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Abstract

Despite its overwhelming clinical importance for understanding and mitigating the COVID-19 pandemic, the
protein-coding gene content of the SARS-CoV-2 genome remains unresolved, with the function and even
protein-coding status of many hypothetical proteins unknown and often conflicting among different annotations,
thus hindering efforts for systematic dissection of its biology and the impact of recent mutations. Comparative
genomics is a powerful approach for distinguishing protein-coding versus non-coding functional elements,
based on their characteristic patterns of change, which we previously used to annotate protein-coding genes in
human, fly, and other species. Here, we use comparative genomics to provide a high-confidence set of SARS-
CoV-2 protein-coding genes, to characterize their protein-level and nucleotide-level evolutionary constraint,
and to interpret the functional implications for SARS-CoV-2 mutations acquired during the current pandemic.
We select 44 complete Sarbecovirus genomes at evolutionary distances well-suited for protein-coding and
non-coding element identification, create whole-genome alignments spanning all named and putative genes,
and quantify their protein-coding evolutionary signatures using PhyloCSF and their overlapping constraint
using FRESCo. We find strong protein-coding signatures for all named genes and for hypothetical ORFs 3a, 6,
7a, 7b, and 8, indicating protein-coding roles, and provide strong evidence of protein-coding status for a
recently-proposed alternate-frame novel ORF within 3a. By contrast, ORF10 shows no protein-coding
signatures but shows unusually-high nucleotide-level constraint, indicating it has important but non-coding
functions, and ORF14 and SARS-CoV-1 ORF3b, which overlap other genes, lack evolutionary signatures
expected for dual-coding regions, indicating they do not produce functional proteins. ORF9b has ambiguous
protein-coding signatures, preventing us from resolving its protein-coding status. ORF8 shows extremely fast
nucleotide-level evolution, lacks a known function, and was deactivated in SARS-CoV-1, but shows clear
signatures indicating protein-coding function worthy of further investigation given its rapid evolution and
potential role in replication. SARS-CoV-2 mutations are preferentially excluded from evolutionarily-constrained
amino acid residues and synonymously-constrained nucleotides, indicating purifying constraint acting at both
coding and non-coding levels. In contrast, we find a conserved region in the nucleocapsid that is enriched for
recent mutations, which could indicate a selective signal, and find that several spike-protein mutations
previously identified as candidates for increased transmission and several mutations in isolates found to
generate higher viral load in-vitro disrupt otherwise-perfectly-conserved amino-acids, consistent with
adaptations for human-to-human transmission.

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the COVID-19
pandemic (Wu et al. 2020), is a betacoronavirus in the subgenus Sarbecovirus, which also includes SARS-
CoV-1 (also known as SARS-CoV), the strain responsible for the 2003 SARS outbreak. The large and complex
positive-strand RNA genome of SARS-CoV-2 consists of approximately 30,000 nucleotides, and encodes
approximately 30 known or hypothetical mature proteins (Fig. 1A, Fig. 3). Despite its extreme medical
importance, its gene content remains surprisingly unresolved, with several hypothetical open reading frames
(ORFs) whose function or even protein-coding status is unknown.

More than two-thirds of the SARS-CoV-2 genome is spanned by a large open reading frame (ORF1ab), which
includes an internal programmed translational frameshift triggered by a translation-slippery sequence
UUUAAAC and a downstream RNA pseudoknot structure that is generally conserved among coronaviruses
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(Baranov et al. 2005). Translation of ORF1ab yields a large polyprotein that is cleaved into non-structural
proteins nsp1-nsp10 and nsp12-nsp16. When the frameshift does not occur (ORF1a) translation terminates at
a stop codon four codons past the frameshift site and the product is cleaved into nsp1-nsp11. Mature proteins
encoded by ORF1 include an RNA-dependent RNA polymerase (Pol); a helicase (Hel); and proteins involved
in viral transcription, proofreading (ExoN), translation, cleavage (3CL-PRO), assembly, and suppression of
host cell and immune system function (Supplemental Table S2).

Since the virus uses the human translation machinery, which translates the first ORF of a given transcript, in
order to translate genes in the remaining third of the genome it generates varying-length subgenomic RNAs
(Miller and Koev 2000), believed to result from RNA-dependent transcription of the positive strand genomic
RNA to a negative strand RNA molecule beginning at the 3’ end and continuing until a transcription-regulatory
sequence (TRS), followed by transcription from a common leader on the 5’ end, and a second round of RNA-
dependent negative-to-positive RNA-dependent transcription (Kim et al. 2020).

The named genes in the last third of the genome encode the spike surface glycoprotein S (ORF2), which is
cleaved into S1 and S2 and is responsible for viral attachment and entry by binding the human ACE2 receptor;
the envelope protein E (ORF4) and membrane glycoprotein M (ORF5), responsible for virus morphogenesis
and assembly; and the nucleocapsid phosphoprotein N (ORF9), responsible for packaging the RNA genome.

The remaining ORFs are unnamed, were annotated primarily by homology and prediction algorithms rather
than functional evidence, and are subject to disagreement on which encode functional accessory proteins.
NCBI annotates the SARS-CoV-2 reference genome NC_045512.2 as containing ORFs 3a, 6, 7a, 7b, 8, and
10. UniProt annotates two additional ORFs, 9b and 14, both of which overlap the nucleocapsid phosphoprotein
N in a different reading frame. The Nature paper that introduced SARS-CoV-2 shows all of these, and also 3b,
which overlaps 3a in a different reading frame in SARS-CoV-1 but is not an open reading frame in SARS-CoV-
2 due to several in-frame stop codons, and refers to UniProt ORFs 9b and 14 as 9a and 9b, respectively (Wu
et al. 2020), but the most recent GenBank record of the paper, MN908947.3, does not include 3b, 9b, or 14
and also lacks 7b. A recent Lancet paper refers to UniProt 3aas 3,6 as 7, 7aas 8, 7b as 9, 8 as 10b, 9b as
13, and is missing 10, but includes 14 (Lu et al. 2020). For consistency, we use the UniProt numbering here.
Orthologs of ORFs 3a, 6, 7a, 7b, and 9b, are also annotated in the NCBI reference genome NC_004718.3 for
SARS-CoV-1, but ORF8 is split into 8a and 8b, 3b is included, and neither 14 nor 10 are included.
Supplemental Table S2 includes a summary of what is known about each proposed SARS-CoV-2 ORF and
mature protein product, extracted from the UniProt annotations.

Several high-throughput experimental techniques have been used to try to determine the protein-coding
content of the SARS-CoV-2 genome. Proteomics experiments identified peptides for a subset of ORFs: 1ab, S,
3a, M, 6, 7a, 8, N, and 9b, but not E, 7b, 14, or 10 (Davidson et al. 2020; Bojkova et al. 2020). Direct-RNA
sequencing found subgenomic RNAs indicating translation potential for a different subset: S, 3a, E, M, 6, 7a,
7b, 8, and N, but with limited or no support for 9b, 14, and 10 (Kim et al. 2020; Taiaroa et al.; Davidson et al.
2020), and subgenomic RNAs of 7b, which is thought to be translated from subgenomic RNAs of 7a by leaky
scanning (Schaecher et al. 2007), were found at relatively low levels. Ribosome profiling using lactimidomycin
and harringtonine to identify translation initiation sites predicted translation of ORFs 1ab, S, 3a, E, M, 6, 7a, 7b,
8, N, 9b, and 10, as well as ten novel ORFs overlapping annotated ORFs in another frame, but did not find
ORF14 (Finkel et al. 2020). However, such experimental approaches only detect what is present under the
specific conditions tested, and thus cannot argue for non-functionality of an ORF due to lack of detection. For
example, no peptides were detected for envelope protein E in any previous study (Davidson et al. 2020;
Bojkova et al. 2020), even though its function is well-established, making it difficult to reject it, or any
hypothetical ORFs, simply due to lack of experimental evidence. Moreover, given the large number of viral
RNA molecules in each cell, detection of a transcript, ribosome attachment, or even a translated peptide may
simply reflect incidental transcriptional and translational events, rather than adaptive function. For example,
only one supporting transcript was found for ORF10 (Kim et al. 2020; Davidson et al. 2020) and the region
orthologous to SARS-CoV-1 3b (Davidson et al. 2020), and only two transcripts were found for ORF14
(Davidson et al. 2020), compared to thousands for subgenomic RNAs of other ORFs. (Note: Davidson et al.
refer to UniProt ORFs 9b as 9a, and 14 as 9b.)
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Another critical research goal is distinguishing which of the many variants that have arisen during the COVID-
19 pandemic affect the viral phenotype or its response to therapies. As of this writing, over 17,000 isolates of
SARS-CoV-2 have been sequenced, revealing over 1800 variants within the SARS-CoV-2 population (Elbe
and Buckland-Merrett 2017; Hadfield et al. 2018). Techniques for distinguishing which of these variants are
most likely to have a functional effect can help prioritize experimental and epidemiological studies.

Here, we address these challenge by carrying out a systematic comparative genomics analysis of the SARS-
CoV-2 genome in the context of its closely-related complete genomes (Fig. 1), in order to to determine which
of the uncharacterized ORFs in SARS-CoV-2 code for functional proteins, and to distinguish which SARS-CoV-
2 variants are most likely to have functional and potentially medical importance.
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Figure 1. Summary. (A) Graphical representation of annotated SARS-CoV-2 and SARS-CoV-1 genes, with an indication of which ones
are supported by the evolutionary evidence. ORFs 1a, 1b, S, 3a, E, M, 6, 7a, 7b, N, recently-proposed 3c, and possibly 9b show
evolutionary signatures of being conserved protein-coding regions in both SARS-CoV-2 and SARS-CoV-1, as well as ORF8 in SARS-CoV-2,
whereas ORFs 3b, 8a, 8b, 14, and 10 are not supported by the evolutionary evidence. Layout adapted from Fig. 13.4, Human Virology
(Oxford et al. 2016). (B) PhyloCSF uses substitutions and codon frequencies in an alignment of genomes at an appropriate evolutionary
distance to quantify the evolutionary signatures that distinguish conserved, functional, protein-coding regions. (C) PhyloCSF scores of
all annotated and hypothetical AUG-initiated ORFs on the positive strand at least 25 codons long that do not overlap a longer ORF in the
same frame.
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We select 44 complete and closely-related coronavirus genomes at ideally-suited evolutionary distances
(approximately that of mammalian species), generate whole-genome alignments spanning all known genes
and hypothetical ORFs, and use them to evaluate protein-coding constraint in all reading frames, and
nucleotide-level constraint in synonymous codon positions. We find that five hypothetical ORFs are not
conserved protein-coding genes, namely ORFs 10 and 14, and SARS-CoV-1 ORFs 3b, 8a, and 8b, and we
confirm protein-coding evolutionary signatures for other hypothetical ORFs (3a, 6, 7a, 7b, 8) and a recently-
proposed alternate-frame ORF within 3a; this includes ORF8 despite its yet-unknown function and extremely-
rapid evolutionary rate. We also annotate 1394 synonymously-constrained codons within protein-coding
regions, which are indicative of overlapping constrained elements that might include dual coding regions,
binding sites for RNA-binding-proteins, and RNA structures known to help regulate coronavirus replication,
transcription, and translation. We use these protein-level and codon-level annotations to classify 1800 single-
nucleotide variants across 17,000 isolates from the current pandemic, yielding insights into mutations that are
likely benign vs. those that disrupt evolutionarily-conserved protein-coding or non-coding functions. In
particular, we find that several spike-protein variants recently-associated with increased transmission disrupt
perfectly-conserved amino-acids, possibly representing novel adaptations to human hosts. These comparative
genomics annotations provide a general resource for prioritizing functional variants and strains, for vaccine

development and specialization, and for untangling the molecular biology of SARS-CoV-2
Results

Species selection and alignment of 44 Sarbecovirus genomes

We selected 44 complete Sarbecovirus genomes at an evolutionary distance well-suited for identifying protein-
coding genes and non-coding selection within them, consisting of SARS-CoV-2, SARS-CoV-1, and 42 bat
coronavirus genomes (Fig. 2, Supplemental Table S1). Betacoronavirus genomes outside the Sarbecovirus
clade, such as MERS-CoV, are too different from SARS-CoV-2 to be usable for this purpose, and even the
closest relative, Hibecovirus Bat Hp-betacoronavirus/Zhejiang2013, shows no detectable homology across

ORFs 6, 7a, 7b, and 8. Conversely, among different isolates of the SARS-CoV-2, SARS-CoV-1, and some bat
strains, evolutionary distances are too small for reliable evolutionary signatures
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Figure 2. Phylogenetic tree of 44 Sarbecovirus genomes. Left: Phylogenetic tree of a selection of Coronaviridae genomes, including
the seven that infect humans (red asterisks). Right: Phylogenetic tree of the 44 Sarbecovirus genomes used in this study. Trees are
based on whole-genome alignments and might be different from the history at particular loci, due to recombination.

