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SUMMARY 13 

This manuscript is intended as a theoretical companion to Hamilos et al., 20201, in which we 14 

examined the role of dopaminergic neurons (DANs) in self-timed movements.  In that study, 15 

we recorded DAN signals in mice trained to initiate a licking movement after a self-timed 16 

delay following a start-timing cue. DAN signals both before the start-timing cue and during 17 

the timing interval predicted the timing of movement onset, up to seconds before the 18 

movement itself.  In particular, dopaminergic signals “ramped up” from the time of the cue 19 

to the time of the movement. On a given trial, the slope of the ramping was predictive of 20 

when the movement would occur, with steep slope associated with early movement and 21 

shallow slope with late movement, reminiscent of a ramp-to-threshold process.  22 

 23 
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Ramping dopaminergic signals were recently proposed in a theoretical framework that 24 

examined temporal-difference learning under resolved state uncertainty (Mikhael et al., 25 

20192; Mikhael & Gershman, 20193; Gershman, 20144). Here, we show that an adapted 26 

version of Mikhael et al.’s model recapitulates the ramping dopaminergic signaling observed 27 

in our self-timed movement task. We also applied the model to results reported in a recent 28 

temporal bisection study, in which mice categorized time intervals as relatively short or long 29 

compared to a criterion interval (Soares et al., 20165). The model successfully predicted the 30 

relative amplitude of dynamic DAN signals observed in the bisection task. These combined 31 

results suggest a common neural mechanism that broadly underlies timing behavior: trial-32 

by-trial variation in the rate of the internal “pacemaker,” manifested in DAN signals that 33 

reflect stretching or compression of the derivative of the subjective value function relative to 34 

veridical time. In this view, faster pacemaking is associated with relatively high amplitude 35 

dopaminergic signaling, whereas slower pacemaking is associated with relatively low levels 36 

of dopaminergic signaling. 37 

 38 

 39 

MAIN TEXT 40 

Nigrostriatal dopaminergic signaling controls the moment-to-moment decision of when to 41 

move 42 

Clues from human movement disorders and pharmacological studies have long suggested a 43 

connection between the neurotransmitter dopamine and the timing of movement initiation3,5-13. We 44 

recently showed that dopaminergic signaling controls the moment-to-moment timing of 45 

movements in mice1. We recorded dopaminergic signals with fiber photometry in mice executing 46 
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a self-timed movement task, in which animals received juice rewards for withholding movement 47 

for a proscribed interval (3.3 s) after a start-timing cue and then initiating movement (a first-lick) 48 

within a rewarded time window (3.3-7 s, Figure 1a). We observed two aspects of dopaminergic 49 

signaling that predicted movement timing: 1) pre-trial baseline signaling of nigrostriatal dopamine 50 

neurons (DANs), and, 2) slow “ramping” signals that built up over the course of seconds between 51 

the start-timing cue and the self-timed movement. Although self-timed movements occurred with 52 

variable timing relative to the start-timing cue1, DAN signaling rose to about the same level at the 53 

moment of movement onset, reminiscent of a ramp-to-threshold process (Figure 1b). DAN signals 54 

were not explained by ongoing nuisance movements nor optical artifacts and were best modeled 55 

with timing-dependent predictors, including a baseline offset term whose amplitude was 56 

proportional to the mouse’s timing on the upcoming trial, as well as a stretch feature that encoded 57 

percentages of elapsed time between the cue and self-timed movement1. DAN ramping activity 58 

predicted first-lick time on single trials, independently of trial history, and optogenetic 59 

manipulation of DANs bidirectionally shifted movement timing, with activation early-shifting 60 

movements versus inhibition late-shifting movements. Together, these results indicate that 61 

dopaminergic signaling during self-timing controls the moment of movement onset.  62 

 63 
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Figure 1 | Nigrostriatal 64 
dopaminergic signaling during a 65 
self-timed movement task.  66 
Figure adapted from Hamilos et al., 67 
20201 and used with permission.  68 
a, Schematic of self-timed movement 69 
task.  70 
b, Top: Average DAN GCaMP6f 71 
responses from 12 mice; Bottom: 72 
Responses of tdTomato, a non-activity-73 
dependent fluorophore used to control 74 
for optical artifacts. The different 75 
colored traces correspond to averaged 76 
trial responses with different first-lick 77 
times (ranging from 1-4 s in 250 ms 78 
increments). Traces are plotted up to 79 
150 ms before first-lick. Averaged 80 
traces are aligned relative to both start-81 
timing cue onset (left of x-axis break) 82 
and first-lick (right of x-axis break); the break in the x-axis indicates the change in plot alignment.  83 
c, Cue-aligned average DAN GCaMP6f signals at lower gain show post-movement RPE-like 84 
signals. Movement onset occurs just before the peak response for each curve. Mice were rewarded 85 
for first-licks made later than 3.3 s, but were not rewarded for earlier first-licks.  86 
 87 

