


252

Fig 5. Docked peptides show multiple binding modes. A-D) Docking results for253

peptides indicated above each graph. Each point is a single model. The color of each point254

indicates its cluster membership, ranked from the cluster with the best to the worst score:255

black, blue, green, brown, and purple. Open circles represent peptides taken from clusters256

besides the top five. The x-axis is the ROSETTA score for the model; the y-axis is the Cα257

RMSD for each model against the best model for that peptide. E-H) Plausible models for258

the peptide indicated on the structure. The hA5 input structure is shown as a surface, with259

chain A and B shown in gray and white. The peptide is shown as a tube, colored from260

blue (N-terminus) to red (C-terminus). Only the top model is shown for A6cons; the top261

three models are shown for the remaining peptides. I) Molecular detail of the highest scoring262

overall peptide model (A5cons). Cα atoms are highlighted with colors matching panel F.263

The three hydrogen bonds formed between the peptide and hA5 are indicated with arrows;264

hydrophobic interactions are indicated with “*”. Sidechains that do not interact with S100265

have been removed for clarity.J) Overlay of all 10 peptide docks shown in panels E-H.266
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The A6cons peptide yielded a single, unique, binding solution. Of the top 4,000 models,267

70.8% of fell within a single cluster, including the 12 best-scoring models (black points, Fig268

5A). For this model, the peptide takes on a largely extended conformation that drapes across269

the hydrophobic binding surface in a belt-like fashion (Fig 5E). In contrast, the remaining270

three peptides did not yield unique docking solutions. Take NCX1, for example. The top271

three models all came from different clusters (the left-most black, blue, and green points in272

Fig 5B). The peptide in the three models occupies the same basic binding pocket, but it273

traces through the pocket in three different ways (Fig 5F). The A5cons peptide (Fig 5C, 5G)274

and α-1-syn peptide (Fig 5D, 5H) gave very similar results.275

These interactions are almost entirely hydrophobic in nature. As an example, we can look276

in detail at one of the A5cons models (Fig 5I). This model had the best overall score for any277

peptide docked to hA5 (red circle, Fig 5C). In this model, the peptide forms five, well-packed278

hydrophobic interactions (indicated with asterisks), but only three hydrogen bonds to hA5279

(indicated with arrows). This dearth of hydrogen bonds is common for all of the peptides.280

If we average over the cluster containing the best-scoring model for each peptide, A6cons281

forms the most hydrogen bonds to hA5 (3.2 ± 2), while NCX1 forms the fewest (1.3 ± 1).282

Thus, as predicted by the machine learning model, polar interactions do not seem to play a283

key role in defining peptide binding.284

We can also use these models to rationalize the finding that many diverse peptides bind.285

If we overlay the solutions shown in Fig 5E-H onto a single structure, we can see the sheer286

breadth of structures that are compatible with this binding site (Fig 5J): the interface can287

accommodate a wide variety of peptide configurations, as long as they can have hydrophobic288

amino acids and enough flexibility to pack into position.289

The trained model identified a possible new hA5 target peptide290

Finally, we attempted to use our trained model to predict new, biologically-plausible targets,291

for hA5. We used a 12 amino acid sliding window to find 10,477,400 unique 12-mers in 20,206292
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human proteins extracted from uniprot. Applying our trained model to this k-merized human293

proteome resulted in a set of predicted interacting peptides (Fig. 6A,B). The resulting294

distribution of predicted E scores is shown in Fig. 6A. The distribution is centered at zero,295

with a tail extending along the negative (higher enrichment) axis. An estimated 3.9% of296

proteomic 12-mers had an E value below our apparent detection threshold of −1.37.297

We next sought to predict specific sequences that would bind. We selected five peptides298

from the top 0.05% of the E score distribution and purchased synthetic versions of these299

peptides. For experimental tractability, we selected peptides that were predicted to be300

soluble using the pepcalc.com server. To avoid effects from the peptide termini, we ordered301

the predicted 12-mer peptides plus 3 additional amino acids taken from the full protein302

sequence at both the N- and C-terminal ends (Fig. 6A and B). The full peptide sequences303

and the proteins from which they were taken are shown in Table 3. We measured binding of304

these peptides to hA5 using ITC. We first conducted all the measurements at 25 ◦C. If we305

were unable to detect a heat of binding at 25 ◦C we also attempted to measure the interaction306

at 10 ◦C. Because these protein-peptide interactions are expected to be hydrophobic, we307

would expect to see non-zero ∆Cp of binding, and thus heats of binding at one or both308

temperatures.14,18309

The peptide extracted from α-1-syntrophin protein (referred to hereafter as “α-1-syn”)310

bound to hA5 at 25 ◦C with KD = 4.8 µM (95% confidence, 1.4 to 23 µM) and ∆H =311