We created a genome-wide alignment of these 44 genomes, spanning a total phylogenetic branch length of
about 3 substitutions per 4-fold degenerate site, comparable to the 29-mammals and 12-flies alignments we
previously used for protein-coding gene identification. This rate varies across the SARS-CoV-2 genome from
0.2in ORF10, 1.2in E, and 6.5 in S (Supplemental Table S2), though the latter may be inflated due to genomic
segments whose histories do not match the whole-genome tree.

Scoring of protein-coding and synonymous constraint
To detect protein-coding evolutionary signatures and distinguish regions that evolved under protein-coding

constraint, we previously developed PhyloCSF (Lin et al. 2011a), which compares codon substitutions and
frequencies in alignments of closely-related genomes to coding and non-coding evolutionary models trained on
whole genome data (Fig. 1B), and CodAlignView (I Jungreis, MF Lin, CS Chan, M Kellis 2016) to enable
manual curation by visual exploration of the corresponding alignment for substitutions, stop codons, and
insertions or deletions indicative of the protein-coding status of a region. These tools have been widely used to
identify novel protein-coding regions in human (Lindblad-Toh et al. 2011; Mudge et al. 2019), fly (Lin et al.
2007), and yeast (Lin et al. 2011a), to discover stop-codon readthrough (Jungreis et al. 2016; Lindblad-Toh et
al. 2011; Jungreis et al. 2011; Lin et al. 2007; Loughran et al. 2014), and to distinguish protein-coding vs. non-
coding genes in human (McCorkindale et al. 2019; Frankish et al. 2019).

We computed PhyloCSF protein-coding scores for every three-nucleotide interval, in all three reading frames
of SARS-CoV-2, smoothed using a hidden Markov model, and created tracks for the UCSC Genome Browser
quantifying protein-coding evolutionary signatures along the genome, as we previously did for the human
genome (Mudge et al. 2019). We also computed an overall PhyloCSF score for each known protein and
hypothetical ORF (Supplemental Table S2). We used CodAlignView to create visualizations of the alignment of
each ORF, highlighting two signatures of mutations that are tolerated in protein-coding genes across
evolutionary time: first, a preference for synonymous substitutions typical of third codon positions and
conservative amino acid changes that preserve biophysical properties; second, avoidance of insertions and
deletions that are not multiples of 3, as they would disrupt the reading frame of translation, whereas gaps that
remove complete codons and preserve the reading frame are more tolerated. We have provided CodAlignView
images (Supplemental Materials) and links for manual exploration (Supplemental Table S2) for each
annotated ORF and mature protein.

We also previously developed FRESCo and other software tools for detecting overlapping nucleotide-level
constraint within protein-coding regions (Lin et al. 2011b; Sealfon et al. 2015), evidenced by fewer synonymous
substitutions, and reflective of overlapping functional elements. Such elements can include dual-coding regions
that encode multiple proteins in different reading frames, which are common in viruses with compact genomes
(Firth 2014) but also found in other species including human (Lin et al. 2011b; Khan et al. 2020); RNA
structures encoded through complementary nucleotide stretches, which are known to play important roles in
subgenomic RNA generation and other coronavirus functions; and binding sites for RNA-binding proteins,
which can be recognized by virus-encoded proteins or host-encoded proteins, to regulate transcription,
processing, and translation of viral mMRNAs. FRESCo has been applied to diverse virus species (Sealfon et al.
2015) as well as humans (Khan et al. 2020).

We used FRESCo to calculate the rate of synonymous substitutions in each codon of our alignment, and to
recognize synonymous constraint elements (SCEs) within each NCBI-annotated SARS-CoV-2 gene, based on
significantly-decreased synonymous rate in 9-codon windows relative to the gene average (Fig. 3).

Comparative evidence of protein-coding constraint for nsp proteins and named genes
We found a clear PhyloCSF signal for nsp1-nsp10 and for nsp12-nsp16 (Supplemental Table S2), with a

change in the indicated translation reading frame at the known programmed frameshift site (Fig. 3A). For the
13-codon nsp11 OREF, the first 9 codons are in the same reading frame as nsp12 (Pol), and the remaining 4
codons are perfectly conserved in Sarbecovirus (Supplemental Fig. S1A), but poorly conserved in

Jungreis, et al. Gene content of SARS-CoV-2 p5


https://doi.org/10.1101/2020.06.02.130955
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.02.130955; this version posted June 3, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.
betacoronaviruses beyond Sarbecovirus (Supplemental Fig. S1B), suggesting that the 13-amino-acid peptide
is not performing a conserved function.

The named genes E, M, and N are well-conserved across the 44 Sarbecovirus genomes, with strong overall
alignment and very strong PhyloCSF scores, as expected. The S protein shows an unusual evolutionary signal
that indicates a history of extremely-rapid evolution, subject to frequent substitutions and recombinations
across its phylogeny, resulting in near-zero nucleotide-level conservation scores as measured by phyloP
(Pollard et al. 2010) and phastCons (Siepel et al. 2005) over its first half (S1), while the second half (S2) is
well-conserved (Fig. 3a). However, for protein-coding constraint, both S1 and S2 show very strong PhyloCSF
scores, indicating that despite its rapid evolution, S remains strongly selected to preserve a protein-coding
function, and highlighting the power of PhyloCSF to recognize protein-coding constraint despite rapid
nucleotide evolution.
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Figure 3. PhyloCSF signal for SARS-CoV-2 and SARS-CoV-1 ORFs. UCSC Genome Browser images of SARS-CoV-2 genome. Tracks,
from top to bottom, are NCBI genes and UniProt genes for SARS-CoV-2, NCBI genes for SARS-CoV-1 mapped to the SARS-CoV-2 genome,
PhyloCSF tracks for each of 3 reading frames, Synonymous Constraint Elements (SCEs), and phastCons and phyloP tracks showing
nucleotide-level constraint. Part A shows the entire genome, part B shows the 3' end indicated by the dashed box in part A, and part C
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shows the polyprotein at the 5’ end of part A. (A) There is a strong PhyloCSF signal in the correct frame for each of the named genes 1ab
(polyprotein, red), S (spike, green), E (envelope, blue), M (membrane, orange), and N (nucleocapsid, purple), confirming that they have
been under protein-coding constraint in the Sarbecovirus clade. The signal changes frame as expected at the programmed frameshift
site in 1ab. There is a strong PhyloCSF signal throughout S despite the lack of nucleotide conservation at the 5' end. (B) There is a clear
PhyloCSF signal in the correct frame for unnamed ORFs 3a (dark purple), 7a (yellow), 7b (blue), and 8 (light purple), despite the
complete lack of nucleotide conservation in 8. There is a clear signal in the 5’ half and 3’ quarter of 6 (cyan), but it is weaker in the third
quarter of the protein, indicating that this portion has been less constrained. There is no signal for 10 (gray), indicating that it is not a
conserved protein-coding region despite high nucleotide conservation. ORFs 9b (dashed orange) and 14 (dashed green) overlap the
nucleocapsid phosphoprotein N in an alternate reading frame. If these were conserved coding regions, we would expect to find
synonymous constraint through most of the ORF and, possibly, some PhyloCSF signal in the alternate frame, but there is no such
PhyloCSF signal in either, and there are no synonymous constraint elements in ORF14. There are two small synonymous constraint
elements for 9b, leaving its status as a functional ORF ambiguous. The SARS-CoV-1 annotations also include 3b (dotted red) overlapping
3a in another frame, but most of the ORF is not synonymously constrained and it contains numerous stop codons in other strains so it
cannot be a conserved coding region. A frameshifting deletion in 8 occurred in SARS-CoV-1 during the SARS outbreak, creating
fragments 8a and 8b (red oval) in some isolates, but there was insufficient evolutionary time for our methods to distinguish if the
fragments were still protein-coding. (C) The polyprotein, 1ab, is processed into 16 mature peptides. The PhyloCSF signal shows that all
are functional proteins except possibly nsp11 (red circle), which is only 13-amino-acids long and shares its first eight codons with Pol
before the latter shifts to a different reading frame.

ORFs 3a, 6, 7a, 7b, and 8 are protein-coding, but ORF10 is a non-coding functional element.
Among the six unnamed ORFs annotated by NCBI (Supplemental Table S2), we found clear positive

PhyloCSF scores for 3a, 7a, 7b, and 8, indicating conserved protein-coding regions, functional at the amino-
acid level (Fig. 3). For ORF8, the first half and last quarter shows strong PhyloCSF signal (Fig. 3B), indicating
that it encodes a conserved, functional protein, despite a less-constrained intermediate portion, and an overall
near-zero average score per codon (-0.3, Fig. 1C).

ORF8 shows near-zero nucleotide-level conservation scores as measured by phyloP and phasCons, and it has
no well-established function, suggesting at first glance that it might be non-functional. However, PhyloCSF
shows a positive protein-coding signal (average score 4.61 per codon), and long stretches of strong protein-
coding conservation, indicating that it produces a functional protein despite its rapid nucleotide-level evolution.
The apparent high rate of nucleotide-level evolution in ORF8 (3.9 substitutions per site, 6.2 per 4-fold
degenerate site) is in part an artifact of its history of recombination events that result in a different tree from the
rest of the genome (Supplemental Fig. S2), but even after computing rates in a tree representing the history
of ORFS8, its rate continues to be very high (2.1 and 3.7, respectively) compared to other ORFs (e.g. 1.1 and
2.8 respectively for ORF1ab when using the whole-genome tree excluding two strains that have no alignment
in ORF8, to ensure an apples-to-apples comparison, Supplemental Table S2).
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Figure 4. Alignment of ORF10. Alignment of Sarbecovirus genomes at ORF10, including 30 additional nucleotides on each end. Most
substitutions are conservative (dark green) or radical (red) amino acid changes, rather than the synonymous (light green) changes
expected in protein-coding regions, and there is a premature stop codon (cyan) in most strains, indicating that this is not a conserved
protein-coding region. It has extremely high nucleotide-level conservation, which extends beyond the putative ORF in both directions,
indicating that this portion of the genome is functionally important even though it does not code for protein. A putative partial
transcription-regulatory sequence (TRS) is present only in SARS-CoV-2 and its closest relative, Bat CoV RaTG13, indicating that it is not
conserved.

