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Abstract: Local and global environmental change is transforming ecological assemblages into 15 
new configurations, resulting in ecosystems with novel communities. Here we develop a robust 
methodology for the identification of novel communities, examine patterns in their natural 
chance of occurrence, and quantify the probability of local extinction, emigration, local 
origination and immigration in transitions to and from novel communities. Using a global dataset 
of Cenozoic marine plankton communities, we found the probability of local extinction, 20 
origination and emigration during transitions to a novel community increased up to four times 
that of background community changes, with the probability of species loss about equal to that of 
species gain. Although rare, once a novel community state emerged, the chance of shifting into 
another novel community state was five times greater than expected by chance. Thus, for marine 
planktonic communities at 100K year time scales, novel communities are particularly sensitive to 25 
further extinctions and community shift. 

 
One Sentence Summary: Once developed, novel ecological communities face increased 
susceptibility to further shifts in species composition, with heightened extinction risk. 
 30 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2020. ; https://doi.org/10.1101/2020.06.02.131037doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.131037
http://creativecommons.org/licenses/by-nc/4.0/


 

2 

Main text: Profound changes in the biodiversity of global ecosystems (1, 2)⁠ are leading to the 

formation of novel communities, where species composition and diversity are transformed into 

new, non-historical configurations (3–5)⁠⁠. Key factors driving novel community emergence 

include the rapid pace of global climate change (6–8) ⁠, breakdown of biogeographic barriers, 

species invasions and habitat degradation (9–11)⁠. These factors result in novel environments, 35 

new species combinations, and altered ecosystem functions (12)⁠. Little research has focused on 

the demographic drivers both during the transition to novel communities, and in subsequent time 

periods after they develop. Here we introduce a reproducible, objective, and quantitative 

approach to detect novel communities from time series compositional data, apply this approach 

to investigate the frequency and transition probabilities of community novelty over long 40 

temporal scales, and explore the demographic processes that influence the transition during, and 

after, the rise of novel community states. 

The conceptual basis of novel ecosystems spans multiple disciplines, including the linked 

social-ecological systems of conservation biology, the no-analog communities of plant 

paleoecology and the emerging eco-climatic literature on novel climates. For conservation 45 

biologists, novel ecosystems contain historically unprecedented combinations of species, often 

with altered ecological functions that are driven by human agency, including the way in which 

human values interact with those ecosystems (13) ⁠.  The no-analog community concept from 

plant paleoecology focuses on the taxonomic composition or environmental framework of past 

communities that are compositionally unlike any found today (14)⁠. A variety of quantitative 50 

analytical approaches have been used to understand how and why past (15–17) or even future (4)⁠ 
vegetation dynamics in focal ecosystems differ from the present. Early emphasis on the role of 

novel climates in ecological change (14, 18)⁠ has prompted more recent robust quantitative 

investigation of the geographic variation and temporal distribution of novel climates (7)⁠, 
including under various Representative Concentration Pathway (RCP) scenarios (19, 20)⁠. 55 

We build on these previous approaches to provide a novelty detection framework that can 

be applied to any taxonomic group from any ecosystem from any time period or timescale, and 

enables comparative ecosystem approaches to understand general trends, causes and 

consequences of novel communities on a global scale. 
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A new framework for evaluating novelty in ecological communities 60 

Our framework is based on three conceptual pillars, which provide the foundation for 

detecting novelty in ecological communities from compositional data within time series. First, 

our framework quantifies two separate criteria of ecological novelty. Second, we assess novel 

communities in their temporal context. Third, our approach makes assessments of novelty within 

each time series, so spatial variation in taxonomic composition is not considered for the detection 65 

of ecological novelty. 

 

Two criteria for ecological novelty 

We have used an early concept of novelty from the modern ecological literature where 

novel ecosystems are defined as those that are 'rapidly being transformed into new, non-historical 70 

configurations’ (3)⁠. This definition excludes the prerequisite that novel communities must be 

driven by human activities, and frames novelty solely in ecological terms. It also decomposes 

novel communities into two components: (1) faster compositional turnover than is normally 

observed in the system, and (2) a shift to a composition that is substantially different from any 

historical state. Novel communities occur where both criteria are met. Notably, different types of 75 

novelty also occur when communities satisfy only one criterion, creating two additional 

categories of novelty. Quantifying this definition allows us to detect and compare multiple 

aspects of ecological novelty. 

 

Temporal position 80 

Most existing methods for quantifying novelty are largely based on spatial (or 

spatiotemporal) datasets and are not designed for making space-restrictive assessments, or 

working with time series data in which temporal order matters. However, the temporal 

positioning of communities is critical to evaluate their novelty components against historical 

backgrounds. We assessed novel communities within long time series, with their relative 85 

temporal position preserved, so they are assessed relative to past, but not future, ecological 

compositions. Our framework incorporates the notion that species composition is always in flux, 

and that a singular ‘historical baseline’ does not exist. 
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The dissimilarity in composition between two adjacent time bins within a time series 

quantifies the pace of community change (i.e. ‘rate-of-change’). We termed this dissimilarity 90 

‘instantaneous dissimilarity’ (Fig 1A). We quantified the shift to an unprecedented composition 

as the smallest dissimilarity between a target community and all previous states (similar to 4)⁠, 
treating communities from earlier in the time series as a collection of ‘previously observed 

community states’. We termed these dissimilarities ‘cumulative dissimilarity’ (Fig 1A). A small 

cumulative dissimilarity suggests that the composition is similar to one that has been previously 95 

observed; a large cumulative dissimilarity indicates that the target composition is very different 

from previous states. 

