Supplementary Figure S1. Allele frequency trajectories for all observed point mutations in 
the twelve LTEE populations. This visualization uses computer code written by Good et al. 
(2017). The allele frequency trajectories for all observed mutations in the twelve LTEE 
populations are shown in grey. Stars indicate the time (and allele frequency) at which mutations 
are reliably estimated to appear in the time series.  

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.02.130906doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.130906


	

21	

Supplementary Figure S2. Allele frequency trajectories for all observed indel mutations in 
the twelve LTEE populations. This visualization uses computer code written by Good et al. 
(2017). The allele frequency trajectories for all observed mutations in the twelve LTEE 
populations are shown in grey. Stars indicate the time (and allele frequency) at which mutations 
are reliably estimated to appear in the time series. 
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Supplementary Figure S3. Allele frequency trajectories for all observed structural 
mutations in the twelve LTEE populations. This visualization uses computer code written by 
Good et al. (2017). The allele frequency trajectories for all observed mutations in the twelve 
LTEE populations are shown in grey. Stars indicate the time (and allele frequency) at which 
mutations are reliably estimated to appear in the time series.  
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Supplementary Figure S4. Synonymous mutations in the DNA topology genes topA, fis, and 
dusB (labeled as yhdG). This visualization uses computer code written by Good et al. (2017). 
The allele frequency trajectories for all observed mutations in the twelve LTEE populations are 
shown in grey. The allele frequency trajectories of de novo synonymous mutations in topA, fis, 
and dusB are colored and labeled in each population.  

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.02.130906doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.130906