−4.5 kcal ·mol−1 (95% confidence, −11 to −1.5 kcal ·mol−1) (Fig. 6C). The peptide has312

little sequence similarity to other previously-identified targets; however, it does possess five313

hydrophobic residues, including one tryptophan. It also has multiple charged and polar314

residues that, together, make it readily soluble in water.315

316
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317

Fig 6. hA5 binds tightly to one of the predicted peptide targets. A) Histogram318

showing the distribution of E scores for proteomic 12-mers predicted to bind to hA5. Red319

dashed line indicates the cutoff of E = −1.37. B) Sequences of the five proteomic peptides320

predicted to bind to hA5. Newly discovered target, α-1-syn, is highlighted in red. C)321

Isothermal Titration Calorimetry (ITC) trace showing binding of peptide α-1-syn to hA5.322

We estimated parameters for a single-site binding model to the data using the Bayesian323

MCMC sampler in pytc.33 Lines show 100 individual fits sampled from the Bayesian posterior324

probability distribution. Inset shows structure of human α-1-syntrophin (PDB entry 1Z87)325

with the Q13424 peptide fragment (GERWQRVLLSLA) labeled in red. Detailed data on326

predicted peptides can be found in Table 3.327

328
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The remaining four peptides gave no evidence of binding at either temperature (Table 3).329

These peptides are quite variable in sequence; however, three of the four (Q86UW7, O75170,330

Q14147) are rich in proline and alanine and are studded with charged residues. They also331

notably lack the large bulky tryptophan possessed by the α-1-syn peptide (Table 3). Thus,332

it is possible that these proline rich peptides clash with the binding site despite favorable333

overall properties. It is less clear what may determine the lack of B2RNZ0 peptide binding334

to hA5.335

Discussion336

We applied a supervised machine learning approach to a previously-measured high-throughput337

phage display dataset to predict the binding of peptide targets for human S100A5 (hA5).338

Using this model we were able to: 1) recapitulate the established pattern of specificity for339

a set of known targets, 2) determine that the major biochemical drivers of peptide binding340

were hydrophobicity and shape complementarity, and 3) identify a previously unknown tar-341

get peptide from human α-1-syntrophin. By solving a crystal structure of the calcium-bound342

form of hA5, we were able to propose a biophysical rationale for the low specificity of the343

protein: there are several different binding modes at the canonical peptide interface. This344

was confirmed by peptide docking studies, which found that peptides could dock in multiple345

orientations, while exhibiting a paucity of hydrogen bonds to the hA5 surface. Our results346

lay the groundwork for a more thorough understanding of the biochemistry and biology of347

hA5. We also provide evidence that high-throughput binding experiments coupled with deep348

sequencing and machine learning constitute a potential way forward in understanding the349

determinants of binding specificity in very low-specificity proteins.350
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A step forward in understanding the biochemistry of hA5 specificity351

We find that the peptide specificity of hA5 is determined largely by shape complementary352

and hydrophobic surface area—not polar contacts. These are the most predictive features in353

our trained model (Fig 3E). This result is further supported by the crystal structure, which354

shows that interactions between subunits at the peptide-binding surface are mediated by355

several different hydrophobic contacts (Fig 4C). For example, in one symmetry mate pair,356

a bulky hydrophobic side chain extends from one symmetry mate into the peptide binding357

pocket of another. Finally, our docking results show that peptides can be accommodated in358

multiple orientations in the binding pocket (Fig 5J)—forming many hydrophobic contacts,359

but few hydrogen bonds (Fig 5I).360

As a result, the features that contribute to binding are distributed across the target361

peptides, rather than being concentrated onto one or two key sites. This observation is362

a notable deviation from the traditional way of thinking about protein-protein interaction363

specificity, which is often centered around the idea of binding “hot spots”.34 This helps to364

explain why a straightforward representation of binding preferences as a motif or position-365

weight-matrix has not been possible for S100 proteins. We suspect that similar patterns366

may be identified in other low-specificity proteins and that similar approaches to ours may367

be required to understand the determinants of binding specificity.368

While hydrophobicity and shape complementarity are clearly important, our model likely369

underestimates the contribution of polar contacts. It systematically underestimates the mag-370

nitude E of both the highest and lowest E peptides (Fig 3C). We suspect this is because371

these values of E depend most strongly on specific structural details, rather than the aggre-372

gate biochemical features considered by our model. Such contacts may be “smeared out” by373

the model, and thus make a smaller contribution to the model than they do in the actual374

molecular interface. This effect must be relatively small, however, as the model performs375

quite well overall and our structural analyses support a small role for polar contacts at this376

interface.377
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Implications for the biological roles of hA5378