 

Within-time series assessments and expectations 

We consider novelty to be a space-restricted attribute, where a community state could still 100 

be novel even when it was observed in other time series, so long as it was unprecedented in that 

community’s history. Given that community composition is always in flux from stochastic and 

deterministic  processes, our within-time series approach let us define novelty not just as high 

dissimilarity, but higher dissimilarity than expected for that community state, capturing time 

series trends in instantaneous and cumulative dissimilarity (Fig. 1B). We generated expectations 105 

for both criteria of novelty along each time series using parametric spline-based models. These 

splines were free to increase or decrease through time to reflect changing expectations while 

retaining the time-ordering of the compositional data. Rather than focusing on a global threshold, 

we applied locally weighted thresholds for detecting novel communities. We quantified novelty 

firstly by comparing observed dissimilarity scores to expected dissimilarity distributions 110 

generated by these models. We then classified outliers that exceeded probabilistic thresholds in 

these distributions as novel communities. This gave us a pool of classified novel communities 

that could be aggregated across time series and used in further analyses. Some aspects of this 

approach are mirrored in the eco-climatic literature, which converted no-analog climatic 

comparisons into standardized anomalies of reference climate variation (19)⁠. This research 115 

differs from our approach by using short-term environmental variability to standardize cross-

space comparisons, whereas our approach standardizes and makes comparisons strictly through 

time for each time series. 
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Our framework quantifying novelty results in four categories of compositional change: 

(1) a faster than expected shift in composition (‘instantaneous novelty’ - I), (2) a community state 120 

more different to any past state than expected (‘cumulative novelty’ - C), (3) both instantaneous 

and cumulative novelty (‘novel community’ - N) (Fig. 1B), and (4) neither instantaneous nor 

cumulative novelty (‘background community’ - B). 

 

Results 125 

We used our novelty-detection framework to investigate the global occurrence probability 

of community novelty in the Cenozoic marine plankton record using a global dataset of 

microfossil data from deep sea drilling cores. Our data were derived from the Neptune Sandbox 

(NSB) microfossil database (21, 22) (http://www.nsb-mfn-berlin.de/). Incorporating modernized 

taxonomy and age models allowed us to build community data for groups of taxa across 130 

geochronological time (Fig. 2). Each time series in our analyses is a single or multiple cores from 

sites grouped into Longhurst biogeographical provinces (23) ⁠, with species presence and absence 

grouped separately for four groups of marine plankton (calcareous nannoplankton, foraminifers, 

radiolarians and diatoms) every 100,000 years over the last 65 m.y. (Fig. 2). To evaluate the 

robustness of our results, we conducted additional comparative analyses, with novelty assessed at 135 

individual core locations (figs. S1-3), with low richness communities excluded (figs. S4-6), with 

varying sampling bin widths (200 ka – 500 ka: figs. S7-9) and excluding potential reworking 

(‘Pacman’ analysis: figs. S10-12). Results from all of these additional comparative analyses were 

similar to those presented below. 

 140 

Probability of novelty emergence and community state transitions 

The probability of novel community emergence was consistent across the four marine 

planktonic groups (1.6 to 2.2%), with the probability of instantaneous novelty ranging from 3.2 

to 4.6%, and cumulative novelty ranging from 1.5 to 2.1% (Fig. 1C). These probabilities provide 

an estimate for the frequency that novel planktonic communities arose under natural marine 145 

conditions in the absence of human impacts. Probabilities were sensitive to alpha threshold 

(width of predictive boundary in novel detection framework), which was set to 5% (Fig 3A). 
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However,  the proportional overlap among the three classifications was largely stable (Fig. 3B, 

C), and there was a strong positive Pearson’s correlation between instantaneous and cumulative 

dissimilarity scores (r = 0.77). Thus, subsequent analyses built on particular sets of novel 150 

communities are unlikely to be an artifact of our alpha threshold. 

We tested for signals of temporal autocorrelation of community classifications through 

time, examining whether transitions from one novel community to another were more likely to 

occur than by chance. To achieve this, we estimated the observed probabilities of pairwise 

transitions from one state to another (n = 16). We then compared these observed probabilities 155 

with non-autocorrelated expectations for each transition: the occurrence probabilities of each 

state, multiplied together. 

Most observed transitions were from background to background communities (Fig. 4). 

Transitions between the three types of novelty and a background state were much rarer 

(‘Transitions to and from novelty’ in Fig. 4), and comparable to the emergence probabilities of 160 

novelty (reported above in Fig. 1C). Some of these transitions also occurred significantly less 

often than expected by chance. Transitions from one novelty state to another were rarer still, and, 

with the exception of one transition, led to subsequent novelty between two and ten times more 

often than expected (‘Transitions between novelty categories’ in Fig. 4). Thus, despite the 

infrequent occurrence of novelty throughout our time series, transitions between novelty states 165 

were disproportionately followed by subsequent novelty states, demonstrating a heightened 

propensity for novelty to beget further novelty. 

 

Demographic drivers of novelty 

We evaluated the role of four demographic processes in driving transitions between one 170 

community state and another. ‘Local extinction’ (the permanent loss of a species from a time 

series) and ‘emigration’ (a transient loss with the species reappearing later in the time series) lead 

to species loss, whereas ‘local origination’ (the first occurrence of a species in a time series), and 

‘immigration’ (a species subsequently reappearing after a temporary disappearance) lead to 

species gain. Background transitions act as a reference baseline for comparing demographic 175 

probabilities. We examined both unique loss or gain events (local extinction or origination) 
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versus temporary loss (emigration) or re-colonizing events (immigration) and summed 

taxonomic gain vs taxonomic loss. 

