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Abstract

Background: Covid-19 pandemic, caused by the SARS-CoV-2 genome sequence of coronavirus,
has affected millions of people all over the world and taken thousands of lives. It is of utmost
importance that the character of this deadly virus be studied and its nature be analyzed.
Methods: We present here an analysis pipeline comprising a classification exercise to identify the
virulence of the genome sequences and extraction of important features from its genetic material
that are used subsequently to predict mutation at those interesting sites using deep learning tech-
niques.

Results: We have classified the SARS-CoV-2 genome sequences with high accuracy and predicted
the mutations in the sites of Interest.

Conclusions: In a nutshell, we have prepared an analysis pipeline for hCov genome sequences
leveraging the power of machine intelligence and uncovered what remained apparently shrouded by
raw data.
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1 Introduction

Covid-19 was declared a global health pandemic on March 11, 2020 [1]. It is the biggest public
health concern of this century [2]. It has already surpassed the previous two outbreaks due to
the coronavirus, namely, Severe Acute Respiratory Syndrome Coronavirus (SARS-Cov) and Middle
East Respiratory Syndrome Coronavirus (MERS-Cov). The virus acting behind this epidemic is
known as Severe Acute Respiratory Syndrome Coronavirus 2 or SARS-CoV-2 virus, in short. It is
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a single stranded RNA virus which is mainly 26,000 to 32,000 bases long on average [3]. The novel
coronavirus is spherical in shape and has spike protein protruding from its surface. These spikes
assimilate into human cells, then undergo a structural change that allows the viral membrane to
fuse with the cell membrane. The host cell is then attacked by the viral gene through intrusion and
it copies itself within the host cell, producing multiple new viruses [4].

The GISAID initiative database [5] has been collecting high quality complete genome sequences of
the SARS-CoV-2 virus from clinicians and researchers from around the world since the beginning
of the COVID-19 outbreak. To understand the virulence of the genome sequences and the nature of
viral mutation, here, we present an analysis pipeline of the genome sequence leveraging the power
of machine intelligence.

This paper makes the following key contributions:

1. Several Machine Learning and Deep learning models are used to identify the virulence of
the genome sequences (i.e., to classify a virus genome sequence as either severe or mild).
Additionally, from the classification pipeline, important features are identified as Sites of
Interest (Sols) in the virus genome sequences for our downstream analysis.

2. Several CNN-RNN based models are used to predict mutations at specific Sites of Interest
(Sols) of the SARS-CoV-2 genome sequence followed by further analyses of the same on several
South-Asian countries.

3. Overall, we present an analysis pipeline, shown in Figure [T, that can be further utilized as
well as extended and revised (a) to analyse its virulence (e.g., with respect to the number
of deaths its predecessors have caused in their respective countries) and (b) to analyse the
mutation at specific important sites of the viral genome.

2 Methodology

2.1 Data Collection and Preprocessing

We have collected 10179 hCov genome sequences upto the date 24 April, 2020 (cut-off date) from
the GISAID initiative dataset [5]. These are high quality complete viral genome sequences sub-
mitted by the scientists and scientific institutes of individual countries. We will refer to the above
dataset as Dataset A. Subsequently, to analyze and test our classification and mutation pipeline,
we have collected all published genome sequences of several South-Asian countries upto 27 June,
2020 (Dataset B).
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Figure 1: The whole analysis pipeline consisted of two phases. In the first phase, we have employed
state-of-the-art classification algorithms, leveraging both traditional and deep learning pipelines to
learn to discriminate the viral genome sequences of many countries as either mild or severe. We
also identify the features that contributed the most as the discriminant factor in the classification
pipeline. Then, we use the identified features from the previous stare to predict the mutation of
the interesting sites in the viral genome sequence using a deep learning model.

We also have collected country-wise death statistics (upto the cut-off date) from the official site
of the World Health Organization [6]. The label is assigned based on a threshold of deaths which
is the estimated median of the number of deaths in the data points. Any genome sequence of a
country having deaths below (above) the threshold is considered a mild (severe) genome sequence,
i.e., assigned a label 0 (1). A sample labelling is shown in the supplementary Table 1. Informatively,
we have also considered some other metrics for labeling purposes albeit with unsatisfactory output
(please see section 1.2 of the supplementary file for details). We have divided Dataset A into
training and testing subsets in 80/20 ratio with a balanced number of data points per class for
the traditional machine learning pipeline and for the deep learning classification routine, we have
created the subsets training/validation/testing in 68/12/20 ratio.