The large predicted interaction set for hA5 (Fig 6A) likely reflects the hydrophobic nature379

of the peptide binding surface. Any peptide that presents a compatible hydrophobic surface380

is expected to bind, possibly in multiple conformations. Crucially, however, this does not381

mean that any peptide will bind. We found four new peptides that did not interact with hA5382

(Fig 6B), in addition to the previously known “SIP” peptide.18 Further, we found previously383

that this specificity has been conserved for hundreds of millions of years in S100A5 par-384

alogs,18 suggesting that the low specificity does not represent a total lack of peptide binding385

preference.386

Our results suggest a plausible, but previously unknown target for hA5 (Fig 6C). The387

peptide we identified is a fragment of human α-1-syntrophin, a largely disordered PDZ-388

domain-containing protein that is expressed in a variety of human tissues and serves as a389

scaffold for various signaling molecules.35–37 The peptide fragment is part of a relatively390

exposed region of the α-1-syntrophin PDZ domain, and should be accessible to hA5 in391

the cell. There are several tissues where both proteins are expressed including kidney and392

brain.36–41 Future biological experiments such as pull-down assays should be used to test393

whether α-1-syntrophin is truly a biological interaction partner of hA5.394

Aside from identifying a specific target, our results also allow us to create a rough es-395

timate of the number of putative hA5 peptides that may exist in the proteome. Based on396

the predictions of our machine-learning model, we estimate that the protein can bind to397

roughly 4% of the 10,477,400 unique 12-mers in the human proteome. When we sampled398

five predicted binders, we found that only one bound. If we assume the model yields ≈ 80%399

false positives when applied to the proteome, there are ≈ 420, 000 potential hA5 targets.400

If only 10% of these partners are physically accessible—with the rest occluded the interior401

of proteins or cell membranes—we are still left with 42, 000 peptide fragments that may be402

expected to bind to hA5.403

This suggests that other mechanisms are required to offset the low biochemical specificity404
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of hA5. One possibility is hA5’s precise cellular expression and localization. The protein has405

a very tight expression pattern and appears to be localized near specific bilayers,41–43 thus406

limiting its available binding targets. hA5 also has relatively low affinities for peptides (≈407

µM),18,19 meaning that both it and/or its partners must be at relatively high concentration408

for an interaction to form. Finally, it is also possible that there are additional higher-ordered409

properties of proteins that restrict the true set of possible hA5 target peptides. For example,410

in addition to the peptide region itself, the nearby regions may need to possess flexibility to411

accommodate peptide binding—something our peptide model does not take into account.412

Implications for predicting proteomic targets of low-specificity pro-413

teins414

Finally, our work suggests that even relatively sophisticated machine-learning approaches415

may not be sufficient to build models that reliably predict new binding targets for low416

specificity proteins. In our case, only one of the five peptides we sampled from the human417

proteome interacted with hA5. This low success rate likely arises from a few sources. First,418

there are errors in the model itself—it does not perfectly reproduce the phage display data.419

Second, phage-display does not perfectly map to binding of isolated peptides in vitro. The420

third, and likely most important issue, however, is statistical. The total number of non-421

binding peptides in the proteome is almost certainly very large compared to the number422

of true targets; therefore, even a small false positive rate in our predictions would cause a423

huge number of false positives that can swamp out our true predictions.44 This means that424

predicting specific new targets from the proteome, even with an exceedingly accurate model,425

will be quite challenging. Predictions will thus always require experimental follow up to426

validate their binding.427
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Future directions428

Unlike purely sequenced-based methods, our approach provides insight into what biochemical429

features are recognized by the protein. By recoding the amino acid sequence as a vector430

of biochemical properties, one gains insight into what features of the amino acids—and431

the peptide as a whole—are being recognized by the protein, rather than what letters are432

preferred. This is particularly powerful for a case like hA5, where the amino acid preferences433

are not obvious, but it will likely be useful for more specific proteins as well. For example, if a434

motif contains a tryptophan and a tyrosine at a given site, what are the relative contributions435

of hydrophobicity and hydrogen bonding to binding?436

All that is required as input for these calculations is a large collection of peptide sequences437

with some measured property such as enrichment, binding, or activity. Our software auto-438

matically calculates the chemical features and then writes them out in a format that can439

be fed into any machine learning platform. The approaches we implement here should thus440