Species turnover was a major feature in the transition to novelty, with transitions to 

instantaneous novelty and background communities showing a small trend towards greater 180 

taxonomic gain and transitions to cumulative novelty and true novel communities showing small 

trends towards greater taxonomic loss (Fig. 5A). On average, we found taxa in the preceding 

community had a 10-14% probability of going locally extinct in the transition to a novel 

community. This is more than twice as high as transitions to background communities (local 

extinction, Fig. 5B). Similarly, taxa present in the subsequent novel community had a 18-27% 185 

probability on average of being entirely new to the time series (local origination, Fig. 5C), more 

than four times as high as transitions to background communities. Species gain in the transition 

to instantaneous novelty (I) was driven more by species recolonization (immigration, Fig. 5C) 

than by the origination of new taxa, which is consistent with instantaneous novelty being a large 

shift to a state similar to past states. In contrast, species gain in transitions to new, previously 190 

unseen community states (C) and novel communities (N) came about through the addition of 

new taxa, through invasion or evolution. 

In contrast to the transition to novelty states, taxonomic turnover played a relatively 

minor role in the subsequent transition from novelty (I, C or N) to background communities (Fig. 

5A). This suggests there was no heightened extinction risk after a novel community emerged. 195 

However, when novel communities transition to a subsequent, different, novel state, these 

transitions were accompanied by increased probabilities of demographic changes, including local 

extinction (Fig. 5B) and local origination (Fig. 5C). Pairing this result with the increased risk of 

subsequent novel communities following other novel communities (Fig. 2), naturally-occurring 

novel communities recorded from the deep sea marine record have the potential to cascade 200 

through multiple novelty transitions, each associated with elevated rates of extinction and 

origination. 

 

Variation among the marine planktonic groups 

Analysis of individual marine planktonic groups shows consistent patterns for expected 205 

probabilities of community state transition, particularly with background transitions, and 
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transitions to and from novelty (Fig. 6). Transitions between novel community states were also 

similar, except that the calcareous nannoplankton showed a much higher (up to 20x higher than 

expected) propensity for novel communities to transition to instantaneous novelty than the other 

three planktonic groups.  Patterns for demographic drivers are mostly consistent among taxa and 210 

with the overall trends (Fig. 7).  However, the calcareous nannoplankton show the least 

difference in taxonomic turnover between background transitions and those to any type of 

novelty (Fig. 7). Moreover, planktonic foraminifera show lower probabilities of extinction than 

radiolarians and diatoms, and the diatoms show lower probabilities of origination than 

radiolarians and foraminifera in the transition to true novel communities (Fig. 7). We also found 215 

differences among taxa in the temporal distribution of novelty emergence. For example, novel 

community emergence peaked for the radiolarians and foraminifera between 55 and 54 MYA, 

and for foraminifera and calcareous nannoplankton between 30 and 23 MYA (fig. S13). In 

contrast, diatoms showed no such trends in novelty community emergence through time. These 

spikes in novelty community emergence appear to be associated with warming trends (fig. S13). 220 

Future work is needed to examine the spatial congruence in the occurrence of novelty among the 

four taxa, as well as a more detailed analysis of both the environmental drivers of novelty 

through time and the degree to which demographic drivers of novelty are influenced by 

accelerated rates of climate and environmental change. Although patterns within the planktonic 

groups generally follow the overall trends in the data, differences point to the utility of our 225 

framework in differentiating trends in novelty and their demographic drivers among taxa. 

 

Confronting potential bias 

Detection errors 

Detection errors are not restricted to data gathered from the fossil record, but they are 230 

worth mentioning in the context of large databases that have been amassed from a number of 

different published data sources. Because the goal of different publications from which NSB is 

derived ranged from biostratigraphy to biodiversity (24)⁠, some of the published data was not 

intended to document biodiversity, with some workers discarding a significant proportion of the 

species within their samples, especially in the Radiolaria (25)⁠. However, we found no systematic 235 
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differences in overall patterns between the Radiolaria and the other three groups of taxa that 

would suggest any sampling bias. 

 

Taphonomic and sampling bias 

Due to the constant and favorable preservation conditions, the deep-sea microfossil 240 

record is exceptionally rich and complete. The absence of any systematic increase or decrease in 

novelty over time (fig. S13), renders long-term preservational biases unlikely. However, coring 

sites might still be subject to reworking, age-model errors and other taphonomic uncertainties. To 

account for these, we ran a set of subsequent analyses on the NSB data with the oldest 5% and 

youngest 5% of species occurrences excluded using the ‘Pacman’ method (26). The results from 245 

this analysis were virtually indistinguishable from the analyses including all species occurrences 

(fig. S10-12). 

The ‘Pacman’procedure does not correct for the bias of incomplete sampling within the 

stratigraphic ranges of species. Heterogeneous sampling completeness among aggregated 

Longhurst provinces may have affected our ability to take the metrics of species turnover at face 250 

value. We used locally weighted sampling probability to assess the variation of sampling 

completeness among Longhurst provinces and plankton groups and excluded Longhurst 

provinces with low sample completeness prior to statistical analyses (27). 

 

Discussion 255 

Our study focused on four marine plankton groups with very different life-history 

attributes, including autotrophic and heterotrophic taxa, as well as different skeletal mineralogy 

(calcareous vs siliceous). Yet the probability of novelty, observed occurrence of community 

transitions and patterns in demographic drivers of novelty were all largely consistent across the 

four taxonomic groups (Figs. 6, 7). This remarkable similarity suggests general ecological 260 

constraints that govern the rise and fall of novelty in these planktonic communities.   