 88 

A temporal-difference learning model of dynamic dopaminergic signaling 89 

We were interested in understanding the origin of the dynamic dopaminergic signals we observed 90 

in our self-timed movement task and how they fit into the context of prior work on the dopamine 91 

system. A framework that has explained many disparate experimental results from the 92 

dopaminergic system is temporal difference (TD) learning with reward-prediction errors (RPE)2,14. 93 

In this framework, DAN activity is thought to reflect the moment-to-moment difference in the 94 

animal’s expectation versus its perception of the value of its current state, where value is defined 95 

as the temporally-discounted expectation of total future reward. In classical trace-conditioning 96 

paradigms, DANs fire in transient bursts to unexpected rewards and reward-predicting cues, 97 

whereas they pause their firing when expected reward is omitted. Indeed, we observed RPE-like 98 
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signals in the cue-related transient, dips in activity after unrewarded first-licks, and surges in 99 

activity following rewarded first-licks (Figure 1c). Persistence of RPE-like signals in well-trained 100 

animals has been suggested to arise from the inherent imprecision in neural timing10, which may 101 

reflect the animal’s moment-to-moment uncertainty of its current state—i.e., its  position in time–102 

and, by extension to our task, uncertainty about its accuracy for a given self-timed lick3. Indeed, 103 

positive-going RPE-like signals were strongest for first-licks closest to the reward-boundary (3.3 104 

s), presumably when the mouse’s “confidence” of reward was lowest, consistent with the greatest 105 

RPE occurring when the mice were least certain of success (Figure 1c).  106 

 107 

Whereas RPE-frameworks have explained transient bursts and pauses in DAN activity during 108 

trace conditioning and other types of learning experiments, DAN activity can also change more 109 

slowly2,3. For example, “ramping” signals build up over seconds during goal-directed navigation15, 110 

bandit tasks in which animals must complete multiple goals to receive reward16,17, and tasks with 111 

visual cues of proximity to reward18. It has been suggested that DANs could signal different 112 

information via slow changes in activity (e.g., motivation, ongoing value, vigor) compared to fast-113 

timescale activity (e.g., post-hoc RPE signals for learning), and a number of proposals have 114 

suggested that DANs multiplex different kinds of information over different timescales and 115 

contexts17,19.  116 

 117 

However, recent models have proposed RPE-based explanations that may be able to reconcile 118 

these seemingly disparate dopamine signals2,3,18. While these models do not refute the possibility 119 

that DANs could encode other types of information (e.g., value, vigor, etc.), they are attractive for 120 

their parsimonious explanation of how fast time-scale phenomena and slowly-evolving ramps 121 
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could arise from the same underlying RPE-based calculation. In short, these models employ 122 

principles from TD learning to show how certain shapes of the value function (i.e., the assignment 123 

of values to the series of behavioral states comprising a task) can give rise to a continuously 124 

changing RPE, even in well-trained animals2,3,18,20.  125 

 126 

We were interested in whether an RPE-based framework could explain the results found in our 127 

self-timed movement task as well as results from other timing tasks5. To approach this question, 128 

we applied a key feature of TD learning algorithms to determine what an RPE-like signal would 129 

look like in different kinds of timing tasks. Specifically, we took advantage of the fact that RPE is 130 

proportional to the derivative of the subjective value function under conditions of state 131 

uncertainty2,3, as is the case during timing tasks in which the animal must rely on its own internal 132 

representation of time to guide behavior2. 133 

 134 

Thus, if the value landscape for a given behavioral task is known, and if DAN activity encodes 135 

RPE, the RPE-based framework makes predictions about the expected shape of dynamic DAN 136 

activity during the task. In a recent study, similar applications of this principle predicted the 137 

ramping DAN signals that were observed in virtual reality (VR) tasks in which animals were 138 

moved passively through VR spaces, as well as when the animals passively viewed abstract, 139 

dynamic visual cues indicating proximity to reward18, suggesting the ramping in our task could be 140 

explained from similar principles.  141 

 142 

 143 

 144 
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RPE-predictions for DAN responses during self-timed movement 145 