2.2 Classification Models
2.2.1 Traditional Machine Learning Pipeline

For traditional machine learning, we use a pipeline similar to |7] (See Figure [2)). We extract three
types of features from the genomic sequence of SARS-CoV-2. Inspired by the recent works |7H10]
that focus only on sequences, we also extract only sequence based features. These features are:
position independent features, n-gapped dinucleotides and position specific features (see details in
Section 2 of supplementary file). We use the gini value [11] of the Extremely Randomized Tree
(Extra Tree) classifier [12] to rank the features. Subsequently, only the features with gini value
greater than the mean of the gini values are selected for training a Light GBM classifier model [13]
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(with default parameters) and 10-fold cross validation is performed. LightGBM is a highly efficient
and fast gradient boosting framework which uses tree based algorithms.
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Figure 2: This figure illustrates our classification pipelines. We have leveraged the potential of both
traditional and deep learning pipelines and in addition to doing an interesting classification task
(mild vs. severe) we aim to identify, more importantly, the (sequence based) features and hence the
corresponding sites of the viral genome that are performing as the most discriminant feature with
respect to classification.

2.2.2 Important feature identification

We use SHAP values and Univariate feature selection to compare the importance of the features.
SHAP (SHapley Additive exPlanations) is a game theoretic approach which is used to explain the
output of a model . Univariate feature selection works by selecting the best features based on
univariate statistical tests . We use SelectKBest univariate feature selection to get the top K
highest scoring features according to ANOVA f{ classif feature scoring function.

2.2.3 Deep Learning Models

We leverage the power of 3 different deep learning (DL) classification models, namely, vanilla
CNN , AlexNet and InceptionNet . We transform the raw viral genome sequences into
two different representations, namely, K-mers spectral representation and one hot vectorization
to feed those into the Deep Learning networks in a seamless manner (Figure [2). Details of
these representations are given in Section 4.2 of the Supplementary File. For K-mers spectral
representation we have experimented with different values of K (K = 3,5,7 for Vanila CNN and K
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= 3 & 5 only for the other models due to resource limitation). For one hot vectorization, we have
trained InceptionNet for 150 epochs for both 3- and 5-mers and trained AlexNet for 135, 100 and
100 epochs for 3-,4- and 5-mers respectively.

2.3 Identifying the Representative Viral Genome Sequence

We aim to identify the representative viral genome sequences for the mutation prediction pipeline.
To do that we have used an alignment-free genome sequence comparison method as proposed in [21],
which is briefly described below and shown in Figure[3]. Notably, we do not consider any alignment-
based method since it is not computationally feasible for us to align thousands of viral sequences
for analysis and clustering purposes [22].

At first the sequence set is divided into subsets of sequences based on the location. All sequences
are converted into representative IR'® vectors. Pairwise distance among vectors derived from the
fast vector method [21] are computed using Euclidean distance. Due to the high dimensionality of
the resulting distance matrix, we resort to the Principal Component Analysis (PCA) technique [23]
to reduce the dimension of the matrix. Subsequently, we use K-means clustering [24] to identify
the corresponding cluster centers. For the K-means clustering algorithm, we have used the imple-
mentation of [16] and used the default parameters except for the number of clusters which were
set to 1 for determining the cluster center for each of the subsets. For each location-based cluster,
the representative sequence (i.e., the “centroid” of the cluster) is then identified and used in the
subsequent step of the pipeline.
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Figure 3: The Viral Genome Sequences were divided into subsets of sequences based on country.
For each subset, each Viral Genome Sequence is converted into a vector representation and pairwise
euclidean distance was calculated among the vectors to create the distance matrix. As the matrix is
very high-dimensional, we used principal component analysis to find the principal component matrix
from the distance matrix. Representative sequences were identified through K-means clustering on
the PCA Matrix.
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2.4 Mutation Prediction