Our approach provides a quantitative tool to examine the frequency and drivers of 

novelty in ecological communities that can be broadly applied at any temporal scale for any 

taxonomic group, and any ecosystem. It is particularly useful for understanding beta diversity in 
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modern ecosystems, for the comparative analysis of the frequency, persistence and drivers of 265 

community change and novelty in human-dominated vs past ecosystems, and for synthetic 

macroecological analyses across ecosystem and taxonomic boundaries. However, we caution that 

additional factors must be considered.  For example, long-term studies that connect ecological 

and evolutionary time scales need to consider the role of origination (and extinction) in 

ecosystems from the deep past when comparing the frequency of novelty with present 270 

ecosystems. Our analyses of novelty in marine plankton communities over 65 million years 

inevitably includes an evolutionary component that could lead to higher estimates of novelty in 

fossil communities relative to modern communities. On the other hand, short-term fluctuations in 

community structure would be averaged out over the 100 ka time bins analyzed in the fossil 

time-series data, potentially leading to lower estimates of past novelty than in modern 275 

communities sampled over much shorter time intervals (28)⁠. Generation times also vary widely 

across the biosphere and these must be considered alongside the temporal duration of the study 

for any comparative analyses of the frequency or drivers of community novelty.  These and other 

factors will need to be assessed before the analysis of novelty in fossil assemblages can be used 

as an ecological baseline for the frequency of novelty in living ecosystems. Nevertheless, our 280 

analyses provide a foundation for understanding the past frequency and demographic drivers of 

novelty in natural settings over an extended time frame and in the absence of human impacts. 

It is estimated that more than 35% of modern terrestrial communities now exist in a novel 

state (29)⁠, albeit these estimates and the criteria used for novelty are not generally based on 

quantitative or comparative analyses. Of particular concern to conservation biologists is the fate 285 

of modern communities that have transitioned into novel states: will these new configurations of 

species persist or are they likely to lead to further community change or even ecosystem 

collapse? Novelty in our fossil marine planktonic communities most often transitioned to a 

background state, implying that many shifts to novel states may persist through time. Moreover, 

changes in species composition per se may not necessarily reduce the functioning of an 290 

ecosystem where functional redundancy exists. However, deep time transitions to novel 

communities in the marine plankton exhibited both species loss and species gain, but ultimately 

resulted in shifts in community composition with at least twice the probability of local 

extinction. We also observed that novel communities were five times more likely to give rise to 

other novel communities than expected. While there are fundamental differences in ecological 295 
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and environmental factors governing species composition over different time scales, our results 

from fossil communities raise the intriguing hypothesis that modern novel ecological 

communities could also be more likely than expected to experience transitions to subsequent 

novel community states, driven in part by further extinctions. Our novelty framework is well 

suited to further study of modern time series to test this directly. 300 

Although we are aware of the dangers in direct comparison of ecological dynamics over 

vastly different time scales, our results raise the possibility that efforts to reduce extinction risk 

are consistent with the active management and conservation of novelty in modern ecological 

communities (30–32). Under the influence of human impacts, failing to improve the conditions 

that brought about the transition to novelty may facilitate further novelty accompanied by 305 

additional species extinction. Our results contravene any notion that a fixed historical baseline of 

a community can or should be the only conservation goal for novel communities (3)⁠. Rather, 

ecosystem management should also focus on how to prevent transitions to additional previously 

unseen ecosystem states that are linked with heightened extinction risk. 

 310 

Materials and methods 

 

Experimental Design 

 All of our data were retrieved from the Neptune Sandbox Berlin (21)⁠ (NSB, 

http://www.nsb-mfn-berlin.de/), a global dataset of marine microfossil occurrence data collected 315 

from deep-sea cores of international ocean drilling projects (Fig. 2). We collated Cenozoic NSB 

entries from 249 unique time series for four sets of planktonic groups: calcareous nannoplankton 

(171 time series), foraminifers (165 time series), radiolarians (147 time series) and diatoms (109 

time series). These data were downloaded from the NSB data portal on the 10th October 2019. 

 For each group of taxa, we treated synonymized taxonomic IDs provided by NSB as 320 

‘species’. Relative abundance data were only available for a very small proportion of NSB time 

series, so we chose to use presence-absence data. Despite this decision, our novelty framework is 

equally applicable for abundance data. We aggregated the presence of species in sites into the 

same Longhurst province (Fig. 2) (23)⁠, separately for each of our four taxonomic groups. Each 

Longhurst province is thus treated as a time series for each plankton group.   325 
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 The time between sampling events varied, both within and among time series. Therefore, 

we aggregated compositional samples along each times-series into standardized time windows 

(herein ‘bin’), representing a single ‘community’. We binned our time series to a constant 

sampling resolution of 100,000 years (see figs. S7-9 for analyses at larger bin widths) due to the 

uncertainties inherent in modeling age over geologic time. At this temporal grain, we likely only 330 

detected very large and prolonged shifts in community composition, and missed short, ephemeral 

shifts that occurred on shorter time-scales. The maximum sampling bin age was 65 million years, 

yielding 651 potential bins per time series. We excluded time series from Longhurst provinces 

with insufficient sampling, which we defined as those that either contained fewer than ten 

100,000-year sampling bins, or the presence of fewer than ten distinct taxa across the time series. 335 

  Heterogeneous sampling completeness among aggregated Longhurst provinces may 

have affected our ability to take the metrics of species turnover at face value. Sampling 

completeness can be evaluated with the simple concept of sampling events/sampling 

opportunities. We used locally weighted sampling probability to assess the variation of sampling 

completeness among Longhurst provinces and plankton groups (27)⁠.  This metric measures the 340 

number of taxa detected in three consecutive bins (three-timers, 3t) and the number of taxa 

detected before and after a focal bin but not within it (part timers, Pt). The overall sampling 

probability in Longhurst provinces is thus given by 3t/(3t + Pt). Sampling completeness was 

similar between taxonomic groups but varied among Longhurst provinces. We removed 

provinces with sampling completeness below the 5% quantile for each group as potentially 345 

taphonomically biased (fig. S14). These sites were excluded from further analyses. Our novel 

framework and subsequent statistical analyses were performed in R version 3.6.2 (33)⁠. 
 