By contrast, ORF10 shows no protein-coding signal anywhere along its length and contains an in-frame
premature stop codon in all but four Sarbecovirus genomes, truncating the last third of this already-short (38
amino acid) ORF, indicating that ORF10 does not encode a conserved protein (Fig. 4). ORF10 shows near-
perfect nucleotide-level conservation that extends beyond the ORF on both sides, as measured by phastCons
and phyloP (Fig. 3B), indicating that this genomic region is performing some important function despite not
coding for protein.

Our conclusion contrasts with recent papers that instead suggested ORF10 is protein-coding. First, a search
for transcription-regulatory sequences (TRS) in the original paper reporting the SARS-CoV-2 genome (Wu et
al. 2020) found a partial match, with the nucleotides CUAAAC, 22 nucleotides before the start codon of ORF10
(Fig- 4); however, this sequence is not conserved, has an intervening ATG, and is only found in SARS-CoV-2
and its closest relative, Bat RaTG13. Indeed, experimental studies using direct-RNA sequencing or proteomics
found little or no evidence for expression of an ORF10 subgenomic RNA even in SARS-CoV-2 (Kim et al.
2020; Taiaroa et al.; Davidson et al. 2020; Bojkova et al. 2020), indicating that it is not simply a recent
innovation, but possibly a false positive. Second, ribosome profiling data (Finkel et al. 2020) detected footprints
within ORF10, leading to a conclusion that it is translated; however, nearly all footprints detected within
ORF10 are in either a uORF that overlaps its start codon or a downstream ORF beginning at an interior AUG,
which would create a peptide of only 18 amino acids in SARS-CoV-2 (five amino acids in most other
Sarbecovirus strains), and the density of footprints within the unique portion of ORF10 is no greater than after
its stop codon (Supplemental Fig. S3A). Third, a high ratio of nonsynonymous to synonymous substitutions in
ORF10 was used as evidence that the ORF is protein-coding and under positive selection for rapid protein
evolution (Cagliani et al. 2020); however, this analysis was based on only nine substitutions (one of which was
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synonymous), was not statistically significant (hominal p-value>0.18, even without the needed multiple
hypothesis correction), only used five closely-related genomes, and excluded a sixth genome that contained a
frameshifting indel that would provide strong evidence against protein-coding function if it is not a sequencing
error (Supplemental Fig. S3B). Overall, the prior evidence is insufficient to argue for protein-coding function
for ORF10, and thus we conclude that ORF10 is not protein-coding, given our strong comparative genomics
evidence against protein-coding constraint.

ORF14 is not a conserved coding region, and ORF9b is ambiguous
We next investigated the coding potential of two additional hypothetical ORFs annotated by UniProt, ORF 9b

(97 amino acids) and ORF14 (73 amino acids), which overlap the nucleocapsid phosphoprotein (N) in a
different reading frame. In neither case is there a PhyloCSF signal in the alternate frame (Fig. 3B,
Supplemental Table S$2). While dual coding regions often contain segments having a PhyloCSF signal in the
alternate frame, such as those in human POLG (Khan et al. 2020), the lack of such signals does not provide a
definite negative answer because coding constraint in the main frame alters the pattern of substitutions in the
alternate frame, which can depress the PhyloCSF score. Instead, we examined the rate of synonymous
substitutions in the reading frame of the nucleocapsid protein, since coding in the alternate frame would be
expected to impose overlapping constraint that suppresses synonymous substitutions in the main frame. We
find no significant SCEs within ORF14 (Fig. 5). Furthermore, its start codon is lost in one strain, and most
strains have a stop codon three codons before the ORF14 stop (Supplemental Fig. S4). Nor were the
subgenomic RNA fragments needed to express ORF14 found in the above-mentioned direct-RNA sequencing
experiments (Kim et al. 2020; Taiaroa et al.). We conclude that ORF 14 does not encode a functional protein.

The evolutionary evidence for ORF9b is more ambiguous. On the one hand, we do not find significant
synonymous constraint in most of the portion of the main frame overlapping 9b, and some segments have
synonymous level well above the gene-wide average of the nucleocapsid protein (Fig. 5); on the other hand,
this region does contain two small SCEs. We note that FRESCo calculates synonymous constraint relative to
the gene-wide average, and N has fewer synonymous substitutions per 4-way synonymous site than most of
the rest of the genome (Supplemental Table 2), making it more difficult for a constrained region to achieve
significance. Both the start and stop codons of 9b are perfectly conserved among our 44 Sarbecovirus strains
(Supplemental Fig. S5), but conservation of these codons could be due primarily to constraint on the amino
acid sequence of the overlapping nucleocapsid protein rather than any constraint on ORF9b itself; indeed,
there is only one hypothetical single nucleotide change to the start codon of 9b, ATG->ACG, that would
preserve the amino acid sequence of N, and no such changes to its stop codon. There are no premature stop
codons in any of the other strains, though again that provides only weak evidence that 9b is coding because 9b
is short enough that this could occur by chance. Finally, the start codon of 9b has a strong Kozak context, with
A in position -3 and G in position +4, which are believed to be the optimal nucleotides at these positions for
ribosomal recognition of the start codon. In contrast, the start codon of the nucleocapsid phosphoprotein, which
is only 10 nt 5’ of the start codon of 9b, has a weaker Kozak context, with A in position -3 and U in position +4.
This leaves open the possibility that the ribosome might initiate translation of 9b from the same subgenomic
RNA as N via leaky scanning, making these two proteins in a fixed ratio. If 9b does encode a protein, the high
synonymous rate in some overlapping segments of the main frame would indicate that the amino acid
sequence encoded by the corresponding segments in 9b are poorly constrained. Proteomics experiments have
detected the hypothetical protein product of ORF9b (Davidson et al. 2020; Bojkova et al. 2020), and there is
experimental evidence that ORF9b in SARS-CoV-1 localizes to mitochondria and interferes with host cell
antiviral response (Shi et al. 2014), so without clear evolutionary evidence one way or the other it seems likely
that ORF9b does produce a functional protein, though one with a poorly-conserved amino acid sequence.
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Figure 5. Synonymous Rate in nucleocapsid phosphoprotein. Rate of synonymous substitutions in 9-codon windows within the
nucleocapsid phosphoprotein (N), normalized to make the gene-wide average 1. ORFs 9b and 14 (bottom gray rectangles) are
hypothetical protein-coding regions within N in a different reading frame. We expect dual coding regions to be synonymously
constrained, but there are no significant synonymous constraint elements in ORF14, and only two small ones in ORF9b (red), making it
unlikely that ORF14 is a true protein-coding region, and leaving the status of ORF9b ambiguous.

A novel alternate frame protein-coding ORF within ORF3a

We next searched for novel conserved protein-coding regions by scoring all 67 hypothetical AUG-to-stop
SARS-CoV-2 ORFs of at least 25 codons that do not overlap an NCBIl-annotated ORF in the same frame and
that are not contained in a longer ORF in the same frame. None of these had a positive PhyloCSF score, but
we investigated the top candidates with the least negative score based on conservation of the start and stop
codons, absence of in-frame stop codons and frameshifting indels, and evidence of synonymous constraint in
the overlapping coding region.
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The candidate with the highest PhyloCSF score per codon (-1.21) is a 41-codon ORF (positions 25457-25579),
that overlaps ORF3a in an alternate frame near its 5’ end (Fig. 6). Although the score is negative, it is 2.57
standard deviations higher than the average over hypothetical non-coding ORFs (mean: -17.9, stdev: 6.5, p =
0.005 under normal approximation, Fig. 1C), but closer to the distribution of protein-coding ORFs (mean: 8.03,
stdev: 5.55, deviation: -1.67 standard deviations). As this ORF overlaps a known coding gene in an alternate
frame, constraint on the known amino acid sequence suppresses synonymous substitutions in the alternate
frame, which lowers the PhyloCSF score, so we would expect a lower PhyloCSF score than for non-
overlapping protein-coding regions that are subject to the same level of protein-coding constraint. Moreover,
the AUG start codon is perfectly conserved except in one strain that has the near-cognate GUG instead, and
the stop codon is conserved but with a one-codon extension in SARS-CoV-2 and RaTG13. There are also no
in-frame stop codons or indels. Strikingly, this alternate-frame ORF has many synonymous substitutions that
are non-synonymous in ORF3a, indicating that this new ORF may be the primary constraint acting in this
region, over the corresponding segment of ORF3a. Lastly, 40 of the 41 codons are covered by synonymous
constraint elements, and this constraint ends nearly perfectly at the boundaries of the overlapping ORF (Fig.
6). Together, these lines of evidence allow us to conclude that this overlapping ORF encodes a conserved,
functional protein.

Two previous studies proposed that this new ORF may be protein-coding on the basis of increased
synonymous constraint on the overlapping region of ORF3a, initially across 6 very closely-related strains
(Cagliani et al. 2020), and subsequently across a broad set of Sarbecovirus strains (Firth 2020), naming it
ORF3h (for “Hypothetical’) and ORF3a*, respectively. It was predicted to contain a transmembrane domain
suggestive of a viroporin (Cagliani et al. 2020), and to be translated from the ORF3a subgenomic RNA via
leaky scanning (Firth 2020). However, increased synonymous constraint does not uniquely argue for protein-
coding constraint, and could stem from other types of overlapping functional elements. A third study used
ribosome footprints to argue this alternate reading frame of ORF3a is translated (Finkel et al. 2020), but a
ribosome profiling signal can be due to incidental, non-functional translation; in fact, out of nine candidate novel
protein-coding ORFs predicted by this study, eight lack any conservation. By contrast, the well-powered
PhyloCSF evidence presented here shows that this ORF has a conserved protein-coding function specifically
selected for its amino-acid translation. Given the clear evidence for conserved protein-coding function across
Sarbecovirus genomes, including SARS-CoV-2 and SARS-CoV-1, we propose a standard name for this ORF,
namely ORF3c, as neither ORF3h, which indicates “hypothetical”’, nor ORF3a*, which is non-standard, seems
appropriate for a deeply-conserved ORF with clear protein-coding function.

The candidate with the next best score (-2.74) is a 32-codon ORF (26183-26278) that overlaps the 3’ end of
ORF3a and the 5’ end of E (Supplemental Fig. S6A). Two strains have a frame-shifting 1-base deletion within
the ORF, and two others have premature stop codons. None of the substitutions are synonymous. There is
high nucleotide-level constraint, but it continues on both sides of the ORF, suggesting it results from something
other than translation of the ORF. Overall, this ORF does not show the evolutionary signature of a functional
coding sequence. Next in the list is ORF9b which we have already discussed. Fourth is a 31-codon ORF
(3207-3299) overlapping ORF1a, having PhyloCSF score -7.77 (Supplemental Fig. S6B). Most of the ORF
consists of a 75-nt insertion that is only present in SARS-CoV-2, RaTG13, and CoVZC45, and the start and
stop codons are missing in CoVZCA45, so this is not a conserved coding sequence. Finally, the fifth-ranked
candidate is ORF14, which we have already discussed.

The relatively high scores of ORFs 9b and 14 among these 67 hypothetical ORFs are in part an artifact of the
low density of substitutions throughout N, which they both overlap. This low density, which is found even in the
parts of N that are not in ORFs 9b or 14, decreases the statistical power available to PhyloCSF for
distinguishing its coding and noncoding evolutionary models, which compresses the PhyloCSF score towards
0, resulting in a better rank among the negative scores. If we compensate for this by dividing by the maximum-
likelihood branch length scale factor computed by PhyloCSF for its coding and non-coding models, ORFs 9b
and 14, while still in the top half, move down to the 89th and 79th percentile among the 67 ORFs considered,
whereas ORF3c remains the best scoring-candidate (Supplemental Fig. S7).

