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Figure 6. Potential for the discovery of new driver mutations across cancer genes  
a-f) Mutational discovery index of six exemplary cancer genes. The dots in each plot represent               
the number of unique driver mutations identified across random subsamples drawn from each             
cohort, with the black curve representing the best exponential fit to them. A tangent to the best                 
fit curve at the x-axis value corresponding to the actual sample size of the cohort is represented                 
as a broken red line. The mutational discovery index (see Methods) derived from the slope of                
this tangent line is shown at each plot. 
g) Two-dimensional plot representing the relationship between the total number of potential            
driver mutations (y-axis) and the mutational discovery index (x-axis) of 110 cancer genes with              
specific models. Each cancer gene is represented as a circle colored by its mode of action and                 
with size proportional to the number of unique observed driver mutations. The distribution of              
both values for tumor suppressor and oncogenes is shown along the axes. The pearson              
correlation coefficient representing the relationship between the two quantities and its p-value            
are included in the graph. 
h) Two-dimensional plot representing the relationship between the observed-to-potential ratio          
(y-axis) and the mutation probability bias (x-axis) of cancer genes with 105 specific models.              
Each cancer gene is represented as a circle colored following its mutational discovery index and               
with size proportional to the number of unique observed driver mutations. The distribution of              
both values for tumor suppressor and oncogenes is shown along the axes. 
 
 
Discussion  
In a little over four decades of cancer genetics research since the discovery of the first cancer                 
genes and driver mutations, the development of cancer genomics has brought about the             
possibility to uncover the complete compendium of cancer genes across tumor types ​(Bailey et              
al., 2018; Gonzalez-Perez et al., 2013; Rubio-Perez et al., 2015; Tamborero et al., 2013b)​.              
Despite sequencing tens of thousands of tumors over a span of roughly 15 years, only a small                 
fraction of all possible mutations in cancer genes have been observed. Uncovering the             
landscape of all potential driver mutations in cancer genes across tissues is key to interpret the                
genomes of newly sequenced tumors in the clinical setting ​(Chakravarty et al., 2017; Griffith et               
al., 2017; Tamborero et al., 2018)​. It’s also essential to understand the interplay between              
mutation probability and selection in the profile of observed mutations in driver genes in tumors.               
Here, we have addressed these questions through a new in silico saturation mutagenesis             
approach. BoostDM, the method we developed to carry out this in silico saturation mutagenesis              
constitutes a first step towards this goal. One key innovation of this method is that specific                
models for cancer genes and tissues are trained, thus capturing the differences in the features               
that define driver mutations across genes and tumor types. BoostDM demonstrated high            
accuracy in distinguishing between validated driver and passenger mutations across cancer           
genes. Moreover it exhibited high accuracy when benchmarked against an experimental           
saturation mutagenesis assay and independent validated pathogenic and benign mutations          
across cancer genes. Importantly, models trained by boostDM are not black boxes. Instead,             
they produce easy-to-interpret interpretations of the rationale behind the classification of each            
mutation. 
 
Nevertheless, there is ample room to improve its performance. The construction of boostDM             
models is based on the systematic collection of mutations in cancer genes across tumor types               
and the calculation of their mutational features that we carry out via the IntOGen pipeline               
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(www.intogen.org). Therefore, as more datasets of tumor somatic mutations are released into            
the public domain and the calculation of new mutational features is incorporated into the              
IntOGen pipeline, higher-quality models of driver mutations across cancer genes will be            
obtained by boostDM. The expansion in the number of datasets of tumor somatic mutations will               
also provide more cancer gene-tumor type specific models, also contributing to increase the             
accuracy of classification of driver mutations. Furthermore, higher-quality models will also yield            
more complete and nuanced explanations of the features that define driver mutations across             
cancer genes and tissues. Importantly, since the driver score of a mutation does not take into                
account any information about the context of the tumor sample under analysis (such as other               
mutations or non-genetic features) it cannot be taken as a certainty of its tumorigenic role.               
Rather, it is to be interpreted as a measure of its similarity with mutational features extracted                
from the analysis of thousands of tumors. 
 
The strong anticorrelation observed between the number of potential driver mutations and the             
mutational discovery index across cancer genes provides further support to the accuracy of the              
in silico saturation mutagenesis. Nevertheless, deviations from the trend may bear testimony to             
the aforementioned potential for refinement of the models. Consider the case of CTNNB1, used              
as illustration throughout Results. Most mutations affecting the B-TRCP degron in CTNNB1            
(Martínez-Jiménez et al., 2019; Mészáros et al., 2017) are deemed drivers by the boostDM              
hepatocellular carcinoma specific model, driven primarily by their overlap of a cluster (Fig. S3c).              
Nevertheless, probably only some of them cause some (or, alternatively greater) perturbation to             
its recognition by the E3-ubiquitin ligase. It is precisely in this case that improvement of the                
models, through new features capturing subtler effects of mutations may refine the in silico              
saturation mutagenesis further. 
 