In a simple TD learning model of self-timed movement, time may be modeled as a continuous set 146 

of states through which a Markov agent must traverse to receive reward21 (Figure 2a). At each state 147 

transition (timestep), the agent must decide whether to move (lick) or to wait based on the 148 

probability of transitioning to a reward or failure state. If the agent is an optimal timer, its 149 

subjective approximation of its current state, 𝜏, accurately tracks veridical time, t, and it will thus 150 

withhold movement until the first moment at which reward will be available in response to licking 151 

(3.3 s in our experiment).  152 

 153 

The value landscape of this model can be understood intuitively. When the cue event occurs, a 154 

well-trained agent can expect an increased possibility of reward in the next few seconds; thus, at 155 

this moment, value increases. However, reward never occurs within the first 3.3 s of the standard 156 

timing task we implemented; thus, value at the cue is necessarily lower than value at 3.3 s. In fact, 157 

value will constantly increase as time approaches 3.3 s. Thus, as long as the agent withholds licks, 158 

the value landscape, 𝑉! , during the first few seconds is a monotonically increasing, convex 159 

function4 (Figure 2b). If the agent is an optimal timer, the subjective approximation of the value 160 

function, 𝑉#", matches the true value function, and 𝑉#" = 𝑉!. 161 

 162 
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 163 

Figure 2 | Value and RPE Landscapes for an optimal timer predict DAN responses 164 
during the self-timed movement task. a, State space and probability of state transition for 165 
an optimal timer. Gold-shaded state is the first state from which reward is available, and thus 166 
is when the first-lick is predicted to occur. b, Estimated value function 𝑉#!, where 𝑉#" ≈ 𝑉! for 167 
an optimal timer. An exponential value landscape is shown, consistent with prior literature2. 168 
However, any sufficiently convex function could be implemented with the same result2-4. The 169 
agent is expected to first-lick at the peak of the trajectory. c, RPE function for an optimal 170 
timer, estimated as 𝛿" ≈	𝑉# ′", the derivative of the subjective value function. Y-axis scaled 171 
to show ramp. d, Predicted DAN GCaMP6f signals for an optimal timer. The RPE function 172 
was smoothed with a gaussian kernel spanning ca. 10% of the interval to approximate 173 
GCaMP6f off-dynamics. 174 

 175 

However, we assume that, because the timer does not have access to the true state identity, t, it is 176 

never certain of its subjective approximation of its state, 𝜏. Under conditions of state uncertainty, 177 

RPE is approximately the derivative of the subjective value function2,18, 𝛿" ≈	𝑉#′" , where 𝛿"  is 178 

RPE at subjective time 𝜏, and 𝑉#′" is the time-derivative of the subjective value function. Thus, the 179 

shape of the RPE function, 𝛿" is also quite simple: a transient increase at the cue followed by a 180 
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slowly-evolving ramp (Figure 2c). If the RPE function is measured by a calcium indicator such as 181 

GCaMP6f, the binding kinetics of the indicator would tend to blur the RPE function, which we 182 

approximated by smoothing (Figure 2d).  183 

 184 

The modeled RPE function mirrors the shape of the dynamics observed in DAN signals: a cue-185 

related transient followed by a slow ramp up to the time of first-lick. However, unlike the optimal 186 

timer in this model, mice, like humans, exhibit suboptimal timing behavior with variability 187 

proportional to the duration of the timed interval10. It has been proposed that this variability in 188 

timing results from imprecision in an internal clock, referred to classically as the internal 189 

“pacemaker22”. When the pacemaker is fast, self-timed movements occur relatively early, whereas 190 

when the pacemaker is slow, later movements occur. These changes in the pacemaker rate would 191 

correspond to the mouse traversing the set of subjective states, 𝜏, at different rates than the passage 192 

of veridical time, 𝑡 (Figure 3a), resulting in relative compression and stretching, respectively, in 193 

the subjective value function, 𝑉#" (Figure 3b), with corresponding compression/stretching of the 194 