We design a pipeline shown in Figure 4| to predict mutation on the sites of interest (as identified
through our classification pipeline) in the SARS-CoV-2 genome. We follow a similar protocol
followed by [25] and adopt it to fit our setting as follows. We divide all the available countries and
the states of the USA into different time-steps by the date of the first reported incidence of SARS-
CoV-2 infected patients of that location. Thus, every resulting time-step represents a date (T} for
Cluster k) and contains the clusters of genome sequences of the respective countries/states. Then
the time series samples are generated by concatenating sites from different time-steps one-by-one
that represent the evolutionary path of the SARS-CoV-2 viral genome sequence. For example, T} is
the very first date when the virus is discovered in China. So, time-step 1 contains only one country,
China. Likewise, time-step 2 contains clusters for those countries where the virus is discovered on
date T, and so on. We generate 300000 time series sequences by concatenating genome sites from
T,,T5,....,T,, (in our case, n = 40), divide the samples in 68/12/20 ratio and then feed the training
samples to the model that consists of a convolutional one dimensional layer and a recurrent neural
network layer [26]. In our experiments, we have used both pure LSTM and bidirectional LSTM as
our RNN layer (see Section 3.3 of supplementary file). The model has a dense layer of 4 neurons
in the end which predicts the probability of the next base pair of the next time-step. So, in a
nutshell, the model takes concatenated genome sequences from 77,75,....,7,,—1 as input and predicts
the mutation at time T5,.

We further use our mutation prediction pipeline to identify and analyze possible parents of a
mutated genome sequence. For this particular analysis, we trained the models specifically for some
South-Asian countries, namely, Bangladesh, India and Pakistan. We only used the best performing
model for this analysis and generated five time series samples. At the time of generating these
samples, the country/location having the minimal euclidean distance with the country/location of
the next time-step was taken for each time-step.
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Figure 4: The interesting sites were selected from the viral genome sequences using the feature
selection routine described in the classification methods. The sites were then divided by geographical
locations and clustered by the time of the first occurrence at that respective region. Time-series
sequences were created by concatenating random genome sequences from the closest sub-clusters
and trained in an CNN-RNN network for predicting mutation in the sites of the final time-step.
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2.5 Coding and Experimental Environment

We have implemented our experiments mostly in python. We have used scikit-learn library [16] for
clustering and plotting the graphs. For deep learning models, scikit-learn, TensorFlow and keras
neural network libraries are used and for Light GBM classifier, python Light GBM framework has
been used. The experiments have been conducted in the following machines:

e Experiments involving the deep learning pipelines (i.e., both classification and mutation pre-
diction) have been conducted in the work-stations of Galileo Cloud Computing Platform [27]
and the default GPU provided by the Google Colaboratory Cloud Computing Platform [28].

e The Light GBM classifier model was trained in a machine with Intel Core i5-4010U CPU @
1.70GHz x 4, Windows 10 OS and 16 GB RAM.

All the codes and data (except for the Genome Sequences) of our pipeline can be found at the fol-
lowing link: https://github.com/pythonLoader/Analyzing-hCov-Genome-Sequence. The Genome
Sequence data have been extracted from and are publicly available at GISAID [5].

3 Results

3.1 Mild/Severe genome sequence Classification

All our classifiers are trained to learn whether a given genome sequence is mild or severe. The
classification accuracy of the LightGBM classifier ( 97%) is superior to that of the deep learning
classifiers ( 84-89%), which, while is somewhat surprising, is inline with the recent findings of [7].
It should be noted that Light GBM had produced better results in significantly less time than deep
learning models for this dataset. The results of the classifier models are shown in Figure [f]
Quantitative results aside, we also have applied our classifiers on the sequences that have been
deposited at GISAID after the cut-off date (i.e., April 24, 2020). Since the cut-off date, the country
wise death statistics |6] has certainly changed significantly and this has pushed a few countries,
particularly from Asian regions and several states of the United States of America to transition
from mild to severe states (based on our predefined threshold). Interestingly, our classifiers have
been able to predict the severity of the new genome sequences submitted from these countries/states
correctly. Table 6 in the supplementary file shows a snapshot of a few such countries/states with the
relevant information. Furthermore, 957 new genome sequences from India, 151 genome sequences
from Bangladesh and 3 genome sequences of Pakistan that were collected well after the cut-off date
upto 27 June, 2020 were classified as severe sequences with 100% accuracy by the LGBM classifier.