Identifying novelty in ecological time series 

 350 

Novel framework methodology 

 We quantified two criteria of ecological novelty: (1) faster than expected compositional 

turnover, (2) to a state that is more different to any historical state than expected. To do so, we 

extracted the dissimilarity between each community and its predecessor as a metric of ‘rate-of-

change’, which we termed ‘instantaneous dissimilarity’. We also extracted the smallest 355 

dissimilarity between a community and all previous sampling bins, to act as a metric of 
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‘novelness’, which we termed ‘cumulative dissimilarity’ (Fig. 1A). We estimated dissimilarities 

between each pair of communities in each time series using the Jaccard index (vegdist function, 

vegan package (34)⁠). Both Jaccard and Bray-Curtis exclude joint unshared species, increase 

linearly with ecological distance, and are linear until distances are large (35)⁠. We chose the 360 

Jaccard index as it is a metric transformation of Bray-Curtis (36) ⁠. Jaccard is commonly used in 

ecological studies because it quantifies overlap in the species actually observed in the two 

communities, does not weight unshared species, and cuts out shared zeroes. When we employed 

a number of different metrics, they all tended to identify similar proportions of novel 

communities, and identified many of the same communities in the NSB dataset (fig. S15). 365 

 We tested whether the instantaneous and cumulative dissimilarity of a community 

exceeded expectations generated using two generalized additive models (GAMs). We considered 

it unlikely that dissimilarities would change in a linear manner over time, so we chose to fit 

spline-based models that are free to take varying shapes dependent on the data. We used the 

GAMs to estimate 95% predictive boundaries through time separately for instantaneous and 370 

cumulative dissimilarity. We opted to use GAMs instead of other spline-based options using 

running-mean smoothers such as LOESS, as GAMs have robust penalization methods that 

prevent over-fitting (37)⁠. Since many dissimilarity indices are bound between zero and one 

(including Jaccard), we fit the GAMs with beta errors and logit link function (transforming 

dissimilarities equal to zero and one as Y = (y × (n − 1) + 0.5)/n, where y values were the raw 375 

dissimilarities and n was the number of bins in the time series (38)⁠. Each model contained a 

single fixed effect, “age”, which was the center of each sampling bin (e.g., sampling bin 0 – 

100K years BP, “age” = 50 K). This age variable was fit as a cubic regression spline, with the 

spline complexity determined by restricted maximum likelihood. This reduces the risk of spline 

over-fitting, but is less prone to under-fitting than other penalization methods (such as 380 

generalized cross validation) (39)⁠. We set maximum spline complexity in the GAM formula to k 

= -1, the default in the GAM function, which automatically selects a maximum spline 

complexity. We also re-ran our detection framework with k = 10, which allows for strongly non-

linear trends. This process gave identical results, albeit with much longer computation time. 

 The two GAMs estimated the mean predicted instantaneous and cumulative dissimilarity 385 

along the time series. Our definition of novel communities relies on detecting bins with 
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dissimilarities that exceed these expectations. To identify these outliers, we established beta 

distributions at each bin along each time series using the beta distribution. The beta distribution 

function family in R (e.g., qbeta, pbeta) uses the α and β shape parameters to calculate the beta 

distribution shape. The beta GAM does not produce α and β directly, but instead provides µ (the 390 

predicted dissimilarity at each bin on the logit scale) and Φ (the precision parameter, a single 

value for the entire model). We converted these into α and β using α = µ × Φ and β = Φ − α 

(mgcv package (37)⁠), and used these α and β values to calculate a beta distribution for each bin 

along the time series. 

 We compared each instantaneous and cumulative dissimilarity to the beta distribution of 395 

expectations using these shape parameters (pbeta function). This resulted in two p-values for 

each bin along the time series. These p-values standardize novelty onto continuous probability 

scales, with lower probabilities corresponding with more outlying (i.e.  more “novel”) 

communities in a time series relative to expectations. These p-values are useful for comparing 

novelty in a manner that is conceptually similar to the methodology used by Mahony et al. (19)⁠ 400 

to standardize climatic conditions. 

Our goal in this study was to identify a pool of communities exhibiting different types of 

novelty, which we used to identify unique patterns and signals of novelty. We chose to identify 

probability outliers, where observed dissimilarities exceeded the 95% predictive boundary of the 

beta distribution at that bin. We calculated 95% predictive boundaries as the 95th quantile of the 405 

bin’s beta distribution (qbeta function). Bins with observed dissimilarities that exceeded these 

thresholds were classified as either ‘instantaneous novelty’ (I), based on the model of 

instantaneous dissimilarity, or ‘cumulative novelty’ (C), based on the model of cumulative 

dissimilarity. Bins that qualified as both instantaneous and cumulative novelty constituted a 

‘novel community’ (N). Bins that qualified as neither type of novelty were classified as 410 

‘background’ communities (B). This gave us four possible community classifications. Our 

approach in detecting cumulative novelty echoes that of Radeloff et al. (4)⁠ except that they make 

comparisons: 1) to a fixed baseline set, and 2) among time periods across space. 

  Our method of outlier detection applied a cut-off at alpha = 0.05. Prior work on cross-

space novelty also compared continuous metrics of novelty to cut-off thresholds (4, 16). 415 

However, our predictive boundaries can vary not only between time points within each time 

series, but also at the same time point in different time series. This standardizes our detection of 
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novelty in a manner that these previous works do not (but see 19 for a conceptually similar 

approach) ⁠. This means our 95% predictive boundaries do not simply identify the top 5% of 

dissimilarities in the NSB data, or along each time series. Some time series had no instances of 420 

novelty, and others exhibited much more than 5% (Fig. 1C). Not only is our methodology for 

estimating expected dissimilarity thresholds flexible along the time series, it has two 

conservative components that reduce the risk of misidentifying novel communities: 1) blocks of 

time in a given time series with consistently high dissimilarities raise locally-weighted 

expectations, and 2) time series with high residual variation in dissimilarities have wider 95% 425 

prediction intervals (via larger Φ). Both of these components increase both the p-values of 

continuous novelty, and the predictive threshold to be detected as an outlier. 