To search for additional novel protein-coding regions, we relaxed our criteria to include ORFs with at least 10
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codons, allow non-cognate start codons, and allow ORFs contained within another ORF in the same frame, but
we found no additional convincing candidates for conserved protein-coding regions. Because it has been
conjectured that translation might occur on the large number of negative-strand genomic and subgenomic
RNAs that are intermediates in viral gene expression and replication in positive-strand RNA viruses (Dinan et
al. 2020; DeRisi et al. 2019), we also scored ORFs on the negative strand, but again found no convincing
candidates. Supplemental Table S4 contains the complete list of ORFs, with scores and other pertinent
information.
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Figure 6. Novel ORF3c. Phylogenetic evidence for an unannotated protein-coding ORF near the 5’ end of ORF3a. (A) UCSC Genome
Browser image shows ORF3c overlapping ORF3a in a different reading frame. A pair of synonymous constraint elements closely match
ORF3c as is expected for a dual coding region. The PhyloCSF signal in the reading frame of ORF3c (frame 2), which is negative for most
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no intermediate stop codons in any strain.
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SARS-CoV-1 3b, 8a, and 8b are not conserved coding genes
We then turned our attention to the three annotated ORFs in SARS-CoV-1 that do not have orthologous ORFs

in SARS-CoV-2, namely ORFs 3b, 8a, and 8b. We found that ORF3b, which overlaps 3a, shows poor
PhyloCSF protein-coding constraint (score per codon -13.2), and contains numerous stop codons in other
strains including SARS-CoV-2, indicating it doesn’t have a conserved protein-coding function (Supplemental
Fig. $8). Finally ORFs 8a and 8b, two fragments of ORF8 that were separated into distinct ORFs during the
2003 SARS outbreak by a 29-nt deletion (Supplemental Fig. S$9), do not exist as ORFs elsewhere in the
Sabercovirus phylogeny, indicating they do not give rise to conserved proteins, and that their previously-
reported effect on viral replication (Muth et al. 2018) is likely due to ORF8 loss-of-function rather than 8a/8b
gain-of-function.

Sarbecovirus conservation informs analysis of SARS-CoV-2 variants

Finally, we investigated how conservation within the Sarbecovirus clade can help inform our understanding of
variation between different isolates of SARS-CoV-2. Since the outbreak of the COVID-19 pandemic, over 1800
single-nucleotide variants (SNVs) have been identified in SARS-CoV-2 isolates. We would expect variants in
amino acids or nucleotides that have been highly conserved in the larger clade to be more likely to have a
phenotypic effect, so we classified SNVs into five categories according to whether they were intergenic,
missense (amino acid changing) in conserved amino acid positions, missense in non-conserved amino acid
positions, synonymous in synonymously-constrained codons, or synonymous in synonymously-unconstrained
codons (Supplemental Table S3). We defined “conserved” amino acids to be those for which there were no
amino acid-changing substitutions in the Sarbecovirus alignment of that codon. We defined codons to be
synonymously constrained if they have a low synonymous substitution rate.

To determine if conservation within the Sarbecovirus clade correlates with purifying selection within the SARS-
CoV-2 population, we examined the densities of SNVs in conserved and non-conserved positions (Fig. 7).

We first calculated the fraction of amino acid positions that were conserved by our definition in each of the
mature proteins and hypothetical ORFs (Fig. 7A). We observe that more than 83% of amino acids are perfectly
conserved in nsp5 (3CL-PRO), nsp7, nsp8, nsp9, nsp10, nsp12 (Pol), nsp13 (Hel), and nsp14 (ExoN),
whereas a much lower fraction of amino acids are conserved in nsp1, nsp2, and nsp3. Amino acid
conservation in S is high 3’ of, and low 5’ of, the cleavage site. Amino acid conservation is lower in the
unnamed ORFs than the named ones, particularly ORFs 6 and 8. Note that our definition of amino acid
conservation does not depend on the phylogenetic tree, so these results are robust even if the tree varies
along the genome due to recombination events.

We next calculated the density of missense SNVs among the conserved and non-conserved amino acid
positions (Fig. 7B), and of synonymous SNVs among synonymously-constrained and unconstrained codons, in
each mature protein (Fig. 7C). We found that missense SNVs are depleted in conserved amino acid positions
(607 SNVs in 6480 conserved positions, 9.4%, versus 535 SNVs in 3264 non-conserved positions, 16.4%, p <
107'%) and synonymous SNVs are depleted among synonymously-constrained codons (73 SNVs in 1394
synonymously-constrained codons, 5.2%, versus 555 SNVs in 8350 synonymously-unconstrained codons,
6.6%, binomial p = 0.029).

We conclude that conservation in the Sarbecovirus clade at both the amino acid and nucleotide level is
associated with purifying selection on SNVs in the SARS-CoV-2 population.

Since SNVs are most likely to have a phenotypic effect if they change a conserved amino acid, we searched
for clusters of such SNVs. We found that the region of the nucleocapsid protein encoded by genomic locations
28826 through 28885 is significantly enriched for missense SNVs among its 14 conserved amino acids (14
SNVs, p < 0.012 after conservative multiple-hypothesis correction), suggesting that the region has been under
positive selection or relaxed purifying selection in SARS-CoV-2 (Fig. 7D, Supplemental Fig. S10). There are
no other such clusters in the genome that are significantly denser than would be expected by chance. Nor are
there any regions that are significantly depleted for missense SNVs in conserved amino acids, which would
have indicated regions in which constraint in the Sarbecovirus clade has continued particularly strongly in the
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SARS-CoV-2 population; the most depleted regions are 7400-7840 in nsp3 with no missense SNVs among
103 conserved amino acids and 24437-24748 in S2 with no missense SNVs among 99 conserved amino acids
(p = 0.072 and p = 0.093, respectively, without any correction for multiple region lengths searched)
(Supplemental Fig. S11).

To aid researchers in using our classification of variants, we have created a track hub for the UCSC Genome
Browser with each SNV color-coded according to our five categories. The details page for each SNV includes
a link to view the alignment of a neighborhood of the SNV using CodAlignView. The track hub also includes
tracks showing which codons are conserved at the amino acid and synonymous levels to aid other researchers
in classifying SNVs as they are discovered (Fig. 7D).

As examples, we analyzed two sets of variants that have been proposed as possibly affecting the viral
phenotype. First, we investigated Sarbecovirus conservation of 14 amino acids in the spike protein in which
mutations appear to be accumulating in the SARS-CoV-2 population (Korber et al. 2020), namely D614G, L5F,
L8V/W, H49Y, Y145H, Q239K, V367F, G476S, V483A, V615I/F, A831V, D839Y/N/E, S943P, P1263L. These
are included in the “KorberMutation” column of Supplemental Table S3, with hyperlinks to view the alignment
near each of these mutations. Of particular interest is D614G, which has risen in frequency in multiple
geographic locations, suggesting that it increases transmissibility. This radical amino-acid change is near the
middle of a string of 11 amino acids that are perfectly conserved among our Sarbecovirus genomes (Fig. 7E),
implying that it would have been deleterious in most of the Sarbecovirus clade; since, to the contrary, it
appears to be increasing in the human population, this suggests that it is an adaptation to the human host.
Likewise, two others, V615I/F and P1263L are mutations of perfectly conserved amino acids, while A831V is in
a highly-conserved region of the protein and its amino acid is conserved in all but the two most distantly-related
strains. In contrast, L5F, L8V/W, H49Y, Y145H, Q239K, G476S, and V483A are in amino acids that are not
conserved and are in poorly-conserved regions of the protein, so they are less likely to be required for a
conserved function. The remaining three are in moderately-conserved contexts with ambiguous interpretation.

Second, we looked at variants from 11 isolates (referred to as ZJU-1 through ZJU-11) that were functionally
characterized and found to have different temporal patterns of viral load in-vitro (Yao et al. 2020). Among the
25 loci where at least one of these isolates differs from the reference genome, T27772A is a nonsense
mutation that disrupts ORF7b but is present in 7% of the viral RNA in ZJU-11, suggesting that this ORF is not
essential for replication. We classified the other 24 according to the evolutionary evidence and found that five
are likely to be highly disruptive, another five are somewhat disruptive, four are missense mutations in residues
that have been evolutionarily permissive of amino acid changes, and the remaining nine are synonymous in
non-synonymously-constrained contexts (Supplemental Table S3). One of the somewhat disruptive mutations
is a synonymous change in a 41-codon SCE at the C-terminus of the spike protein, and the other disruptive
mutations are missense. Interestingly, one of the highly disruptive mutations, G23607A, is a radical R->Q
amino acid change in the polybasic cleavage site of S, which is only present in SARS-CoV-2 (Andersen et al.
2020); it is present in all viral RNA in ZJU-1, whose viral load was near the mean, suggesting that this residue
might have little effect on the ability of the virus to gain access to and replicate in cells. The two outliers with
unusually high viral load after 24 hours, ZJU-10 and ZJU-11, each have exactly one mutation that we classified
as highly disruptive, namely C16114T in ZJU-10 and a trimer substitution TTG->CGA at 27775-27777 in ZJU-
11, suggesting that these are the mutations most likely to be responsible for the higher viral load.
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Figure 7. Single nucleotide variants and conservation. Error bars indicate standard error of mean. (A) Fraction of amino acids in
each mature protein that are perfectly conserved in the Sarbecovirus alignment. We observe that in many products of the polyprotein,
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but not all, the vast majority of amino acids are perfectly conserved; that the second part of the S protein is much more conserved than
the first part; and that the named proteins are better conserved than the unnamed and hypothetical proteins. (B) Density of amino acid-
changing single nucleotide variants (SNVs) among conserved (dark red) amino acid positions is significantly lower than in non-
conserved (light red) positions. Both densities are higher near the 3’ end of the genome, indicating higher mutation rate or less
purifying selection even among amino acids that are perfectly conserved in Sarbecovirus. (C) Density of synonymous SNVs in
synonymously-constrained codons (dark green) is significantly lower than among synonymously-unconstrained codons (light green).
These results show that conservation in the Sarbecovirus clade at both the amino acid level and nucleotide level is associated with
purifying selection on SNVs in the SARS-CoV-2 population. (D) Region in N enriched for missense SNVs in conserved amino acids. UCSC
Genome Browser image of our SARS-CoV-2 conservation track hub, which provides information helpful in determining which SNVs are
most likely to have a phenotypic effect. SNV conservation track indicates whether SNV is missense in a conserved amino acid (bright
red), missense in a non-conserved amino acid (light red), synonymous in a synonymously-constrained codon (bright green),
synonymous in a synonymously-unconstrained codon (light green), or noncoding (black, not shown). Other tracks indicate all
constrained amino acids and synonymously-constrained codons. This 20 amino acid region of the nucleocapsid protein is significantly
enriched for missense SNVs in amino acids that are perfectly conserved among our 44 Sarbecovirus genomes, suggesting positive
selection or relaxed purifying selection in SARS-CoV-2. (E) Example of a mutation in a deeply conserved segment of the spike protein.
Sarbecovirus alignment near an A to G nucleotide substitution at genomic location 23403 that gives rise to the amino acid change
D614G in the spike protein, which has risen in frequency in multiple geographic locations, suggesting that it increases transmissibility.
This mutation is near the middle of a string of 11 amino acids that are perfectly conserved among our Sarbecovirus genomes (all
substitutions are light green, designating synonymous substitutions), which suggests that the mutation could be an adaptation to the
human host.