be broadly applicable to other proteins that recognize short linear motifs,1,2,4 providing a441

framework for future studies to decipher the biochemical determinants of binding preferences442

in these systems.443

Materials and Methods444

Machine Learning Analysis445

We implemented our machine learning model in Python 3 extended with numpy,45 scipy,46446

and matplotlib.47 We used sklearn 0.21.3 for our random forest regression.29,48,49 A full list447

of the calculated features is shown in Table S1. As noted, some features were calculated448

using CIDER (using localCIDER 1.7);28 we calculated the remaining features using our own449

software. We standardized all input features prior to training the model by subtracting450

the standard deviation and dividing by the mean of that feature as calculated across all451
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observations. We trained the model using the default objective function in sklearn (least-452

squares). Prior to doing any model fitting, we withheld 10% of the data as a test set. We did453

k-fold cross-validation on the training data to determine which parameters to include in the454

fit, using k = 10. We determined the relative contribution of each feature to our final trained455

model using the “feature_importance” method of sklearn, which analyzes node impurity as456

measured by mean squared error. Our full implementation, including all data files and an457

example script, is available at https://github.com/harmslab/hops.458

X-ray crystallography459

hA5 C43S/C79S was expressed and purified from BL21(DE3) cells as described previously.18460

To generate crystals, we dialyzed 4 mM protein into 1 mM HEPES, 8 mM CaCl2, 0.25 mM461

DTT at pH 7.5. We then mixed this solution 1:1 with 0.2 M (NH4)2SO4, 20% PEG 8000462

(w/v). We grew crystals by hanging-drop at 4 ◦C. We harvested crystals, submerged them463

in a cryoprotectant solution of 25% PEG 1500, and then flash froze them by plunging into464

liquid nitrogen.465

X-ray diffraction data were collected at the Berkeley Advanced Light Source (ALS) beam-466

line 5.0.3 at cryogenic temperatures on a single high-diffracting human hA5 crystal. Data467

were processed with iMosflm v. 7.2.150 and scaled with SCALA51. Data were cut to 1.25 Å468

resolution based on the method of Karplus & Diederichs52 with CC1/2 > 0.3 and complete-469

ness > 50 in the highest resolution bin. Analysis with POINTLESS51 indicated space group470

P3112 as a candidate solution, but molecular replacement trials using PDB structure 4dir471

and Phaser53 failed to correctly solve the structure. Data processing also suggested the data472

may be twinned, as an L test for twinning gave a score of 0.37554. Subsequent molecular473

replacement trials found a solution in space group P32 with three homodimers (6 chains)474

in the asymmetric unit. Manual model building was performed with Coot v. 0.8.355 and475

refinement with Phenix 1.10.1.56 In late stages of refinement riding hydrogens were added476

and TLS was applied with one group per protein chain. The protein chains contain two Ca2+477
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atoms each that are well-defined and similar in coordination to previous S100 structures. A478

few solvent sites showed close approaches and may also be fully or partially occupied metal479

sites, but in the absence of further evidence these were modeled as waters. Despite the high480

resolution, the final Rwork/Rfree of the structure was 26.2/29.4 % and the model was unable481

to be further improved, potentially owing to crystal twinning (Table 2). Nevertheless the482

binding site interactions are clearly observed in the electron density. The final structure was483

submitted to the protein data bank as code: 6WN7.484

Docking Studies485

Docking analyses were performed using ROSETTA3.1 (build 2018.09.60072),57 using the486

FlexPepDocking binary.32 We generated 3-, 5-, and 9-mer fragment libraries using the in-487

cluded ’make_fragments.pl’ script, with the UNIREF90 database as input. For each peptide,488

we generated used two starting models, both of which had the peptide in the extended con-489

formation. The models differed in the direction of the chain relative to the binding pocket:490

N → C going “up” or “down” the pocket (according to the orientation shown in Fig 5E).491

When clustered, models came equally from each of the initial docking models, suggesting492

the results did not depend on the choice of starting model. We executed FlexPepDocking493

with the flags “-lowres_abinitio -pep_refine -ex1 -ex2aro”. We generated ≈ 80, 000 docked494

models for each peptide.495

After docking, we extracted the top 5% of models (4, 000) for each peptide for downstream496

analysis. We clustered the models based on peptide Cα RMSD, using hierarchical clustering497

by unweighted pair group method with arithmetic mean (UPGMA). The cophetic correlation498

coefficient ranged from 0.7-0.9 for all four peptides. We specified that the software identify499

50 clusters; however, we found that 95% of the models ended up in the top 5 to 12 clusters500

for each peptide. Clustering and data analysis were done Python 3.7 extended by numpy,45501

scipy,46 and matplotlib.47 Hydrogen bonds were counted in output structures using VMD502