 In our framework, a particular community state can only be classified as a ‘novel 

community’ (N) once in a given time series. This can be thought of as the ‘emergence’ of a novel 

community. If we observed the exact same composition again in the same time series, cumulative 430 

dissimilarity would be zero, and this repeated composition could not qualify as cumulative 

novelty (C). If the repeated composition was present in the bin after we observed a ‘novel 

community’, our framework would classify it as a ‘background’ community (B). If a previous 

‘novel’ composition was observed again later in the time series, it could only be classified as 

either ‘background’ or ‘instantaneous novelty’ (I), depending on the magnitude of the immediate 435 

bin-to-bin change. 

 We tested whether our framework reliably identified novel communities using two 

simulations (See Supplementary Materials for details). In the first, we created synthetic 

ecological time series expressing particular signals of turnover, with a priori expectations for 

where novel communities occurred (figs. S19-20). In the second, we used a random walk 440 

simulation of species turnover to generate ecological time series to compare to observed 

probabilities from the NSB data (table S12). 

 

Sensitivity of cumulative novelty test to edge effects 

 Given that our cumulative novelty test uses a pool of previous community states, it may 445 

be sensitive to edge effects. Early in a time series, the pool of previous states is small, which may 

make it more likely to obtain high cumulative dissimilarities. To test for edge-effects, we 

modeled whether outliers from our two dissimilarity GAMs were more likely early in time 
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series. We used two binomial generalized linear mixed effects models (logit link function: glmer 

function, lme4 package (40)⁠), one for instantaneous dissimilarity, and one for cumulative 450 

dissimilarity. We treated each bin within each time series as a trial, with the outliers in each of 

our framework models constituting a success, and non-outliers constituting a failure. Our 

predictor variable was the bin position from the start of the time series, treated as a continuous 

variable, and including a squared interaction effect to examine non-linear changes in probability 

as bin position increased. We fit random intercepts to each of our four planktonic groups, and 455 

then separately to each time series within these groups. 

We found that the probability of detecting outliers was indeed substantially higher in the 

initial time bins, particularly for cumulative dissimilarity (fig. S16). We tested whether removing 

the initial time-points from each time series would correct this edge effect. We ran our novel 

detection framework on the entirety of each time series, then removed the first five time-bins and 460 

re-ran the models specified above. With these initial bins removed, relationships between time 

series position and novelty probability were essentially flat (fig. S16D-F).  Accordingly, we used 

the dataset with the initial five time bins removed for all analyses. 

We also found that novel communities were more likely to occur in communities with 

fewer species (fig. S17). As we were unable to determine whether these were true ecological 465 

signals or a symptom of incomplete sampling, we also ran our novelty detection framework and 

analyses excluding communities with fewer than five species (fig. S4-6). Results were nearly 

identical to those that included all communities. 

 

Sensitivity of novel framework to prediction interval width 470 

 We chose a 95% predictive interval to define novelty, which equates to an alpha cutoff of 

0.05. This is an almost universal statistical cutoff, although not without criticism (41)⁠. We 

investigated the influence of the alpha threshold on the probability of detecting outliers in our 

two dissimilarity tests, as well as the probability of classifying as instantaneous novelty, 

cumulative novelty or as a novel community (Fig. 3). We set alpha to multiple values, from 0.01 475 

to 0.10 in units of 0.005, running our novel detection framework using each value. We then 

modeled the probability of identifying each of our three novelty classifications separately for 

each alpha value. The models used were binomial mixed-effect GAMs (GAMMs, gamm4 

function, gamm4 package (42)⁠). The response variables were sets of weighted trials, identical to 
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those used to generate Fig. 1B (see Statistical analyses section below for details). We fit alpha 480 

threshold as a continuous fixed effect, set as a cubic regression spline to model changes in 

probability across tested alpha thresholds. We set nested random intercepts for each model, with 

individual Longhurst provinces nested within planktonic taxa groups. 

 We also quantified the proportional overlap of our two outlier tests using two additional 

GAMs. These models equate to testing the probability of detecting a novel community from the 485 

pool of instantaneous novelty communities, or the pool of cumulative novelty communities. For 

these models, we treated each time series as a set of weighted trials, with each novel community 

constituting a success. In these models, we treated the number of instantaneous or cumulative 

novelty communities in each time series as the number of trials, rather than the number of time-

points along the time series. 490 

 As reported in the main text, we found that the overall probability of detecting outliers 

increased as we relaxed our alpha threshold, which is expected. The probability of overlap 

between our instantaneous and cumulative novelty groups, however, remained remarkably 

consistent regardless of cut-off. Even as the absolute number of outliers increased, the proportion 

of them that satisfied both novelty criteria to be classified as ‘novel communities’ was similar 495 

(Fig. 3). 

 

Statistical Analyses 

Our novelty framework resulted in four pools of novel community classifications nested 

within individual Longhurst province time series, one for each group of planktonic taxa. 500 

 We used these classifications in the following analyses: (1) we modeled the average occurrence 

probability of each community classification across all taxa, and within each of our four 

taxonomic groups; (2) we tested for patterns of temporal autocorrelation between one community 

classification and another; and (3) we quantified probabilities of taxon loss and gain between 

pairs of community classifications along each time series, breaking them into four demographic 505 

drivers. 

 

The probability of emergence of novelty and novel communities. 

We calculated the occurrence probability using binomial regression models, for each of 

our four community classifications (Fig. 1B), and compared probabilities between the four 510 
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planktonic groups. We used two sets of models, one set treating group as levels of a categorical 

predictor (“fixed-taxa models”: glm function), and one treating groups as levels of a random 

intercept (“random-taxa models”: glmer function, lme4 package (40)⁠). The random-taxa models 

were intercept-only, and contained no fixed effects. In each model, we treated the bins in each 

time series as a set of trials, with each bin constituting a single success or failure. Success was 515 

defined as the occurrence of the target classification. All other community classifications were 

treated as failures. By treating each time series as a set of trials, the models weighted observed 

probabilities based on time series length, which prevented longer time series from unduly 

influencing model estimates. We included time series from all four planktonic groups in each 

model. The main results of these models (excluding the probability of a background 520 

classification) are summarized in the sub-panels of Fig. 1C. 