We envision that the in silico saturation mutagenesis approach will become particularly relevant             
for the interpretation of newly sequenced tumor exomes (or panels) in the clinical or research               
settings ​(Tamborero et al., 2018)​. As the mutational discovery index indicates, for the vast              
majority of cancer genes, many yet unobserved mutations are potentially drivers. Therefore,            
counting with a reliable method to classify variants of unknown significance --in particular newly              
observed mutations-- is of paramount importance. To support this interpretation, we make the             
results of the in silico saturation mutagenesis available to researchers through the IntOGen             
platform (www.intogen.org/boostdm).  
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Methods 
 
Data Source: Cohorts of Sequenced Tumours 
Somatic single nucleotide variants (SNV) from post-processed (i.e., after removal of           
hypermutated samples, multiple samples from the same donor, etc.) intOGen cohorts (release 1             
February 2020) were used as a dataset of input observed mutations.  
 
The release encompasses 28,076 samples with 203,003,747 somatic mutations from 221           
cohorts of 66 different cancer types. For further information about the cohorts please refer to               
https://www.intogen.org/​. 
 
In silico saturation mutagenesis 
To conduct an in-silico saturation mutagenesis type of analysis, we developed a systematic             
learning approach (boostDM) intended to annotate and explain point mutations in cancer driver             
genes likely involved in tumorigenesis. This section briefly sketches the boostDM method. For a              
comprehensive account, please refer to the Supplementary Note in Supplemental Information. 
 
BoostDM delineates a supervised learning strategy based on observed mutations in sequenced            
tumours and their site-by-site annotation with mutational features, comparing observed          
mutations in genes for which the observed-to-expected ratio is high enough with randomly             
selected mutations following the trinucleotide mutational probability, in terms of a reduced            
collection of mutational features. The method essentially looks into the protein coding sequence             
of the genome as all mutations considered map to the canonical transcripts in protein coding               
genes according to the Ensembl Variant Effect Predictor (VEP.92) ​(McLaren et al., 2010)​. 
 
For each gene and tumor-type context, the method assigns a model on the basis of a model                 
selection strategy based on cross-validation. Each such model is a collection of expert             
classifiers that reach a consensus probability score with an aggregator that intends to correct for               
the systematic bias of under-confident classifiers. The classifiers used are boosted tree models             
trained with a logistic binary objective loss function on subsets of the data. Furthermore, the               
tree-like structure of the models allow additive explanation models to be built, by additively              
splitting the forecast for each individual mutation in terms of the relative contributions (using              
Shapley Additive Explanations or SHAP values) of the features used. Thus the models can              
learn from training sets of annotated mutations, yield predictions for observed or unobserved             
annotated mutations and provide an explanation model in the form of average SHAP values              
(Lundberg and Lee, 2017)​ for the prediction at each individual mutation. 
 
Number of drivers per sample 
Estimates of the average number of driver mutations per sample among the observed per              
sample were given using two different approaches: dNdScv ​(Martincorena et al., 2017) and             
boostDM (Supp. Fig. S2a). 
  
dNdScv 
To compute the number of mutations in excess (i.e., the difference between the number of               
mutations observed and the number of mutations expected according to a neutral selection             
model) in cancer driver genes across the analyzed cohorts, we resorted to the methodology laid               
out by dNdScv ​(Martincorena et al., 2017)​.  

25 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.03.130211doi: bioRxiv preprint 

https://www.intogen.org/
https://www.zotero.org/google-docs/?1BAseq
https://www.zotero.org/google-docs/?r9Fhvr
https://www.zotero.org/google-docs/?WcUzyj
https://www.zotero.org/google-docs/?94OfVz
https://doi.org/10.1101/2020.06.03.130211
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Briefly, dNdScv provides a gene-specific and estimation of the ratio of non-synonymous to             
synonymous substitutions (dN/dS) that is corrected by i) chromatin features explaining regional            
variability of neutral mutation rate, ii) the consequence type of the substitutions and iii) the               
mutational processes operative in the tumor. For the purpose of our analysis we computed the               
excess of non-synonymous substitutions by aggregating the excess of missense, nonsense and            
splicing-affecting mutations. 
 