Discussion

We used comparative genomic methods to determine which of the unnamed ORFs in SARS-CoV-2 and
SARS-CoV-1 show the evolutionary signature of conserved, functional, protein-coding regions. We found that
SARS-CoV-2 ORFs 3a, 6, 7a, 7b, and 8 have this signature, whereas ORFs 10, and 14 do not, and 9b is
ambiguous. We also independently rediscovered a recently proposed novel dual coding region within ORF3a,
ORF3c, using different methods, and provide strong evolutionary evidence for its coding potential. In SARS-
CoV-1, ORFs 3a, 6, 7a, and 7b have this evolutionary signature, but 3b does not and 9b is again ambiguous,
while 8a and 8b are too recent to determine their functional status from evolutionary signatures. We have also
classified single nucleotide variants according to their evolutionary constraint, and used this approach to help
interpret variants from two studies. These techniques should be applicable to other sets of variants as
researchers try to untangle the connection between viral genotype and disease phenotype. Correct protein-
coding annotations are essential not only for understanding viral biology, but also for predicting the phenotypic
effect of variants, because determining how each variant affects protein sequence is the first step in any such
analysis. As an example of the importance of correct annotations, we note that seven variants within ORF3c
(T25473C, T25476C, G25494T, G25500A, G25500T, C25539T, C25572T) were classified by nextstrain as
synonymous based on their predicted effect on ORF3a, but in fact cause amino acid changes in the ORF3c
protein.

Our comparative genomics methods complement experimental approaches by providing a more
comprehensive view of conserved function, with the caveat that in some cases, the evolutionarily-conserved
function selected over the vast maijority of the evolutionary interval studied may have recently changed, and
thus evolutionary history may not reflect present state, which is better captured by experimental methods.
However, experimental approaches only detect what is present under the specific conditions tested, whereas
the comparative genomics approach used here can distinguish functional vs. non-functional regions based on
their characteristic patterns of change, or evolutionary signatures, reflecting mutational perturbation
experiments over millions of generations that survey conditions experienced by the virus in all hosts throughout
the evolutionary history spanned by the genomes compared.

The stark differences between nucleotide-level (phyloP/phastCons) and protein-level (PhyloCSF) constraint in
ORF8 and ORF10 highlight the importance of protein-coding evolutionary signatures vs. nucleotide-level
constraint. While phyloP and phastConst rely on the number of substitutions, PhyloCSF instead relies on the
type of substitutions, distinguishing those typical of coding vs. non-coding regions, regardless of the total
number of substitutions.
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Our analyses used a single genome-wide phylogenetic tree, but it is known that there is substantial
recombination in Sarbecoviruses, leading to different evolutionary histories for different genomic segments,
and segment boundaries have been identified within the S gene and the polyprotein (Wu et al. 2020; Sun et al.
2020; Andersen et al. 2020). PhyloCSF is relatively insensitive to the tree, and in fact an earlier version, CSF,
did not make use of the tree. On the other hand, FRESCo relies more heavily on the tree, but it normalizes
scores within a gene to the gene-wide average, which limits the effect of an incorrect tree provided that all of
the gene has the same evolutionary history. We are not aware of any known recombination points within N or
ORF3a, so our conclusions about overlapping reading frames in those genes are unlikely to be affected by this
concern.

We identified a 20-amino acid region in the nucleocapsid protein that is significantly enriched for amino acid-
changing variants in amino acids that have been conserved throughout the Sarbecovirus clade. Investigation of
the effects of these variants on protein structure could yield insights into human adaptation.

Further experimental work will be needed to determine the functions of the unnamed genes and the effects of
SARS-CoV-2 variants, which might lead to the identification of weaknesses of the virus. We hope that our
conclusions and that the resources we have provided will help guide experimenters to the most fruitful
investigations.

Methods

Genomes and Alignments

Genome sequences were obtained from https://www.ncbi.nim.nih.gov/. The genomes and NCBI annotations
for SARS-CoV-2 and SARS-CoV-1 were obtained from the records for accessions NC_045512.2 and
NC_004718.3, respectively. The UniProt annotations for SARS-CoV-2 were obtained from the UCSC Genome
Browser (Haeussler et al. 2019).

The 44 Sarbecovirus genomes used in this study were selected starting from all betacoronavirus and
unclassified coronavirus full genomes listed on ncbi via searches
https://www.ncbi.nlm.nih.gov/nuccore/?term=txid694002[Organism:exp] and the same with txid1986197 and
txid2664420 on 5-Mar-2020, excluding any that differed from NC_045512.2 in more than 10,000 positions in a
pairwise alignment computed using NW-align (Lab 2-Apr-2012), that cutoff being chosen so as to distinguish
Sarbecovirus genomes among those that were classified, and removing near duplicates, including all SARS-
CoV-1 and SARS-CoV-2 genomes other than the reference. Coronavirus genomes in the left half of Fig. 2
were those listed by https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=11118 on 11-Feb-2020.

The genomes were aligned using clustalo (Sievers and Higgins 2018) with the default parameters. The
Phylogenetic tree was calculated using RAXML (Stamatakis 2014) using the GTRCATX model.

PhyloCSF, FRESCo, and other conservation metrics

PhyloCSF (Lin et al. 2011a) was run using the 29mammals empirical codon matrices but with the Sarbecovirus
tree substituted for the mammals tree. Input alignments were extracted from the whole-genome alignment and
columns containing a gap in the reference sequence were removed. Browser tracks were created as described
previously (Mudge et al. 2019). Scores listed in Supplemental Table S2 were calculated on the local alignment
for each ORF or mature protein, excluding the final stop codon, using the default PhyloCSF parameters,
including --strategy=mle, plus -—debug in order to get the maximume-likelihood branch length scale factors
for the coding and non-coding models. The mean and standard deviation of PhyloCSF-per-codon scores of
protein-coding ORFs were calculated using the scores of the NCBI ORFs, excluding ORF1a because it is
redundant with ORF1ab and excluding ORF10 because we had already determined it is not protein-coding; the
mean and standard deviation for non-coding ORFs were calculated from those in Supplementary Table 4 in the
initial subset, excluding ORFs 3h, 9b, and 14, since those were the ones under investigation.protein-coding
ORFs were the NCBI ORFs excluding ORF

FRESCo (Sealfon et al. 2015) was run on 9-codon windows in each of the NCBI annotated ORFs. Alignments
were extracted for the ORF excluding the final stop codon, and gaps in the reference sequence were removed.
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SCEs were found by taking all windows having synonymous rate less than 1 and nominal p-value<10'5, and
combining overlapping or adjacent windows. For the variant analysis, FRESCo was also run on 1-codon
windows using codon alignments as described previously (Sealfon et al. 2015).

Substitutions per site and per neutral site for each annotated ORF and mature protein were calculated by
extracting the alignment column for each site or, respectively, 4-fold degenerate site, from the whole-genome
alignment and determining the parsimonious number of substitutions using the whole-genome phylogenetic
tree. For columns in which some genomes did not have an aligned nucleotide, the number of substitutions was
scaled up by the branch length of the entire tree divided by the branch length of the tree of genomes having an
aligned nucleotide in that column

PhastCons and phyloP tracks shown in Fig. 2 are the Comparative Genomics tracks from the UCSC Genome
Browser, which were constructed from a multiz (Blanchette et al. 2004) alignment of the list of 44 Sarbecovirus
genomes that we supplied to UCSC.

Analysis of Single Nucleotide Variants
Single nucleotide variants were downloaded from the “Nextstrain Vars” track in the UCSC Table Browser on

2020-04-18 at 11:46 AM EDT. We defined an amino acid to be “conserved” if there were no amino acid-
changing substitutions in the Sarbecovirus alignment of its codon. We defined codons to be “synonymously
constrained” if the p-value for the synonymous rate at that codon calculated by FRESCo using 1-codon
windows was less than 0.034, which corresponds to a false discovery rate of 0.125.

To find regions that were significantly enriched for missense SNVs in conserved amino acids, we first defined a
null model as follows. For each mature protein, we counted the number of missense SNVs and the number of
conserved amino acids and randomly assigned each SNV to a conserved amino acid in the same mature
protein, allowing multiplicity. For any positive integer n, we found the largest number of SNVs that had been
assigned to any set of n consecutive conserved amino acids within the same mature protein across the whole
genome. Doing this 100,000 times gave us a distribution of the number of missense SNVs in the most enriched
set of n consecutive conserved amino acids in the genome. Comparing the number of actual missense SNVs
in any particular set of n consecutive conserved amino acids to this distribution gave us a nominal p-value for
that n. We applied this procedure for each n from 1 to 100 and multiplied the resulting p-values by a Bonferroni
correction of 100 to calculate a corrected p-value for a particular region to be significantly enriched. We note
that these 100 hypotheses are correlated because enriched regions of different lengths can overlap, so a
Bonferroni correction is overly conservative and our reported p-value of 0.012 understates the level of
statistical significance. To find significantly depleted regions we applied a similar procedure with every n from 1
to 1000, but did not find any depleted regions with nominal p-value less than 0.05 even without any multiple
hypothesis correction.

Miscellaneous
Ribosome footprints shown in Supplemental Fig. S3 are from the track hub at ftp://ftp-
igor.weizmann.ac.il/pub/hubSARSRIbo.txt (Finkel et al. 2020).

Supplemental Materials:

e Supplemental Figures S1-S11

e Supplemental Table S1. Tab-separated table with one row for each of 44 Sarbecovirus strains used. Fields are the accession, name

used in CodAlignView, and GenBank description.
e Supplemental Table S2. Information on all ORFs and mature proteins of SARS-CoV-2 as annotated by UniProt, including:
0  Genomic coordinates in bed-like format (0-based half-open)

Names and alternative names for the ORF and protein
Number of codons
PhyloCSF score per codon
Average number of substitutions per site using the whole-genome tree
Average number of substitutions per 4-fold degenerate site using the whole-genome tree
Average number of substitutions per site using the whole-genome 42-strain tree that excludes the two most distant