RPE function (Figure 3c).  195 

 196 
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 197 

Figure 3 | Compressed and stretched Value and RPE Landscapes for a sub-optimal 198 
timer predict dynamic DAN responses during the self-timed movement task, but do not 199 
capture baseline offsets. a, Simple state space of self-timed movement task for a suboptimal 200 
timer with a fast pacemaker. The fast pacemaker “compresses” state space3,21, resulting in 201 
traversal of the timing states faster than veridical time. The mouse can only make a decision 202 
based on which state it believes itself in; thus first-lick is expected to occur early (gold-shaded 203 
state). b, A compressed subjective value function (𝑉#", blue) reflects relatively fast traversal 204 
through the value landscape compared with that of veridical time (𝑉!, black). Conversely, 205 
stretched 𝑉#" (red) reflects slow traversal, consistent with a slow pacemaker. The animal is 206 
expected to lick at the peak of the trajectory. c, Smoothed estimated RPE function (𝑉#′" ≈ 𝛿"). 207 
Compression/stretching of the value function produces ramping dynamics similar to those 208 
observed in DANs (d) and striatal dopamine1. However, this model alone does not explain the 209 
more tonic baseline offsets that were anti-correlated with upcoming movement time (d and 210 
Figure 1b). d, Average DAN GCaMP6f signals (12 mice, 3 timepoints replotted from Figure 211 
1b, plotted up to 150 ms before first-lick). Break in x-axis as in Figure 1b. 212 

 213 

Strikingly, as this simple RPE-based model predicts, DAN signals observed during our self-timed 214 

movement task show different ramping dynamics depending on when the animal actually moved 215 

(Figure 3d), consistent with compression/stretching of the subjective value and RPE functions. 216 
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When the animal moved relatively early (perhaps corresponding to a fast pacemaker), DAN 217 

ramping unfolded with a steeper slope, as if the ramping period were compressed. Conversely, 218 

when the animal moved late (perhaps corresponding to a slow pacemaker), DAN ramping unfolded 219 

with a shallower slope, as if the ramping interval were stretched. The idea of 220 

compression/stretching of DAN ramps was supported by our encoding model1, for which we 221 

needed to add a timing-dependent “stretch factor” to best capture the variance in GCaMP6f signals 222 

during the timed interval. Together, these observations could be explained by DANs encoding an 223 

RPE-like signal related to the animal’s “belief” of its position in objective time, 𝜏, as derived from 224 

its position along the subjective value trajectory during the timing interval of the task. 225 

 226 

In fact, a recent model described how a timing mechanism instantiated by the nigrostriatal system 227 

could lead to (the well-known) variability in self-timed intervals by stretching or compressing of 228 

subjective value trajectories3. The model posits that dopamine modulates the pacemaker rate 229 

(consistent with pharmacological and lesion studies), with increased dopamine availability (or 230 

efficacy) speeding the pacemaker, and decreased dopamine slowing the pacemaker6-8,11-13. In turn, 231 

the pacemaker controls the encoding of subjective time, and thus the steepness of the value 232 

function with respect to objective, veridical time. It follows that variation in dopamine availability 233 

would compress or stretch the value landscape to varying degrees from trial-to-trial. This model is 234 

consistent with our findings of variable ramping slope in DANs signals from trial-to-trial. It is also 235 

consistent with neural recordings from striatal spiny projection neurons and parietal cortical 236 

neurons during similar self-timed movement tasks, for which temporal sequences of striatal and 237 

cortical firing during timing were compressed for early movements and stretched for late 238 

movements23,24.  239 
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 240 

While the RPE-based view of DAN activity captures the dynamic DAN signals we observed, our 241 

simple RPE model alone does not capture the baseline offsets in DAN signals that were predictive 242 

of movement timing even after controlling for previous trial outcome and ongoing nuisance 243 

movements1. More complex RPE-based explanations for these tonic offsets in DAN signals could 244 

be imagined with further assumptions (e.g., states like the pre-cue delay could also contain timing 245 

states that create offsets before the trial begins, etc.), but a parsimonious explanation for how and 246 

why these offsets emerge requires further investigation. Mohebi et al. recently showed baseline 247 

differences in the amount of dopamine in the nucleus accumbens core that were correlated with 248 

the recent history of reward rate: higher recent reward rates were related to higher tonic dopamine17. 249 

However, in our task, animals tended to move later toward the end of sessions, resulting in periods 250 

of relatively high reward rate when the average tonic baseline signal was lower (baseline preceding 251 

rewarded trials—by definition, later movements—was systematically lower in our task, Figure 1b-252 

c), suggesting a more complex relationship between tonic DAN activity and reward rate in our 253 

task. While the origin of offsets in DAN signals remains unclear, these offsets were nonetheless 254 

inversely related to the first-lick time, and thus directly related to the (inferred) pacemaker rate, 255 

consistent with pharmacological and lesion studies positing a positive correlation between 256 

dopamine availability and pacemaker rate3,6-8,11-13. 257 

 258 

Ramping signals in our photometry experiments were measured from a population of DANs. An 259 

important future question is whether ramps are also present at the level of individual neurons, or 260 

rather represent a progressive recruitment of individual neurons, or some combination of both. 261 