1.9.3,58 with the criterion of < 3.5 Å, < 40◦.503
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Isothermal Titration Calorimetry504

Synthetic peptides were purchased from GenScript, Inc. For all peptides, we attempted to505

measure binding at 25 ◦C. If binding could not be detected at 25 ◦C we also attempted506

the experiment at 10 ◦C. ITC experiments were performed in 25 mM TES, 100mM NaCl, 2507

mM CaCl2, 1mM TCEP, pH 7.4. Samples were equilibrated and degassed by centrifugation508

at 18, 000 × g at the experimental temperature for 35 minutes. Synthetic peptides were509

dissolved directly into the experimental buffer prior to each experiment. All experiments510

were performed on a MicroCal ITC-200. Gain settings were determined on a case-by-case511

basis to ensure quality data. A 750 rpm syringe stir speed was used for all experiments.512

Spacing between injections ranged from 300s-900s depending on gain settings and relaxation513

time of the binding process. A single-site binding model was fit to the titration data using514

the Bayesian MCMC fitter in pytc.33 Uniform priors were used for all parameters. The ML515

estimate was used as a starting guess and the likelihood surface was then explored with 100516

walkers, each taking 5,000 steps. The first 10% of steps were discarded as burn in. One517

clean ITC trace was used to fit the binding model. Negative results were double-checked to518

ensure accuracy.519
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Table 1: Dissociation constants and model predictions for known peptide tar-677

gets. Data for the known target peptides used in our previous study.18 NCX1 and SIP are678

fragments of human proteins. A5cons and A6cons were identified as consensus sequences679

from an earlier phage display experiment. The lowercase flanking sequences “rshs” and680

“gggsae” come from the M13 phage coat protein. KD and predicted E value (Epred) are681

shown. The statistically significant E cutoff for hA5 is −1.37.682

683

peptide Sequence KD (µM) Epred predicted to bind (E < −1.37)?

NCX1 RRLLFYKYVYKR 18 -1.68 yes

SIP SEGLMNVLKKIYEDG >100 -0.43 no

A5cons rshsSSFQDWLLSRLPgggsae 3 -2.43 yes

A6cons rshsGFDWRWGMEALTgggsae 3 -1.39 yes

684

685
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Table 2: Crystallography data collection and refinement statistics. aResolution686

cutoff was applied using CC1/2 > 0.3. bResolution at which < I/σ > falls to 2.0. cData may687

be twinned, inhibiting further model improvement.688

689

690

Data collection PDB code: 6WN7
Structure Human S100A5 C43S, C79S

Space group P32

Unit cell a, b, c (Å), α,β, γ(◦) 76.3, 76.3, 84.2, 90.0, 90.0, 120.0
Resolution (Å) 51.98− 1.25(1.32−)a

Completeness (%) 99.8 (99.8)
Unique reflections 151437 (4561)

Multiplicity 10.6 (6.48.4)
Rmeas (%) 8.1 (115.8)
CC1/2 1.0 (0.48)
< I/σ > 16.2 (2.1)

< I/σ >∼ 2.0(Å)b 1.24
Refinement

Resolution range (Å) 26.0-1.25
R-factor (%) 26.2c

R-free (%) 29.4c

Protein residues 159
Ca2+ 12

Water molecules 498
RMSD lengths (Å) 0.009
RMSD angles (◦) 1.1

Ramachandran plotc
ϕ, ψ − Preferred (%) 98.66
ϕ, ψ − Allowed (%) 1.34
ϕ, ψ −Outliers (%) 0.0

B-factors
〈Protein atoms〉 (Å2) 24
〈Waters〉 (Å2) 33
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Table 3: Model predictions for potential new peptide targets. Model E scores691

and measured binding affinities for peptides predicted by our model to bind to hA5. Flank-692

ing amino acids outside the predicted 12-mer are shown in lowercase.693

694

695

uniprot accession Sequence Protein of origin E KD(µM)
Q86UW7 agsSQRAPPAPTREGrrd Calcium-dependent secretion activator 2 -4.03 >100
O75170 dapGAGAPPAPGKKEapp Serine/threonine-protein phosphatase 6 -3.94 >100
Q13424 gagGERWQRVLLSLAedt α-1-syntrophin -4.45 5
B2RNZ0 keiKTAMWRLFVKIYFlqk Human olfactory receptor 14|1 -3.53 >100
Q14147 sedDRAGPAPPGASDgvd TP-dependent RNA helicase DHX34 -3.88 >100

696
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