O O O 0O O O
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strains
o0 Average number of substitutions per 4-fold degenerate site using the whole-genome 42-strain tree that excludes the two
most distant strains
0 The number and fraction of amino acids that are conserved, codons that are synonymously constrained, and various
categories of single nucleotide variants.
o Excel hyperlink to CodAlignView showing the ORF or mature protein and 5 codons of the neighbor on each side
o Excel hyperlink to UCSC Genome Browser showing ORF or mature protein and 5 codons of the neighbor on each side
0 UniProt comments on function of the ORF or mature protein
e Supplemental Table S3. Information about each of the single nucleotide variants used in this study including position
information; number of nextstrain genomes containing the variant and nextstrain’s classification (“INFO” field); reference and
alternate nucleotide and amino acid; our classification as noncoding, synonymous, or non-synonymous; nonsynonymous rate for
nonsynonymous SNVs; synonymous rate, p-value, FDR, localFDR, and containment in SCE for synonymous SNVs; and links to view
the SNV in the UCSC Genome Browser and its alignment in CodAlignView with 25 codons of context on each side. For the SNVs
associated with the spike-protein variants in Korber et al. we also include the corresponding amino acid variant, our classification,
and the other information from Korber et al. Table 1. For the variants from Yao et al., we include the variant and our classification.
e Supplemental Table S4. Spreadsheet in tab-separated format listing open reading frames searched for novel coding regions.
These consisted of all SARS-CoV-2 ORFs at least 10 codons long, on either strand, beginning with AUG or a near-cognate codon, that
do not overlap an NCBI-annotated gene in the same reading frame or the antisense frame (the frame on the opposite strand that
shares the 3rd codon position; antisense regions gets artifactually high PhyloCSF scores). Our initial subset consisted of those on
the '+' strand, with a canonical (AUG) start codon, at least 25 codons long, that are maximal (i.e, not contained in a longer AUG-
initiated ORF in the same frame). ORFs in our initial subset are listed first, in order of decreasing PhyloCSF score per codon,
followed by all other ORFs, also in order of decreasing PhyloCSF score per codon. Spreadsheet fields include general information
about the ORF, links to view the alignment in CodAlignView with 10 codons on each side for context, links to view the region in the
UCSC Genome browser, PhyloCSF score per codon, branch length of strains present in the local alignment as a fraction of total
branch length (RelBL), PhyloCSF's branch length scale factors for its coding and noncoding models (RhoC and RhoN), adjusted
score consisting of PhyloCSF score per codon divided by the average of RhoC and RhoN, relative branch length of strains
conserving the start codon/ stop codon/reading frame, GC content, fraction of the ORF that overlaps Synonymous Constraint
Elements, and whether the ORF was reported as translated in the Finkel et al. ribosome profiling experiments.
e Pdffiles containing the alignment of each UniProt-annotated SARS-CoV-2 ORF and mature protein with 5 codons of the neighbor on
each side, color-coded by CodAlignView for protein-coding evolutionary features.
e  Whole-genome alignment of 44-Sarbecovirus genomes in Fasta format.
Whole-genome phylogenetic tree in Newick format.
e  Nextstrain_ncov_global_metadata.tsv: List of authors who contributed genomes to GISAID that were used by nextstrain and UCSC to
produce the list of SNVs.

Data Access

The PhyloCSF tracks and FRESCo synonymous constraint elements are available for the
SARS-CoV-2/wuhCor1 assembly in the UCSC Genome Browser (Haeussler et al. 2019) using the “PhyloCSF”
and “Synonymous Constraint” public track hubs. The alignments and phylogenetic tree are included as
supplemental materials. The alignments may be viewed, color coded to indicate protein-coding signatures,
using CodAlignView (https://data.broadinstitute.org/compbio1/cav.php) with alignment set wuhCor1_c and
chromosome name NC_045512v2.

SARS-CoV-2 single nucleotide variants, color coded by whether they are non-coding, synonymous, or amino
acid-changing, and whether they are in conserved codons, as well as indications of which codons are
conserved at the amino acid or synonymous level, may be viewed in the UCSC Genome Browser using the
track hub at https://data.broadinstitute.org/compbio1/SARS-CoV-2conservation/trackHub/hub.txt. The details
page for each SNV includes information about Sarbecovirus conservation and a link to view the alignment of a
neighborhood of the SNV in CodAlignView. It is our intention to update this track hub as the list of variants in
the UCSC Table Browser is updated.

In this resource, we have augmented variant data made available by UCSC with our own annotations. UCSC
data came from nextstrain.org (Hadfield et al. 2018), which was derived from genome sequences deposited in
GISAID (Elbe and Buckland-Merrett 2017). Right of use and publication of the underlying sequences is entirely
controlled by the authors of the original resource and the contributors of individual sequences, who are
acknowledged in the nextstrain metadata file included with supplemental materials. Our analysis provides an
additional layer of annotation on their work rather than replicating or replacing it.

Original data usage policy as provided by UCSC:
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The data presented here is intended to rapidly disseminate analysis of important pathogens.
Unpublished data is included with permission of the data generators, and does not impact their right to
publish. Please contact the respective authors (available via the Nextstrain metadata.tsv file) if you
intend to carry out further research using their data. Derived data, such as phylogenies, can be
downloaded from nextstrain.org (see "DOWNLOAD DATA" link at bottom of page) - please contact the
relevant authors where appropriate.
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Supplemental Figure S1. Alignment of nsp11 and frameshift site. Alignment of nonstructural protein nsp11 and the subsequent 5
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codons in 44 Sarbecoviruses (top) and 52 coronaviridae (bottom). Sarbecoviruses included in the coronaviridae alignment are
indicated by green dots. The slippery site of the programmed frameshift (red rectangle) is perfectly conserved in all genomes. The
polymerase, Pol, shares the 5’ nine codons of nsp11 but then continues 3’ of the slippery site in a different reading frame. The four
codons 3’ of the slippery site are perfectly conserved in Sarbecoviruses, which is consistent with a dual coding region. However, the stop
codon of the un-framshifted polyprotein, pp1la, which marks the 3’ end of nsp11, is poorly conserved in coronaviridae (cyan, magenta,
and yellow stop codons). This, and the fact that nsap11 is only 13 codons long, suggest that it does not produce a functional protein.
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Supplemental Figure S2. ORF8 Phylogeny. (A) Phylogenetic tree computed from the alignment of ORF8, which is quite different from
the genome-wide tree in Fig. 2, indicating that there has been a recombination event near this region. (B) Alignment of ORF8 with
strains ordered according to the ORF8 tree shows a large number of substitutions, demonstrating that the apparently high evolutionary
rate in ORF 8 is not an artifact of recombination.
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Supplemental Figure S3. Reported evidence that ORF10 is coding. (A) UCSC Genome Browser image of ORF10 and ribosome
footprints 5 hours post-infection (Finkel et al. 2020). CHX track shows footprints of actively translating ribosomes from cells treated
with cycloheximide. Harr and LTM tracks show footprints from cells treated with harringtonine and lactimidomycin, respectively, to
enrich for initiating ribosomes. Final predictions track shows ORFs computationally predicted by Finkel et al. from footprint data.
Nearly all footprints within ORF10 are in either the predicted uORF overlapping the ORF10 start codon, or the predicted downstream
ORF beginning at an interior AUG, which would create a peptide of only 18 amino acids (only 5 amino acids in all but the four closest
strains, since the others have an early stop codon), and the density of footprints in the unique portion of ORF10 (dashed black
rectangle) appears to be no greater than the density beyond its stop codon (dashed red rectangle), suggesting they are not due to
translation of ORF10. (B) Alignment of ORF10 in SARS-CoV-2, three bat viruses, and two pangolin viruses, used by Cagliani et al. to infer
that the ORF is protein-coding and under positive selection due to a high dN/dS ratio (Cagliani et al. 2020). However, the alignment
includes only nine substitutions, one of them synonymous. In the hypothetical translation of a non-coding region evolving neutrally, we
would expect between two and three of nine substitutions to be synonymous, and the depletion to only one is not statistically significant
(p > 0.18 even without the necessary multiple hypothesis correction). Furthermore, one sequence was excluded due to a 1-base
frameshifting deletion (orange and grey), which, if it is not a sequencing error, would be strong evidence against conserved protein-
coding function.
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Supplemental Figure S4. Alignment of ORF14. Sarbecovirus alignment of ORF14 (top), which overlaps the nucleocapsid protein N in
an alternate frame. The start codon is lost in KY352407_SARS _related_CoV_strain_BtKY72, and most strains have a premature UAG stop
codon (magenta) 3 codons before the end. Nearly all substitutions are radical amino acid changes (red). It is unlikely that this ORF
encodes a conserved functional protein. Also shown is the same region in the frame of the overlapping nucleocapsid protein (bottom),
in which most substitutions are synonymous (light green).
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Supplemental Figure S5. Alignment of ORF9b. Sarbecovirus alignment of ORF9b (top), which overlaps the nucleocapsid protein N in
an alternate reading frame. Although most substitutions are non-synonymous (red and dark green), the start codon (red box) and stop
codon (blue box) are perfectly conserved, and there are no intermediate stop codons in other strains. Bases A and G in positions -3 and
+4 (green boxes), respectively, are optimal for ribosomal start codon recognition. The start codon of N (purple box) is 10 nt 5’ of start
codon of 9b, with less-optimal bases A and T in positions -3 and +4 of this start codon (orange boxes), suggesting that ORF9b could be
translated from the same subgenomic RNA as N by leaky scanning. Also shown is the same region in the frame of the overlapping
nucleocapsid protein (bottom), in which most substitutions are synonymous (light green). Evolutionary evidence is ambiguous
regarding whether 9b is coding.
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Supplemental Fig S6. Alignments of rejected ORFs. CodAlignView images of ORFs rejected during our search for novel conserved
coding regions. (A) 32-codon ORF (26183-26278) that overlaps the 3’ end of ORF3a and the 5’ end of E with PhyloCSF score -2.74. Two
strains have a frame-shifting one-base deletion within the ORF, and two others have premature stop codons. None of the substitutions
are synonymous. There is high nucleotide-level constraint, but it continues on both sides of the ORF, suggesting it does not result from
translation of the ORF. (B) 31-codon ORF (3207-3299) overlapping ORF1a, with PhyloCSF score -7.77. Most of the ORF consists of a 75-
nt insertion that is only present in SARS-CoV-2, RaTG13, and CoVZC45, and the start and stop codons are missing in CoVZC45, so this is
not a conserved coding sequence.
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Supplemental Figure S7. Adjusted scores of all ORFs. PhyloCSF score per codon divided by the maximum-likelihood branch length
scale factor computed by PhyloCSF for its coding and non-coding models, for all the ORFs in Fig. 1C, namely all annotated and
hypothetical AUG-initiated ORFs on the positive strand at least 25 codons long that do not overlap a longer ORF in the same frame.
Dividing by this scale factor adjusts for the fact that in regions with a low frequency of substitutions, such as throughout ORFs N and 10,
PhyloCSF has less statistical power to distinguish its coding and noncoding evolutionary models, which compresses the PhyloCSF score
towards 0, resulting in a better rank among the negative scores. The lower scores of ORFs 10, 14, and 9b with this adjustment show that
their relatively high negative scores in Fig. 1C are at least in part an artifact of the low frequency of substitutions in these genomic