Upon the estimation w of the dN/dS for a given consequence type we can estimate the number                 
of mutations in excess for the gene-cohort in that counsequence type consequence type as: 
 

ω )  / ωe = ( − 1 · m   
 
where m is the number of mutations observed with that consequence type. The aggregated              
excess at a gene-sample is the sum of the excess computed for missense mutations, nonsense               
mutations and splice-affecting mutations in that gene-sample. By adding the number of            
mutations in excess across the driver genes we provide an estimate of the average number of                
driver mutations per sample.  
 
BoostDM 
We reported the mutation count per sample that boostDM determines to be potential drivers,              
which gives us a distribution of counts. For each cohort we used the most specific model that                 
matched the gene and cohort according to the model selection strategy of boostDM (Section              
boostDM of Supp. Note).  
 
We reported the distributions of counts (resp. expected counts) by boostDM (resp. dNdScv)             
across samples as the median and 95% confidence intervals (see Supp. Fig. S2). 
 
 
In silico saturation mutagenesis analysis 
 
Classification of each possible nucleotide change 
For all 105 gene tumor type specific models (section boostDM of Supp. Note) we first annotated                
all coding single nucleotide substitutions using cluster annotations (IntOGen), bgvep, Phylop           
(Pollard et al., 2010) and PhosphoSitePlus ​(Hornbeck et al., 2015)​. Briefly, bgvep retrieves the              
consequence type (Sequence Ontology), amino acid change and exon of the mutation in the              
canonical transcript using VEP.92 ​(McLaren et al., 2010)​, for any possible nucleotide            
substitution mapping to the canonical transcript. We then used boostDM to score the driver              
probability for all the mutations with consequence types accepted by the method (i.e, missense,              
nonsense, splice affecting and synonymous, see also Supp. Note). BoostDM models are trained             
using a gradient boosting approach ​(Chen and Guestrin, 2016)​. An automated pipeline to run              
boostDM on cancer genes across tumor types is implemented using Nextflow ​(Di Tommaso et              
al., 2017)​. 
 
Measurements and indices 
For each gene we then computed two measurements: i) the “potential drivers ratio” is the ratio                
between the number of mutations deemed as driver (with BoostDM score greater than 0.5) and               
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the total number of mutations in the pool of mutations for that gene (as described above); ii) the                  
“observed-to-potential drivers ratio” estimates the ratio between the number of observed           
(unique) driver mutations in the sequenced samples from the tumor type and the total number of                
potential driver mutations. 
  
Mutational probability 
For each gene and tumor type we computed the flat mutation rate specific for each trinucleotide                
context (96-channel) at each position along the CDS of the gene (CDS reference) in accordance               
with the mutational profile inferred by the observed mutations in non-driver genes (IntOGen) in              
that cohort. More specifically, from the 96-channel profile we can infer the probability p(c) that a                
single observed mutation belongs to context c in a sequence with balanced triplet content. We               
define the Mutational Probability (relative to a gene and tumor type) of a mutation with context c                 
as follows: 

(s) (c)  / (c) (c)m = p ∑
 

c
n · p  

 
where n(c) is the number of possible mutations with context c in the gene (CDS). In other words,                  
the Mutational Probability of a site relative to its gene is a function that maps each possible                 
mutation site in the gene with the expected number of mutations at the site (determined by its                 
context) conditioned to observing 1 mutation in the gene. Although the scale is relative to each                
gene, this expectation renders mutations comparable within genes. 
 
Mutational probability bias 
In our analysis we were concerned with the relationship between the Mutational Probability and              
various ways of segregating the possible mutations in a gene. For instance, whether observed              
potential driver mutations tend to occur at sites with higher mutational probability compared to              
non-observed potential drivers. 
 
When comparing two sets of mutations, we define the Mutational Probability Bias as the              
propensity that one set has higher (resp. lower) mutational probabilities than the other. For this               
study, this propensity is measured with two proxies: how sharply the mutational probability             
separates between the two groups (auROC) and what is the difference in log-scale             
(log-fold-change, logFC) between the median mutation probabilities of the two groups. We            
adopt the convention that when comparing two groups of mutations, they are labeled “True” and               
”False”, respectively. 
 
We computed the area under the ROC curve (auROC) where the ROC is defined by True                
Positive Rate (TPR) and a False Positive Rate (FPR) for a grid of mutation probability               
thresholds. Specifically, in our setting the TPR are given by the ratio of “True” mutations with                
mutation rate above threshold over total “True” mutations; and the FPR are given by the ratio of                 
“False” mutations with mutation rate above threshold over total “False” mutations (Fig. 4a). We              
also computed the log-fold-change (logFC) of the mutation rate distributions between groups as             
log(m/M), where m (resp. M) is the median mutational probability of the “True” (resp. “False”)               
group (Fig. 4a). 
 