Prior studies have reported ramping signals in individual neurons during tasks with visual feedback 262 
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of distance to reward18, whereas others have observed decoupling between DAN firing rates and 263 

downstream dopamine release17, making it unclear whether electrophysiology would be capable 264 

of addressing this question. Observation of individual neurons expressing calcium indicators with 265 

GRIN-lens equipped endoscopes may be better suited to this question. 266 

 267 

RPE-based predictions for DAN responses during a temporal bisection task 268 

Whereas DAN signals during our self-timed movement task were consistent with classic 269 

observations of the influence of dopamine on the speed of the pacemaker, a recent study employing 270 

a different timing task found more complex DAN dynamics during timing. Soares et al. recorded 271 

SNc DAN GCaMP6f signals with fiber photometry as mice executed a classic temporal bisection 272 

perceptual task5 (Figure 4a). Trials began when mice entered a nose-poke port and received an 273 

auditory start-timing cue. Mice had to remain in the port throughout a variable timing interval, 274 

which was terminated with a stop-timing auditory cue. Mice then reported whether the interval 275 

was shorter or longer than a criterion time (1.5 s) by choosing a left or right nose-poke port 276 

corresponding to a “long” or “short” judgment. Mice were trained to categorize intervals spanning 277 

0.6-2.4 s. As expected, trials with more extreme intervals were easier for the mice, whereas trials 278 

with intervals closer to the 1.5 s criterion time elicited chance performance (Figure 4b). 279 

 280 
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 281 

Figure 4 | A temporal bisection task shows relatively high DAN signals during the 282 
timing interval when the inferred pacemaker rate is relatively fast. Figures adapted from 283 
Soares et al., 20165 with permission of authors and AAAS. a, Task schematic. b, 284 
Psychometric curve for timing intervals of different duration. Criterion time: 1.5 s. c, Start-285 
timing cue-aligned average SNc DAN GCaMP6f signals. Second peak occurs just after the 286 
stop-timing cue (intervals: 0.6, 1.05, 1.26, 1.74, 1.95, 2.4 s). Figure recolored to indicate 287 
average inferred pacemaker rate. Red: slow; blue: fast. Note: colors intended to indicate 288 
category of clock speed, not relative pacemaker speed within category. Relative dF/F 289 
amplitude during baseline and immediately prior to stop-timing cue shown left and right. 290 
dF/F amplitudes during timing are higher when the inferred pacemaker rate is fast. Left: 291 
Correct trials. Right: Incorrect trials show the same dF/F relationship with pacemaker rate. 292 
 293 

DANs exhibited complex dynamics during the bisection task, starting with a sharp transient after 294 

the start-timing cue and ending with a second transient after the stop-timing cue (Figure 4c). 295 

Between the start-timing and stop-timing cues, DAN signals exhibited a U-shape with increasing 296 

time, which was visible for trials with longer intervals but was truncated prematurely for the shorter 297 

intervals. The authors focused their analyses on the transient occurring after the stop-timing cue. 298 

Short judgments (suggesting a slow pacemaker) were accompanied by relatively high-amplitude 299 

transients after the stop-cue, whereas long judgments (suggesting a fast pacemaker) showed 300 
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relatively low-amplitude transients. These results seemed to suggest that relatively high DAN 301 

activity reflected a slow pacemaker, the opposite of what is expected based on the bulk of 302 

pharmacological and lesion studies3, as well as the trend we observed during our self-timed 303 

movement task. 304 

 305 

This surprising finding could be a unique feature of the bisection task. Unlike self-timed 306 

movements, in which animals directly report elapsed time with a movement, the temporal bisection 307 

task requires an additional computational step, in which the timed interval must be categorized as 308 

“long” or “short.” However, prior pharmacological studies employing the bisection task found 309 

results consistent with the classic view that higher dopamine availability is associated with a faster 310 

pacemaker3,25—opposite the interpretation of Soares et al., but consistent with the findings of our 311 

self-timed movement task.  312 

 313 

The discrepancy between our results and those found by Soares et al. could perhaps be traced to 314 

differences in the way DAN signals were analyzed. We focused our attention on DAN signals 315 

unfolding during timing in our self-timed movement task, whereas these signals were not explored 316 

by Soares et al. We thus asked two questions: 1. What correlations exist between DAN signals and 317 

pacemaker rate in the bisection task before the timing interval? And, 2. What correlations exist 318 

during the timing interval itself? 319 

  320 

Before addressing these questions, we note that the relationship between pacemaker and bisection 321 

judgment is not as straightforward as in self-timed movement, and thus we recolored Figure 4c to 322 

clarify this, employing the following intuition: For a trial to be correct in the bisection task, on 323 
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average, the pacemaker must be either accurate or “conservatively inaccurate.” In other words, a 324 

correct “short” judgment requires either accurate timing or a slow pacemaker (Figure 4c, red 325 

curves). Conversely, a correct “long” judgment requires either accurate timing or a fast pacemaker 326 