 

Are observed probabilities of novelty transitions temporally auto-correlated compared with 

patterns expected by chance? 

 We estimated the ‘by chance’ or ‘expected’ probability of a given transition by 525 

multiplying the occurrence probabilities of the preceding and succeeding classifications together. 

As an example, the estimated probability of a transition from a novel community to 

instantaneous novelty occurring by chance is the occurrence probability of a novel community 

(0.019) multiplied by the occurrence probability of instantaneous novelty (0.038): an expected 

transition probability of 7.222e−4. Given four community classifications, there were 16 possible 530 

transitions from one classification to another. 

 We estimated the expected probability of each transition occurring using the random-taxa 

occurrence probability models (described above) from the previous analysis. We back-

transformed estimates from a logit to probability scale (plogis function), and multiplied each 

pairwise combination of occurrence probabilities together. This meant that transitions to and 535 

from the same pair of states resulted in the same expected probability (e.g., probability of I → N 

was equivalent to the probability of N → I). 

 We estimated observed transition probabilities using GLMMs similar to those used above 

to estimate the occurrence probability, except we treated adjacent pairs of communities in each 

times-series as a single trial (e.g., bins one and two constituted one trial, bins two and three 540 

another etc.), with all pairs in a time series treated as a set of trials. Successes were pairs of bins 
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that matched a particular transition, and failures were all other classifications. This resulted in 16 

GLMMs, each modeling the probability of occurrence for one transition (“transition probability 

models”). 

 Contrasting observation with expectation allowed us to estimate effect size. We estimated 545 

effect sizes as the ratio of observed to expected transition probability. These effect sizes were 

multiplicative, where ratios of one indicated observed transition probabilities that were similar to 

expected probabilities. Ratios greater than one indicated that the transition was more likely to 

occur in the observed data than expected, and ratios less than one suggested the transition was 

less likely to occur than expected (Fig. 4). 550 

 Both the expected and observed transition probabilities were derived from models, and 

these probabilities contain uncertainty. We accounted for uncertainty by treating the modeled 

probabilities as Gaussian distributions. For the expected transition probabilities, we drew 

100,000 occurrence probabilities for the preceding and succeeding classification from the 

random-taxa models. We treated the mean model estimate as the center of a Gaussian 555 

distribution, with a standard deviation equal to the standard error of the model estimate on the 

link-scale (logit). Once drawn, we back-transformed these probabilities onto the probability scale 

(plogis function). We then multiplied each set of preceding and succeeding classification 

probabilities together to give a distribution of expected transition probabilities. We repeated this 

process for each of the 16 possible transitions. These distributions were Gaussian, so we treated 560 

the mean of each distribution as the expected transition probability, and the 2.5% 

and 97.5% quantiles were used as upper and lower confidence intervals. 

 For the observed transitions probabilities, we drew 100,000 random estimates from the 

model coefficients of the transition probability models, and back-transformed these to the 

probability scale. We used these observed transition probability distributions along with the 565 

expected transition probability distributions to calculate our effect sizes. We did this by dividing 

each of our 100,000 observed transition probabilities by the corresponding entry in the expected 

transition probability distribution. This gave us 16 effect size distributions, which were also 

Gaussian. We used the mean of each effect size distribution as the effect size, with 2.5% and 

97.5% quantiles as 95% confidence intervals. 570 
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Demographic drivers of novelty 

 We estimated whether the transition to a novel community, or a community detected as 

instantaneous or cumulative novelty, was associated with the rates of species gain or loss. We did 575 

this by modeling the probability of four categories of species turnover based on the classification 

of the preceding and succeeding community, and whether these differed from a background to 

background transition. The four categories of species turnover included taxonomic loss (local 

extinction and emigration) and taxonomic gain (local origination and immigration). 

 We used four GLMMs, one for each of our turnover categories (“turnover models”). All 580 

response variables were binary, where each taxon represented a success or failure from a set of 

trials, based on the number of taxa present in the preceding or succeeding bin. For the models 

using taxon loss, we set the number of trials to the number of taxa present in the preceding bin 

(i.e. the number of taxa that could be lost in the move to the succeeding bin). For the models 

using taxon gain, the number of trials was the number of taxa present in the succeeding bin (i.e. 585 

the number of taxa that could have appeared in the move to the succeeding bin). 

 These models contained nested random intercepts for each marine planktonic group, and 

Longhurst provinces within these groups. We used four fixed effects. The first two were 

preceding community classification and succeeding community classification, which were 

additive. The next two were continuous fixed effects. The first continuous fixed effect was the 590 

time lag between sampling bins. Not all possible bins were sampled in each time series. Larger 

gaps between samples may have resulted in greater species turnover, and we wanted to account 

for differences in turnover probabilities due to this time lag. We included the time difference 

between the preceding and succeeding bin as a continuous fixed effect to account for this time 

lag. After modeling, we estimated the probabilities for each transition category at the mean lag 595 

between bins. 

 The second continuous fixed effect was number of bins to the start and end of each time 

series, included only in the local origination and local extinction models, respectively. The 

probability of a species locally originating or becoming locally extinct is related to where the 

first and last occurrence, respectively, occurs in the time series. For example, local extinction 600 

was much more likely at the end of each time series, where a taxon has to be absent for fewer 

sampling bins to be classified as locally extinct. To detect the magnitude of this bias, we modeled 

the probability of local extinction and origination as a function of bins from the time series end 
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and start, respectively, using GLMMs. The relationship between bin position (‘bins from time 

series start’ for local origination and immigration, and ‘bins from time series end’ for local 605 

extinction and emigration) and probability of local extinction and origination was exponential 

and decreased rapidly from bins one to ten (fig. S18). 