3.2 Sites of Interest (Sol)

We preliminarily identify the top 10 features of SHAP and SelectKBest feature selection (with
k = 10). From these features, as Sols, we have selected the features that are also biologically
significant, i.e., cover different significant gene expression regions (Figure |§[) In particular, we
have selected the position specific features pos 8445 8449, pos 19610 19614, pos_ 24065 24069
and pos_ 23825 23829 as the Sols for the mutation prediction analyses down the pipeline. Here,
pos_ X Y indicates the site from Positions X to Y of the virus genome sequences. The reason for
selecting these features as Sols are outlined below.
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According to gene expression studies , our Sols, namely, pos 8445 8449 and pos_ 19610
19614 encode to two Non-structural Proteins, Nsp3 and Nspll, respectively. Also, our other
two Sols, namely, pos_ 24065 24069 and pos 23825 23829 correspond to the Spike Protein of
SARS-CoV-2. Nsp3 binds to viral RNA, nucleocapsid protein, as well as other viral proteins, and
participates in polyprotein processing. It is an essential component of the replication/transcription
complex . So, the mutation in this protein is expected to affect the replication process of the
SARS-CoV-2 in host bodies. On the other hand, the spike protein sticks out from the envelope
of the virion and plays a pivotal role in the receptor host selectivity and cellular attachment.
According to Wan et al. there exists strong scientific evidence that SARS and SARS-CoV-2 spike
proteins interact with angiotensin-converting enzyme 2 (ACE2) . The mutation on this protein
is expected to have a significant impact on the human to human transmission . Therefore, it is
certainly interesting and useful to predict the mutation of such Sols.
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Abbreviation Model Name Description

100 CNN-S-3 CNN Spectral (Input: 3-mer)
CNN-S-5 CNN Spectral (Input: 5-mer)
CNN-S-7 CNN Spectral (Input: 7-mer)
0 AlexNet-S-3 AlexNet Spectral (Input: 3-mer)
% AlexNet-S-5 AlexNet Spectral (Input: 5-mer)
- Inception-S-3  InceptionNet Spectral (Input: 3-mer)
Inception-S-5  InceptionNet Spectral (Input: 5-mer)
AlexNet-OH-3 AlexNet One-Hot (Input: 3-mer)
AlexNet-OH-4 AlexNet One-Hot (Input: 4-mer)
Hodertiames AlexNet-OH-5 AlexNet One-Hot (Input: 5-mer)
LGBM LightGBM Classifier

(c¢) Fl-scores of the best performing models used to
classify the genome sequences

(d)

Figure 5: The Receiver Operating Characteristic Curves (ROC) show the diagnostic capability of
the ML and the DL classifiers used in our experiments. Please refer to Table 5 and Figure [3] for
detailed results.
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3.3 Mutation Prediction Results

CNN-LSTM and CNN-bidirectional LSTM performed similarly for different Sols of the genome.
Except for a few positions (i.e., mostly the first couple of positions) in the Sols, the performance
of the mutation prediction pipelines are quite promising. In particular, for the positions 19610
to 19614, both the pipeline performed fairly keeping the accuracy above 0.7 (the best accuracy
of 79.89% was achieved by both of them for position 19611). For the positions 8447, 8448 and
8449, CNN-bidirectional LSTM performed slightly better achieving 87.35%, 89.95% and 92.69%
accuracy respectively. For the positions 24067, 24068 and 24069, both the pipeline performed
identically achieving 92.33%, 87.43% and 92.48% accuracy respectively. For the positions 23827
and 23828, CNN-bidirectional LSTM performed slightly better achieving 84.87% and 95% accuracy
respectively and for position 23829, both performed identically with accuracy 89.75%. For detailed
results (please check Table 7 of the supplementary material).

Univariate Feature Selection using SelectkKBest
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Figure 6: Top 10 features based on SHAP values(a) and SelectKBest(b) and identifying the position
specific feature(s) from the genome sequence as site(s) of interest(c). These SOIs will be used for
mutation prediction down the pipeline.

3.3.1 Improving the performance on the first few sites

As has been mentioned above, the performance of the mutation prediction pipeline is not up to
the mark for the first couple of positions in the Sols in most cases whereas the performance is
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excellent for the third position onward. To improve the mutation prediction of the first two posi-
tions of the relevant sites of interest (Sols), we further trained the best model (CNN-Bidirectional
LSTM) for the Sol starting from the preceding three positions (to the first two positions thereof)
thereby feeding more information to the architecture with respect to the first two positions. Con-
sequently, the accuracy of the prediction improved by a substantial margin (please see Table 10 in
the supplementary file).