(Figure 4c, blue curves).  327 

 328 

When we considered DAN signals before the timing interval for correct trials in the Soares et al. 329 

study (Figure 4c, left), we noticed what appears to be two strata of signal levels. Trials with “long” 330 

judgments (fast pacemaker on average) had relatively high baseline signals, whereas trials with 331 

“short” judgments (slow pacemaker on average) had lower baseline signals, consistent with the 332 

relationship between baseline offsets and pacemaker rate that we observed in our self-timed 333 

movement task. As in our task, these baseline offsets remained present during the timing interval, 334 

resulting in the same stratification of dF/F signals immediately prior to the stop-timing cue (except 335 

for the very shortest interval, 0.6 s, which overlaps decaying GCaMP6f signals related to the start-336 

timing cue, likely causing an artifactual inflation of the signal just prior to the stop-cue due to the 337 

off-kinetics of the calcium indicator or kinetics of calcium clearance more generally). Thus, it 338 

generally appears that DAN activity was higher on trials with fast pacemaker rates, both during 339 

and before the interval in which the animal was actually timing. Intriguingly, incorrect trials (to 340 

the right in Figure 4c) showed a relative convergence of the baseline signals preceding the start-341 

cue, but then signals diverged during the timing interval, resulting in relatively high signals just 342 

before the stop-cue for incorrect “long” choices (i.e., a fast pacemaker, blue), but relatively low 343 

signals just before the stop-cue for incorrect “short” choices (i.e., a slow pacemaker, red). This is 344 

consistent with the patterns observed on correct trials. Interpreted thusly, the Soares et al. result is 345 

consistent both with our results and with classic pharmacological studies relating higher/lower 346 
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dopamine availability to faster/slower pacemaker rates, respectively. Soares et al. presented their 347 

subsequent analyses with these baseline differences normalized-out in some way (Figure 3 of 348 

Soares et al.). It is possible that this “zeroing out” of the baseline offset may have hindered efforts 349 

to detect consistent effects during the timing interval due to reordering of the traces. 350 

 351 

Because baseline offsets in the bisection task appear similar to those in our self-timed movement 352 

task, we asked whether dynamic DAN signals in the bisection task could similarly be explained 353 

by the task’s RPE landscape. In their investigation of the stop-timing cue-related transient, Soares 354 

et al. showed that its amplitude is well-explained by a combination of temporal surprise and 355 

behavioral performance, and we applied these parameters to derive a value landscape consistent 356 

with their bisection task.  357 

 358 

The inferred value landscape of the bisection task for an optimal agent was built from a few 359 

assumptions (Figure 5a): 360 

 361 

1. As in our self-timed movement task, value increases immediately at the start-cue and  362 

continues to rise toward the time of expected potential reward delivery.  363 

 364 

2. Because the longest interval is 2.4 s, the time until potential reward is known to be no more 365 

than ~3 s (including the time to report judgment). However, due to temporal uncertainty 366 

and the fact that a false start (leaving the port before the stop-timing cue) results in an error 367 

and loss of reward, there is a second jump in the value function at the time of the stop-cue 368 
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when the feedback of the tone reorients the value function and indicates the opportunity to 369 

collect reward within a few hundred milliseconds.  370 

 371 

3. Because value is temporally discounted at the start-cue by the possibility of the longest-372 

possible interval, any stop-cue occurring before 2.4 s results in a sudden “teleportation” 373 

through the value landscape to the final limb of the task that occurs just before the judgment 374 

and ascertainment of trial outcome, similar to the jump in the value function in a recently-375 

reported, virtual reality, spatial teleportation task18. Thus, assuming the value function 376 

trends upwards steadily, the amplitude of RPE-related transients following the stop-cue 377 

would decrease as the interval duration increases, because the sudden jump in the value 378 

function becomes progressively smaller.  379 

 380 

4. To capture aspects related to behavioral performance, we additionally included contours in 381 

the value function during the timing interval to reflect the probability of a correct choice 382 

for intervals of different lengths. Specifically, a relative minimum in the value function 383 