 To account for this edge effect in our species turnover models, we removed the first ten 

bins of each time series for the local origination and immigration models (as immigration count 

was linked to local origination count), and the last ten bins of each time series for the local 610 

extinction and emigration models. The removal of the ten bins at the start of each time series for 

the local origination model is in addition to the five we removed previously due to uncertainty of 

the cumulative novelty test (fig. S16). 

 Even after removing these bins, the probability of local extinction and origination was 

still negatively correlated with bin position (fig. S18). This residual relationship was linear, so 615 

we included bin position as a covariate in the models. Modeled turnover probabilities for each 

transition category were estimated at the mean bin position. 
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Figure 1. The novel community-detection framework and application to marine plankton. (A) 
Method for calculating instantaneous (red) and cumulative dissimilarity (blue) in time series 
compositional data. Instantaneous dissimilarities are calculated between pairs of adjacent time 
series samples (“bins”). Cumulative dissimilarities are the smallest dissimilarity in community 755 
composition between a target bin and all previous bins (shown as underlined values). (B) 
Example of our novel detection framework in a single time series. Black lines are the observed 
instantaneous and cumulative dissimilarities calculated for 100,000-year sampling bins along a 
single time series. Dashed line is the mean expected dissimilarity obtained from two generalized 
additive models. The grey shading indicates the upper and lower 95% predictive boundary. Bins 760 
that exceeded each boundary were classified as either ‘instantaneous novelty’ (I, in red), or 
‘cumulative novelty’ (C, in blue). Bins classified as both were considered to be true novel 
communities (N, in orange). Note that the y-axis on the cumulative dissimilarity plot is reversed: 
values increase from top to bottom. (C) The Venn diagram shows the estimated probability of a 
community being classified, over all four marine planktonic groups. Colored points in subplots 765 
show proportion of time series bins categorized as each novelty classification. Black points are 
mean probabilities for each planktonic group (D = diatoms, F = foraminifers, N = calcareous 
nannoplankton and R = radiolarians), with 95% confidence intervals as error bars (most error 
bars are obscured behind mean estimates). 
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Figure 2. Map of Neptune Sandbox core locations, lengths and age ranges. Cylinders represent a 770 
single core, or the aggregate of multiple cores taken at a single location (i.e. one ‘site’). Cylinder 
length correlates with the duration of the time series at a particular site, broken into 10 million 
year bands. Band color corresponds to the age of that segment. Some sites contained community 
data for more than one planktonic group (calcareous nannoplankton, foraminifers, radiolarians 
and diatoms), but this detail is not shown here. Black polygons show the boundaries of 775 
Longhurst biogeographical provinces. Cores were aggregated into Longhurst provinces for 
analysis. 
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Figure 3. Sensitivity of novel emergence probabilities to alpha outlier detection threshold. (A) 
Models of probability of novelty emergence based on the cut-off threshold used to generate 780 
prediction intervals in our novelty detection framework. Lines are mean predicted probability, 
with colored polygons representing 95% confidence intervals. (B) and (C) show modeled 
probability of a novel community occurring given one type of ecological novelty. These are 
equivalent to the proportional overlap of the red circle with the blue circle in the central Venn 
diagrams, and vice versa, as the cut-off threshold becomes less stringent. The Venn diagrams are 785 
descriptive, highlighting the result that while the probability of detecting novelty increases as 
cut-off threshold becomes less stringent, the proportional overlap of novelty remains relatively 
consistent. I = Instantaneous novelty (red), C = Cumulative novelty (blue), and N = Novel 
community (orange). 

 790 
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Figure 4. Expected probability of transitions between each of our four community 
classifications, and the ratio of observed transition probabilities to expected probabilities (table 
S5). Expected transition probabilities were estimated by multiplying the probabilities of 795 
occurrence for the preceding and succeeding classification from occurrence models (those used 
in the Venn diagram of Fig. 1C). Observed transition probabilities were estimated using binomial 
generalized linear mixed-effects models. Points are halved and dual-colored; the left-hand and 
right-hand color represent the classification of the preceding and succeeding community, 
respectively. Y-axis points are ratios: values greater than one indicate transition probability was 800 
higher in observed data than expected, and vice versa. Colored points are transitions where 
observed to expected ratio was significantly different to one: faded points had confidence 
intervals that crossed one. Note that both axes are ln-transformed. 
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Figure 5. Mean probabilities of taxonomic loss or 805 
gain in the transition between two communities 
along a time series. Points are halved and dual-
colored; the left-hand and right-hand color repre-
sents the classification of the preceding and suc-
ceeding community, respectively. (A) Total taxo-810 
nomic loss plotted against total taxonomic gain. 
(B) Taxonomic loss plotted as the probability of 
local extinction (taxon disappears from time series 
and does not return) against the probability of em-
igration (species disappears transiently). (C) Tax-815 
onomic gain plotted as the probability of local 
origination (taxon appears in time series for the 
first time) against the probability of immigration 
(subsequent re-emergence of a previously-present 
taxon). The dashed line shows a 1:1 ratio and bars 820 
are 95% confidence intervals. Predictions were 
obtained from generalized linear mixed-effects 
models (model summaries shown in tables S6-
S11). 
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 825 

 
 
Figure 6. Expected probability of transitions between each of our four community 
classifications, and the ratio of observed transition probabilities to expected probabilities, 
modeled separately for each group of planktonic taxa. See Fig. 4 caption for further explanation. 830 
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Figure 7. Mean probabilities of taxonomic loss or gain in the transition between two 
communities along a time series, with separate estimates for each group of planktonic taxa. A-D 
correspond to Fig 5B, and E-H correspond to Fig 5C. See Fig. 5 caption for further explanation. 
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