regions.
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NC_004718 SARS Cov.aa ¥ T @ S T A L o B L L T @ 0 W I o F M M S RRRLILACECEKEEKE TYVSTNLCTHRSFREEKOQYR +
NC_004718_5ARS_Cov - Y
KD444582_SARS_Like_Cov_WIViE roccrr e a
KY417146_Bat_5ARS. 1ike Cov_Rsd231 sl A
1211376 Cov_BtRe_BatacoV. roccrr A
KY417151_Bat_SARS Like Cov_Re7327 cantes ¥ o rocerr A
KY417152_Bat_SARS 1ike Cov_Re9401 roccrr ™A
KY417144_Bat_SARS Like CoV_Rod084 rocerr TTA TGT ACT CAT TCG T CGG AAG AR CAG GTA CT A
Kr367457_Bat_5ARS. 1ike. Cov_wIVI
KUS73692_UNVERIFIED_SARS_related_Cov_F4s e ecerr a0 cac oA car ERR
X7417145_Bat_SARS Like_Cov_ cantes e cROEEA AAG AAA CAG GTA CoT A
KY770858_Bat_CoV_Anlong_103 ERNY T6c T TTATGT ACT CAT TCG TTT CGG AAG AAA CAG GTA CGT AR
KY417143_Bat_SARS. 1ike Cov_ Red01 dcon s
KY417143_Bat_SARS_like CoV_Rs4255TAC £a conct reccrr panpe ™A
MK211378_CoV_BtRs_BetaCoV ! & o TAA
F583686_Bat_SARS_Cov_Rs672_2006 -y rafr reccrr A an
MK211377_CoV_BtRs_BetaCoV_YN2018C' Avec T6C CTT TAR
K1417142_Bat_SARS 1ike_Cov e A
KY417147_Bat_SARS Like Cov_Ro4237 roccrr B i
KY417148_Bat_SARS 1ike Cov_ Red247 A
1211375 Cov_BtRe_Batacov. roccrr A
Q071615 Pat_SARS_Cov_Tp3 TG ATC CAATIT A
XP886808_Bat_SARS.1ike Cov_TNLF_31C roccrr A
KI473815_BiRo_BetaCov_GK2013 rocerr T 16T ACT CAT 76 7T cGG An I CAG GTA CoT AR
KF569996_Rhinolophus affinis Cov T¥Rall A
4993988 _Bat._Cov_cp_Yunnan2011 rocerr anc I caG oA cor AR
MK211374_Cov_BURI,_Betacov_sc2018 AAG ARA CAG GTA COTTAR
K3473814_BtRs_Betacov_RuB2013 roccrr 0 cac ara cor Ak
DQ412043_Bat_SARS_Cov_Rml rocerr 5T ACG AAC TTA TGT ACT CAT TG T T AAG AR CAG GTA CT AR
K1936558_Bat_cov_strain 1680133 s
00412042 Bat_SARS Cov_RE1 e a
D0648856_Bac_cov_Becov_273_2005 cantes A
K3473812_BERT_Betacoy Hep2013 roccrr A
TI0360_sa_Co._Siyuan_ 54 TAC AR CAA TG Ao T cag T B rocerr A
0153542_Bat_SARS_Cov_HKU3_7 4 rocerr 76 771 c66 AG M CAG 61 CoT AR
50022305 _Bat_sARS_Cov_KU3_1 i I cac oo corma
Q153547 Bat_SARSCov_KU3_12 enn By roccrr Tl cac oTacor g
NC_045512_SARS_CoV_2_Wuhan_Fu_ - T cac T chkmg;m rd A2 ] caG GTA COT AR
14996532_Bat_Cov_Rarc13 EEE AC CaA o6 Acc I B oA T A I caG oTA cor TR
16772933 Bat_SARS Like_Co_bat_SL. Covac4s I ACh can o6 aco I B onc o Brc cac can 1o I can T AT a1 IR rocerr T 16T ACT CAT 76 7T cGG AAG I CAG GTA CoT R
1G772934_Bac_5ARS_1ike_Cov_bat. 5%, CovzxC21 B ACA CAA TCG ACC] E Ghar ™ ACG AAC TTATOT ACT CAT TCG TP GG AAG I CAG GTA COTTAR
K1352407_SARS_related_CoV_strain bev72E cen oo
NC_014470_Bat_Cov_BuAS_31_BGR_2008 0 Jrads
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ORF3b

Same region in main reading frame

ConservativeRadical Opal Stop CodonlIn—frame arclindel

Supplemental Figure S8. SARS-CoV-1 ORF3b. (A) Alignment of SARS-CoV-1 ORF3b in 44 Sarbecoviruses, rearranged so that SARS-
CoV-1 and its closest relatives come first. Most of ORF3b overlaps ORF3a in a different frame. There are numerous stop codons in other
strains (red ovals), including a stop codon about 3% of the way through the ORF in most strains including those closest to SARS-CoV-1
(red rectangle), so this cannot be a conserved coding region. (B) ORF3b shown in its reading frame (top) compared to the same region
in the reading frame of ORF3a (bottom).
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AY56853978AR57C0V7GZ04017aa1 M K L L I V L T cC I § L ¢C S C I R T v v o R c a s’
AY568539_SARS_COV_GZ0401 ATG AAA CTT CTC ATT GTT TTG ACT TGT ATT TCT CTA TGC AGT TGC ATA CGC ACT GTA---——-~ GTA CAG CGC TGT GCA TCT
AY545915_SARS_CoV_HC_SZ_DM1_03 ATG AAA CTT CTC ATT GTT TTG ACT TGT ATT TCT CTA TGC AGT TGC ATA CGC ACT GTA-———-~ GTA CAG CGC TGT GCA TCT
NC_004718_SARS_CoV ATG AAA CTT CTC ATT GTT TTG ACT TGT ATT TCT CTA TGC AGT TGC ATA jfe[§ ACT GTA-————- GTA CAG CGC TGT GCA TCT

AY463060_SARS_CoV_ShanghaiQXC2 ATG AAA CTT CTC ATT GTT TTG ACT TGT ATT TCT CTA TGC AGT TGC ATA GTA CAG CGC TGT GCATCT
AY559097_SARS_CoV_Sin3408L ATGAAACTT CTC ATT GTT TTG ACT TGT ATT TCT CTA TGC AGT TGC ATA jife[¢ ACT GTA- — GTA CAG CGC TGT GCATCT
AY772062_SARS_CoV_WH20 ATGAAACTT CTC ATT GTT TTG ACT TGT ATT TCT CTA TGC AGT TGC ATA jife[¢ ACT GTA-————— GTA CAG CGC TGT GCATCT

NC_045512_SARS_CoV_2_Wuhan_Hu_1 ATG AAA BEg) BBT fivcealaTc N ¥ GAATGTAGT [io) caG [eh TeT FXeh %)

AY568539_SARS CoV_GzZ040l_aa N K P H V F E D P C P T G Y Q P E W N I R Y K T R
AY568539_SARS_CoV_GZ0401 AAT ARA CCT CAT GTG TTT GAA GAT CCT TET CCT ACT GGT TAC CAA CCT GAA TGG AAT ATA AGG TAC AAA ACT AGG
AY545915_SARS_CoV_HC_SZ_DM1_03 AAT AAA CCT CAT GTG [S0l§ GAA GAT CCT T

SARS-CoV-1 NC_004718_SARS_CoV AAT AAA CCT CAT GG [S GAA GAT CCT I

AY463060 SARS CoV_ShanghaiQXC2 AAT AAA CCT CAT GTG S0 GAA GAT CCT TG= === === ——— o= ——d - _______ Lina AGG TAC AAC HEH HEE
AY559097_SARS_CoV_Sin3408L AAT AAA CCT CAT GTG [Sllll GAA GAT CCT TG === === === moo oo Lo Lo oo Do - Dmal AG6 [TAc Aac HEH B88

AY772062_SARS_CoV_WH20 AAT AAA CCT CAT GTG Sl GAA GAT CCT i TA AGG TAC AAC--

SARS-COV-2 Nc_045512 SARS Cov 2 Wahan_ a1 SN /EK) 6GA [V 6K 003 I MG GG o co VTS [T I IS U [0 e o ) B

AY568539 SARS CoV GZ0401 aa G N T Y S T A W L C A L G K V L P F H R W H T M V
AY568539_SARS_COV_GZ0401 GGT AAT ACT TAT AGC ACT GCT TGG CTT TGT GCT CTA GGA AAG GTT TTA CCT TTT CAT AGA TGG CAC ACT ATG GTT
AY545915_SARS_CoV_HC_SZ_DM1_03 GGT AAT ACT TAT AGC ACT GCT TGG CTT TGT GCT CTA GGA AAG GTT TTA CCT TTT CAT AGA TGG CAC ACT ATG GTT
NC_004718_SARS_Cov GGT AAT AcT [l BEE ACT GCT GG CTT TGT GCT CTA GGA AAG GTT TTa Cet Tt BRl BB Tcc CAC ACT ATG 617
AY463060_SARS_CoV_ShanghaiQxc2 GGT AAT ACT [l BGE ACT GCT TGG CTT TGT GCT CTA GGA AAG GT'T TTA CCT 17T [BA BEA TG CAC ACT ATG GTT
AY559097_SARS_CoV_Sin3408LGGT AAT AcT [l 88 AcT GCT GG CTT 6T GCT CTA GGA AAG GT'T TTA CCt 1ot BRE BEH TG CAC ACT ATG GTT
AY772062_SARS_Cov_wH20 GGT AAT AcT [l BEE ACT GCT GG CTT TGT GCT CTA GGA AAG GTT T7a cct Tt BB BBl Tcc CAC ACT ATG 617

NC_045512_SARS_CoV_2_Wuhan_Hu_1 [NeE) V) o7 |17 STeh v (eF¥2 G (GG [eRTe (7 (ST (ST (ST e N e Glete N [oPe e e (7% e
AY568539_SARS_CoV_GZz0401_aa Q T C T P N V T I N C Q D P A G G A L I A R C W Y
AY568539_SARS_COV_GZ0401 CAA ACA TGC ACA CCT—-——=———— AAT GTT ACT ATC AAC TGT CAA GAT CCA GCT GGT GGT GCG CTT ATA GCT AGG TGT TGG TAC
AY545915_SARS_CoV_HC_SZ_DM1_03 CAA ACA TGC ACA CCT-———————— AAT GTT ACT ATC AAC TGT CAA GAT CCA GCT GGT GGT GCG CTT ATA GCT AGG TGT TGG TAC

NC_004718_SARS_CoV CAA ACA TGC ACACCT--- ——AAT GTT ACT ATC AAC TGT CAA GAT CCA GCT GGT GGT GCG CTT ATA- - TGT TGG TAC
AY463060_SARS_CoV_ShanghaiQXxC2 CAA ACA TGC ACA CCT--- ——AAT GTT ACT ATC AAC TGT CAA GAT CCA GCT GGT GGT GCG CTT ATA- - TGT TGG TAC
AY559097_SARS_CoV_Sin3408L CAA ACA TGC ACA CCT-~—==—=== AAT GTT ACT ATC AAC TGT CAA GAT CCA GCT GGT GGT GCG CTT ATA- - TGT TGG TAC
AY772062_SARS_CoV_WH20 CAAACATGCACACCT========= AAT GTT ACT ATC AAC TGT CAA GAT CCA GCT GGT GGT GCG CTT ATA- TGT TGG TAC

NC_045512_SARS_CoV_2 Wuhan_ Hu_1 e N0y W ACA GTTTCCTGTTTA [Slek: b ACA AT AAT FGC CAG [F¥) Cot [¥¥ fe cor Xl c1T [66E o il

AY568539 SARS CoV GZ0401 aa L. H E G H Q@ T A A F R D V L V V L T K R T N *
AY568539_SARS_CoV_GZ0401 CTT CAT GAA GGT CAC CAA ACT GCT GCA TTT AGA GAC GTA CTT GTT GTT TTA ACT AAA CGA ACA AAT TAA
AY545915_SARS_CoV_HC_SZ_DMI1_03 CTT CAT GAA GGT CAC CAA ACT GCT GCA TTT AGA GAC GTA CTT GTT GTT TTA VN AAA CGA ACA AAT TAR
NC_004718_SARS_CoV CTT CAT GAA GGT CAC CAA ACT GCT GCA- - GAC GTACTT GTT GTT TTA AAT AAA CGA ACA AAT TAA
AY463060_SARS_CoV_ShanghaiQxC2 CTT CAT GAA GGT CAC CAA ACT GCT Gea il BEA GAC GTA CTT GT'T GTT T7A AAT AAA CGA ACA AAT TAA
AY559097_SARS_CoV_Sin3408LCTT CAT GAA GGT CAC CAA ACT GCT GCA il HEA GAC GTA CTT GTT GTT TTA AAT AAA CGA AcA AAT TAR
AY772062_SARS_CoV_WH20 CTT CAT GAA GGT CAC CAA ACT GCT GCa [l HEH GAC GTA CTT GTT GTT TTA AAT AAA CGA AcA AAT TaAR