occurs near 1.5 s, when predicted performance is worst. However, a stop-timing tone near 384 

the criterion time also results in a smaller jump in the value function because the probability 385 

of a correct decision is also lower. Thus, the increase in value at the moment of decision 386 

was adjusted by the probability of a correct choice. 387 

 388 

5. As in the simple RPE-model of our self-timed movement task, we modeled changes in 389 

pacemaker rate as compression/stretching of the subjective value landscape with respect to 390 

veridical time. 391 
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 392 

6. The agent traverses timing states during the timing interval, similar to the timing states in 393 

the self-timed movement task, but unlike our task, the bisection task does not require the 394 

agent to decide when to move. We assume the need to make a timed movement imposes a 395 

need for the agent to be relatively certain of its subjective timing state, 𝜏, to make a decision, 396 

even though it is uncertain of its true state, t. The bisection task, on the other hand, is more 397 

similar to classical conditioning tasks in which the timing interval is not in the agent’s 398 

control, and thus subjective state uncertainty increases with the distance from the last state-399 

informative cue3. Thus, we took into account temporal blurring of the subjective state 400 

function, which would tend to reduce the convexity of the subjective value function and 401 

reduce the amplitude of ramping during the timing interval3. However, adding temporal 402 

blurring does not substantially change the fit-shape in our simplified model, and versions 403 

with or without blurring can reproduce the shape of the dynamic DAN signals. 404 

 405 

Together, we arrived at a model of the RPE landscape for each of the six tested interval durations 406 

(Figure 5b,c). Importantly, this simple RPE-based model accurately captures the relative 407 

categorical amplitudes of the stop-timing cue-related transients, as follows: If the instantaneous 408 

DAN activity at the time of the stop-timing cue is relatively high, this would indicate that the 409 

animal is further along in the subjective value trajectory, resulting in 1) a long judgment, and 2) a 410 

relatively smaller RPE transient, because the underlying subjective value was higher at that 411 

moment. Conversely, if instantaneous DAN activity is relatively low at the stop-timing cue, this 412 

would indicate that the animal is not very far along the subjective value trajectory, leading to 1) a 413 
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short judgement and 2) a relatively larger stop-cue-related RPE transient, because the underlying 414 

subjective value was relatively low just before the stop-cue.  415 

 416 

Now consider a particular (objective) time interval near the criterion time, for which the animal 417 

makes a mix of “long” and “short” choices (e.g., 1.74 s; Figure 4b). Soares et al. found that the 418 

amplitude of the stop-timing cue-related GCaMP6f transient tended to be bigger when the animal 419 

incorrectly made short choices, and this was taken as evidence that elevated DAN activity slows 420 

the internal clock. However, our model predicts that the size of the stop-cue-related transient will 421 

be inversely related to the amplitude of the underlying subjective value at that point, and thus 422 

inversely related to elapsed subjective time. It thus follows that if subjective time is more advanced 423 

on a given trial (i.e., faster pacemaker), the animal would tend to choose the long judgment on that 424 

trial, and the stop-timing RPE transient would be smaller. Conversely, if subjective time is less 425 

advanced on a trial (i.e., slower pacemaker), the animal would tend to choose the short judgment, 426 

and the stop-timing RPE transient would be larger.  427 

 428 

Our RPE model accurately predicts the results of Soares et al.; however, our model holds that 429 

elevated DAN activity speeds the internal clock, consistent with most pharmacological studies but 430 

opposite the interpretation of Soares et al. Thus, our RPE-based model suggests a parsimonious 431 

explanation for DAN activity in both the self-timed movement and temporal bisection paradigms, 432 

with (1) relatively high DAN activity corresponding to a fast pacemaker; manifesting in (2) 433 

compression of the value landscape; thereby leading to (3) early movements (in the self-timed 434 