Interestingly, the auROC has a well-known probabilistic interpretation that the reader shall bear             
in mind: suppose an experiment when one sample t is randomly drawn with uniform probability               
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from the “True” set and another sample f is drawn from the “False” set in the same way; then the                    
probability that the t sample has higher score (e.g. mutation probability) than the f sample is                
precisely the auROC. The auROC is also connected to the Mann-Whitney U statistic in the               
sense that auROC = U / (n·m), where n, m are the sizes of the “True” and “False” groups,                   
respectively. 
 
In practice, we require this notion in essentially two scenarios: i) comparing observed vs              
non-observed mutations of some kind; ii) comparing potential drivers vs passengers. 
 
Signature deconstruction 
The mutational spectra of the 28,076 samples in IntOGen were deconstructed into exposures of              
mutational signatures using the deconstructSigs package ​(Rosenthal et al., 2016)​. The set of             
signatures considered for the fitting was the 30 COSMIC SBS v2 ​(Alexandrov et al., 2013; Tate                
et al., 2019)​. Only signatures found active in the respective tissue according to COSMIC were               
allowed for the reconstruction (Table S3). A maximum likelihood approach ​(Pich et al., 2018)              
was used to assign the most likely etiology to each of the driver mutations. Briefly, after                
signature deconstruction we estimated the amount of exposure attributable to each signature for             
each channel (tri-nucleotide context), whence we inferred the conditional probabilities that a            
mutation with some context was caused by each of the mutational signatures considered to be               
active in the tissue. For each mutation, the signature with the maximum probability was              
considered as the one contributing it (maximum likelihood).  
 
Mutational discovery index 
For each cancer gene and tumor type pair, we provided an estimation of the expected number                
of unique driver mutations to be found as a function of the number of sequenced samples,                
which we denote by E(n). This estimation gives us a way to numerically represent to what extent                 
some driver mutations have not yet been discovered, thereby depicting the discovery status of              
cancer mutations per gene and tumor type. We define a continuous score, the Mutational              
Discovery Index, with values in the unit interval, such that higher values imply fewer expected               
new (non previously observed) driver mutations upon new sequencing experiments. 
 
The mutational discovery index arises upon fitting E(n). To this end we generated a collection of                
data points D of the form (n, u) by picking random subsets of samples of different sizes (n,                  
taking 20 different such values by evenly spacing the interval between 0 and the number of                
samples matching the tumor-type) and counting the number of unique potential drivers            
according to boostDM, yielding u. Additionally, for each n, 10 points were generated by picking               
independently with replacement subsets of size n then counting unique mutations.  
 
The best fit  for E(n) was computed as the best least-squares fit of the form:(n)Ê  
 

(n) 1 (β )]ψ = α · [ − exp · n   
 

to the data points D. Justification and potential caveats of this exponential form can be found in                 
Section “Remark on the Mutational Discovery Index” of the Supp. Note). 
 
We formally define the mutational discovery index (MDI) of a single fit as: 
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E (t)|1 − d
dt

*
t=1  

 
where is a transform of to render the input and output values relative to the (t)E*      (n)Ê            
respective maximum values, i.e., within the unit interval [0, 1]. More specifically: 
 

(t) E(n ) / E(n )              0  E* =  ˆ max · t ˆ max ≤ t ≤ 1  
 

where  is the cohort size.nmax   
 
The MDI reported for a gene and cohort arises upon downsampling of the subsample data               
points (randomly selecting one point per each subsample size) and computing the median MDIs              
for the respective fits. 
 
Other software used 
To carry out the analyses described in the manuscript and prepare the figures, we employed the                
Python programming language and several ready-to-use packages and utilities, such as Jupyter            
notebooks, matplotlib ​(Hunter, 2007)​, numpy ​(Oliphant, 2006)​, the pandas library ​(McKinney,           
2017)​, scipy ​(Virtanen et al., 2020)​ and scikit-learn ​(Pedregosa et al., 2011)​.  
 
 
Data and Code Availability 
 
Data Availability 
BoostDM predictions and feature explanations for all possible point mutations mapping to            
canonical transcripts are available for the collection of 105 genes and tumor type specific              
models (Fig. 1f). The results are available on the website: ​https://www.intogen.org/boostdm​. The            
classification of all observed mutations in cancer genes across tumor types is also available at               
this site. 
 
Code Availability 
The code is available from the following repository: ​https://bitbucket.org/bbglab/boostdm/  
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