NC_045512 SARS_CoV_2 Wuhan Hu_1 [0 %) (ceT & GTT TTA G-- ATT TCA TCT AAA CGA ACA AAC TAA

ConservativeRadical [oleJsbq=Rcioe)sMe{e]s (e} Opal Stop CodonIIn—frame ATGlIndellFrame—shifted'... No alignment|

Supplemental Figure S9. ORF8 and 8a. Alignment of ORF8 containing SARS-CoV-2 and six isolates of SARS-CoV-1. A 29-nt deletion is
present in four of the SARS-CoV-1 isolates (red box), causing a frameshift leading to an early stop codon, terminating annotated ORF8a
in SARS-CoV-1. This deletion is not present in the other two SARS-CoV-1 isolates shown (blue box), or in SARS-CoV-2, which serves as
an outgroup, indicating that it occurred within the SARS-CoV-1 strain, presumably during the 2003 SARS outbreak.
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NC_045512 SARS CovV 2 Wuhan Hu 1 aa R S S S R S R N S S R N S T P G S S R G
Alt AllelesT W cT G T KT T W CT TT A A AAC

NC_045512_SARS_CoV_2 Wuhan Hu_1 CGT TCC TCA TCA CGT AGT CGC AAC AGT TCA AGA AAT TCA ACT CCA GGC AGC AGT AGG GGA
MN996532 Bat_CoV_RaTG13GGE GH TCA TCA CGT AGT CGC AAC AGT TCA AGA BAG TCA ACT CCA GGC AGC AGT AGG GGA
MG772933_Bat_SARS like CoV_bat_ SL_CoVzC45BGE TCC TCA TCA CGT AGT CGC AAC AGT TCA AGA BAG TCA ACT CCA GGC AGC AGT AGG GGA
MG772934 Bat SARS like CoV bat SL CovzXC21@GE TCC TCA TCA CGT AGT CGC AAC AGT TCA AGABAG TCA ACT CCA GGC AGC AGT AGG GGA
NC_004718_SARS_CoV|@GE TCC TCA TCA CGT AGT CGC [Gepl VUl TCA AGA AAT TCA ACT [GCH GGC AGC AGT AGG GGA
KT444582 SARS_like CoV_WIV16 /GGG BCH BCG TCA CGT AGT CGC [Sept VUl TCA AGA AAT TCA ACT GCH GGC AGC AGT AGG GGA
KY417146_Bat SARS like CoV_Rs4231 /GGG [ICH GG TCA CGT AGT CGC [elel [Nl TCA AGA AAT TCA ACT GG GGC AGC AGT AGG GGA
MK211376_CoV_BtRs_BetaCoV_YN2018B/GGG BCT TCA TCA CGT AGT CGC [dfeit AVl TCA AGA AAT TCA ACT [GCT GGC AGC AGT AGG GGA
KY417151 Bat SARS like CoV_Rs7327 GGG GH TCA TCA CGT AGT CGC [eled LVl TCA AGA AAT TCA ACT BCH GGC AGC AGT AGG GGA
KY417152_Bat_ SARS_like CoV_Rs9401 /GGG BCH TCA TCA CGT AGT CGC [dlept LVl TCA AGA AAT TCA ACT [GCH GGC AGC AGT AGG GGA
KY417144_Bat_SARS_like CoV_Rs4084 GGG TCT TCE TCA CGT AGT CGC [leds [N TCA AGA AAT TCA ACT GCH GGC AGC AGT AGG GGA
KF367457_ Bat_SARS like Cov_wIv1EGG HCH TCA TCA CGT AGT CGC el NGl TCA AGA AAT TCA ACT GG GGC AGC AGT AGG GGA
KU973692_ UNVERIFIED SARS_related CoV_F46 GGG TCC TCA TCA CGT AGT CGC [Hlesi VU] TCA AGA AAT TCA ACT GCH GGC AGC AGT AGG GGA
KY417145 Bat_SARS_like CoV_Rf4092GGE TCH TCA TCA CGT AGT CGC [legs [N TCA AGA AAT TCA ACT GCH GGC AGC AGT AGG GGA
KJ473816_BtRs_BetaCoV_ YN2013 /GGG BCH TCA TCA CGT AGT CGC [Sepl VUl TCA AGA AAT TCA ACT GCH GGC AGC AGT AGG GGA
KY770858_Bat_CoV_Anlong 103 GGG TCC TCA TCA CGT AGT CGC [eleqi LV:Ul TCA AGA AAT [BEG ACT €CT GGC AGC AGT AGG GGA
KY417143 Bat_SARS_like CoV_Rs4081 GGG MCH TCA TCA CGT AGT CGC TCA AGA AAT TCA ACT GCT GGC AGC AGT AGG GGA
KY417149 Bat SARS_like CoV_Rs4255 GGG MGE TCA TCA CGT AGT CGC [eledi V] TCA AGA AAT TCA ACT GCH GGC AGC AGT AGG GGA
MK211378_CoV_BtRs_BetaCoV_YN2018D /GGG BCH TCA TCA CGT AGT CGC [Slegt EVUl TCA AGA AAT TCA ACT [GCH GGC AGC AGT AGG GGA
FJ588686_Bat SARS CoV_Rs672 2006 GGG MCT TCA TCA CGT AGT CGC [eed %] TCA AGA AAT TCA ACT BCH GGC AGC AGT AGG GGA
MK211377_CoV_BtRs_BetaCoV_YN2018C GGE [T TCA TCA CGT AGT CGC [eler LV:Ul TCA AGA AAT TCA ACT BCH GGC AGC AGT AGG GGA
KY417142 Bat_ SARS_like CoV_As6526 /GGG BCH TCA TCA CGT AGT CGC [Slegt EVUl TCA AGA AAT TCA ACT GCH GGC AGC AGT AGG GGA
KY417147 Bat SARS like CoV_Rs4237/@GE TCC TCA TCA CGT AGT CGC [t [¥:0] TCA AGA AAT TCA ACT GG GGC AGC AGT AGG GGA
KY417148_Bat SARS_like CoV_Rs4247 (GGG MCT BCG TCA CGT AGT CGC [eleri VU] TCA AGA AAT TCA ACT GG GGC AGC AGT AGG GGA
MK211375_CoV_BtRs_BetaCoV_YN2018A /GGG MCH TCA TCA CGT AGT CGC [Slegt VUl TCA AGA AAT TCA ACT [GCH GGC AGC AGT AGG GGA
DQ071615 Bat SARS CoV_Rp3 GGG MCH TCA TCA CGT AGT CGC (el ¥4 TCA AGA AAT TCA ACT GG GGC AGC AGT AGG GGA
KP886808 Bat SARS like CoV_ YNLF 31C GGG [CHE TCA TCA CGT AGT COT [kl VUl TCA AGA AAT TCA ACT BGH GGC AGC AGT AGG GGA
KJ473815 BtRs_BetaCoV_GX2013[@8E TCC TCA TCA CGT AGT CGC [Sept ¥l TCA AGA BAG TCA ACT €CH GGC AGC AGT AGG GGA
KF569996_Rhinolophus_affinis_CoV_LYRall BGE TCC TCA TCA CGT AGT CGC [ele ¥l TCA AGA AAT TCA BCA BCH GGC AGC AGT AGG GGA
JX993988 Bat CoV_Cp_Yunnan2011 B8 TCC TCA TCA CGT AGT GG [ed) VUl TCA AGA AAT TCA ACT BCH GGC AGC AGT AGG GGA
MK211374_CoV_BtR1l_BetaCoV_SC2018 /GGG BCH TCA TCA CGT AGT CGC [elepl VUl TCA AGA AAT TCA ACT [GCH GGC AGC AGT AGG GGA
KJ473814_BtRs_BetaCoV_HuB2013EGC HCH TCA TCA CGT AGT CGC [Sled [N TCA AGA AAT TCA ACT GGl GGC AGC AGT AGG GGA
DQ412043_Bat_SARS_CoV_Rml GGG [ICE TCA TCA CGT AGT CGC [elens VUt GG AGA AAT TCA ACT BCH GGC AGC AGT AGG GGA
KY938558 Bat CoV_strain 16B0133B8E TCC TCA TCA CGT AGT CoT [eer v TcA AGA FNel Tca AcT BEH GGC AGC AGT AGG GGA
DQ412042_ Bat_SARS_CoV_Rf1BGE TCC TCA TCA CGT AGT GGH ¥ rca aca ¥ Tca acT 88T cee ace AGT AGG GGA
DQ648856_Bat CoV_BtCoV_273_ 2005 GGE TCC TCA TCA CGT AGT COT [er vy TCA AGA[Nel TCA ACT €8T GGC AGC AGT AGG GGA
KJ473812 BtRf BetaCoV HeB2013 GGG TCC TCA TCA CGT AGT GOl (e Fvv) TCA AGA [Nel TcA ACT B8 GGC AGC AGT AGG GGA
KY770860_Bat_CoV_Jiyuan_84 BGE TCC TCA TCA CGT AGT GO [eler v TcA AGA FXel Tca AcT BEH GGC AGC AGT AGG GGA
JX993987 Bat_CoV_Rp_ Shaanxi2011@GE TCC TCA TCA CGT AGT CGC [ed VU] TCA AGA AAT TCA ACT BCH GGC AGC AGT AGG GGA
GQ153542 Bat SARS_CoV_ HKU3_7/GGG MCH TCA TCA CGT AGT CGC [Sepl VUl TCA AGA AAT TCA ACT [GCH GGC AGC AGT AGG GGA
DQ022305_Bat_SARS_CoV_HKU3_1[GGG TCC TCA TCA CGT AGT CGC [Seii [Nl TCA AGA AAT TCA ACT GGH GGC AGC AGT AGG GGA
GQ153547 Bat SARS_CoV_HKU3 12686 TCC TCA TCA CGT AGT CGC [cepy v TcA Y AAT TCA ACT €8T GGC AGC AGT AGG GGA
KY352407 SARS related CoV strain BtKY72 CGT TCC BGE TCA CGT AGT GG (e [Vl IGE AGA AAT TcA BCE AGT AGC AGA GGT
NC_014470_Bat_CoV_BM48_31 BGR_2008 CGT [CH [¥N8 TCA CGT AGC CGT [ew vi ICC AGA AAT TCA BCA acc REE ReA 6eT

Supplemental Figure $S10. SNV cluster in N. Alignment of the 20-amino acid region in the nucleocapsid protein that is highly enriched
for missense SNVs in perfectly conserved amino acid residues. Alternate alleles are shown in the second row using the standard code
for degenerate nucleotides (W indicates the two alternate alleles A or T, and K indicates G or T). There 14 non-synonymous SNVs among
the 14 amino acids that are perfectly conserved among the 44 Sarbecovirus genomes (columns with no red or dark green), suggesting
positive or relaxed purifying selection.
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Supplemental Figure S11. SNV-depleted regions. UCSC Genome Browser images of regions in nsp3 (A) and S2 (B). Most of the amino
acids in these regions are conserved (red rectangles in Conserved AAs track), but the only missense SNVs in these regions (light red
rectangles in SNVs track) are in non-conserved amino acids (missense SNVS in conserved amino acids would be bright red if present).
The lack of missense SNVs in such a large set of conserved amino acid residues could indicate that constraint in the Sarbecovirus clade
has continued particularly strongly in the SARS-CoV-2 population. However, although these are the most depleted regions in the
genome for missense SNVs in conserved amino acid residues, neither depletion is statistically significant (p = 0.072 and p = 0.093,
respectively, without any correction for multiple region lengths searched).

Jungreis, et al. Gene content of SARS-CoV-2 p 39