movement task) or long judgments (in the temporal bisection task). 435 

 436 
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 437 

Figure 5 | Subjective Value and RPE Landscapes for the temporal bisection task predict 438 
dynamic DAN responses during the temporal bisection task, but do not capture baseline 439 
offsets. a, Estimated value function 𝑉#!, where 𝑉#" ≈ 𝑉! for an optimal timer on a 2.4 s trial. 440 
Grey lines: test interval times. Green dashed line: criterion time (1.5 s). Value increases 441 
approaching the time when reward is available, increasing abruptly at the start- and stop-442 
timing cues (0 and 2.4 s). b, Smoothed RPE function for an optimal timer, estimated as 𝛿" ≈443 
	𝑉#′", the derivative of the subjective value function. The RPE function was smoothed with 444 
an asymmetrical gaussian kernel spanning ca. 28% of the interval to approximate GCaMP6f 445 
off-dynamics.  c, Predicted DAN GCaMP6f signals for an optimal timer for the six test 446 
interval times. Traces truncated before reward collection for clarity. Colors indicate 447 
conservative pacemaker speed for a correct judgment (red: slow, blue: fast). Right: relative 448 
simulated dF/F amplitude just before the stop-timing cue and subsequent peak response. 449 
Amplitude just before the stop-timing cue is directly proportional to pacemaker speed; peak 450 
amplitude after the stop-timing cue is inversely proportional to pacemaker speed. 451 
 452 

Limitations of the RPE-based model 453 

The simple RPE-based models presented here explain dynamic DAN signals in both the bisection 454 

task and our self-timed movement task, but they do not explain the origin of baseline offsets. 455 

Mohebi et al.17 recently-proposed that baseline offsets in ventral striatal dopamine levels could 456 

reflect the average recent reward rate, but we found that offset amplitude in DAN signals is at least 457 

partially independent of recent trial history during the self-timed movement task. It is possible that 458 

baseline variation arises from slow, random fluctuations in DAN activity, but further work is 459 

needed to explore the origins of these signals.  460 

 461 
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A second issue is the impact of optogenetic DAN activation and suppression on the rate of the 462 

pacemaker. In our self-timed movement task, DAN activation promoted early movements, 463 

consistent with increasing the pacemaker rate, whereas suppression promoted late movements, 464 

consistent with slowing the pacemaker rate1. However, Soares et al. reported an opposite effect for 465 

optogenetic manipulation during the bisection task, at least for DAN activation5.  466 

 467 

This difference between the tasks could be reconciled by a recent theoretical model proposed by 468 

Mikhael and Gershman to explain the behavior of the pacemaker in a wide range of classical 469 

conditioning and timing studies3. Their model shows that the pacemaker rate is expected to be 470 

updated at the time of reinforcement by a Hebbian-like, bidirectional learning rule. If reward 471 

occurs exactly at the expected time, there is no update in the pacemaker rate. However, if 472 

reinforcement occurs before the expected time, this is interpreted as feedback that the pacemaker 473 

was running too slowly; thus, the update rule increases the pacemaker rate leading to expectation 474 

of reward at an earlier time on the next trial. Conversely, if reinforcement occurs after it was 475 

expected, this is interpreted as feedback indicating an overly fast pacemaker, resulting in an update 476 

that slows the pacemaker rate and creates the expectation of a later reward on the next trial. The 477 

same principles apply to ongoing RPE during timing tasks. 478 

In our self-timed movement task, we activated or inhibited DANs only up to the time of first-lick, 479 

which Mikhael and Gershman’s model predicts will produce an effect on the pacemaker rate 480 

consistent with the sign of the manipulation (activate: increase, inhibit: decrease). However, Soares 481 

et al. continued optical stimulation past the end of the timing interval, until the end of the trial. 482 

When Mikhael and Gershman modeled stimulation in the Soares et al. task, they found that 483 

simulated DAN activation increased the pacemaker rate during the timing interval, but the 484 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 4, 2020. ; https://doi.org/10.1101/2020.06.03.128272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.03.128272


continuing stimulation after the stop-timing cue rapidly counteracted this effect, resulting in 485 

slowing of the modeled pacemaker between the stop-cue and the judgment, leading to an effect on 486 

pacemaker rate inconsistent with the sign of the manipulation, as observed in Soares et al. If this 487 

model is correct, the effect of stimulation on the animal’s judgment in the Soares et al. task may 488 

have arisen due to continued manipulation of DAN activity after the timing interval had ended. A 489 

“retrospective” effect of this sort might seem counterintuitive, but such retrospective effects have 490 

long been observed in perceptual studies, in which recall of sensory stimuli can be enhanced by 491 

additional sensory cues presented shortly after stimulus offset26,27, suggesting that sensory events 492 

are “buffered” briefly and can be altered by neural activity occurring between the sensory event 493 

and the perceptual decision. It is possible that a similar process could occur in the bisection task if 494 

DAN stimulation extends past the timing interval, although this is speculative. More work is 495 

needed to reconcile the optogenetic results in the self-timed movement and bisection tasks. To 496 

start, it would be informative to repeat the optogenetic experiments in the bisection task with 497 

optical stimulation limited to the period of the timed intervals only. 498 

 499 

 500 

 501 

 502 

 503 

 504 
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