3.3.2 Analyzing Parent genome sequences

For the analysis involving only Bangladesh, we used the CNN-bidirectional LSTM model (as this
performed slightly better between the two) and achieved almost 100% accuracy. Then we analyzed
the ancestors in the time series test samples and noticed that some of the states of the USA
are present in these samples. These states are California, Massachusetts, Texas, New Jersey and
Maryland. For India and Pakistan, we got similar results for some sites but for other sites, accuracy
was not as high as that of Bangladesh (Check Table 8 of the supplementary file for details).

3.3.3 Mutation Prediction on new SARS-CoV-2 genome sequence

We analyzed the genome sequences of Bangladesh collected after the cut-off date. Our deep learning
pipeline was able to predict the mutations in the Sol of the spike protein region (pos_ 24065 24069)
with 80-86% accuracy. (Please refer to Table 9 of the supplementary file).

4 Discussions

Our analysis pipeline revealed some interesting and insightful findings as discussed below. A genome
sequence (EPI_ISL 435050) was collected on April 13, 2020 (before our cut-off date) from a
patient in Ahmedabad, Gujrat, India. It was predicted to be a severe genome sequence (with low
confidence) even though we trained the classifier to consider the Indian sequences as mild. We
considered another genome sequence (EPI_ISL 437447) which was collected from another patient
from the same place in India on April 26, 2020 (after our cut-off date) and predicted the severity
thereof. The classifiers declared this isolate to be severe with very high confidence (about 98%).
This strongly suggests that there were some mutations that turned the Indian sequences from mild
or less severe to severe or highly severe, respectively.

Our mutation prediction pipeline originally performed better for the third, fourth and fifth
positions for most Sols (Please check Table 8 of the supplementary file) and mostly failed for the
first two positions. Through some analysis, we conjectured that for the first couple of positions the
models are not getting enough information to work on. Subsequently, we verified our conjecture
through further experiments. Thus it can be concluded that given more information at the time
of prediction such as providing the first two positions at the time of predicting the third, the
RNN-LSTM models can predict more accurately.

Also, we conducted an analysis to predict possible parents of the (mutated) virus genome se-
quences of the South Asian Region (Bangladesh, India and Pakistan). Our mutation prediction
pipeline suggested that the genome sequences of some states of the USA, namely, California, Mas-
sachusetts, Texas, New Jersey and Maryland could be the parents/ancestors of these South Asian
genome sequences. This could explain the COVID-19 surge (27 cases per 1,00,000 people) in South
Asian countries during the middle part (June-July) of the year 2020 [34].
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Our current mutation prediction pipeline is only based on some specific sites of interest. How-
ever, it promises to be extremely useful in predicting the mutations in the viral strain. In fact, it can
potentially be used to predict mutated strains considering that each position has the possibility to
mutate. However, this would require huge computational power which we lack. A better approach
of course would be to check only biologically meaningful sites of interests for possible mutation. To
this end, we analyzed the new Bangladeshi (BD) genome sequences and found that our mutation
prediction pipeline predicted the Sol (pos 24065 24069) to be AACAA which matched with 80%
of the test BD genome sequences.

Finally, from a computational perspective a brief comment on the lower performance of the
deep learning pipelines (against the traditional machine learning ones) is in order. Perhaps, the
true potential of the deep learning pipelines will unfold if and when more data will be fed thereto
which we could not manage to do due to our computational resource constraints.

5 Limitations of the Study

The study has several potential limitations. Our estimate ignores the environmental and geograph-
ical aspect of the place where the virus is spreading. The mutation prediction can only be carried
out in particular sites of interest as whole sequence prediction has a serious technological bottle-
neck. Furthermore, we could not increase our sample space to improve the accuracy of our models
as a result of limited computational resources. Finally, we did not have unbounded access to some
health related information such as recovery rate, the health infrastructure of a country and the
governmental strategy to fight this pandemic to label the genome sequences properly.

6 Future Works

We believe that out analysis pipeline will spark more research endeavours using and improving both
our classification and mutation pipelines. As an immediate extesnion the following works could be
condiered.

1. Through a detailed latent factor analysis, other alternate and improved labeling scheme with
all the new genome sequences present in GISAID archive should be studied. This will improve
the overall classification pipeline and perhaps identify more Sols with biological significance.

2. New mutation prediction architecture can be tried out to improve the mutation prediction
accuracy, e.g., experimenting with transition matrix concepts used in Route Prediction or
Credit Rating Analysis and applying such concepts in this domain.

3. Another immediate task could be to feed more data to our deep learning classification pipelines
and unfold the true potential thereof which we could not do due to our computational con-
straints.
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