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Abstract: Species richness and genetic diversity are the two most fundamental products of 26 

evolution. Both are important conservation targets—species richness contributes to ecosystem 27 

functioning and human wellbeing, while genetic diversity allows those species to respond to 28 

changes in their environment and persist in the long-term. Biogeographic patterns of species 29 

richness are well-described, but we know little about patterns of genome-wide genetic diversity 30 

at similar spatial scales. Further, despite considerable attention to latitudinal trends in species 31 

richness, we still do not have a solid empirical understanding of the various processes that 32 

produce them, how they interact, or how they affect genetic diversity. Here we show that 33 

genome-wide genetic diversity and species richness share spatial structure, however, species 34 

richness hotspots tend to harbor low levels of within-species genetic variation. A single model 35 

encompassing eco-evolutionary processes related to environmental energy availability, niche 36 

availability, and proximity to humans explained 75% of variation in gene diversity and 90% of 37 

the variation in species richness. Our empirical model of both levels of biodiversity supports 38 

theory and demonstrates the importance of carrying capacity and ecological opportunity at 39 

individual and species levels for generating continent-wide genetic and species diversity 40 

gradients.  41 

 42 

Keywords: more individuals hypothesis, heterogeneity, Anthropocene, latitudinal diversity 43 

gradient, carrying capacity, macroecology  44 
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Introduction 45 

Biodiversity patterns at the genetic and species levels form the foundation upon which higher-46 

level diversity patterns emerge with the processes that generate diversity across these two base 47 

levels likely so entangled that they should be considered inseparable (Lowe et al. 2017; Pontarp 48 

et al. 2019). Biogeographic-scale variations in species-level diversity are among the best-49 

described patterns in nature (Pontarp et al. 2019). The exploration of biogeographic patterns in 50 

genetic diversity across species has had to wait for technological advances in molecular genetics 51 

and the accumulation of data (Miraldo et al. 2016; Manel et al. 2020; Theodoridis et al. 2020). 52 

Regardless of research effort, our empirical understanding of the causes of diversity patterns at 53 

remains underdeveloped (Pontarp et al. 2019), likely in part due to a lack of integrated analyses 54 

of the causes of diversity at both levels. Here we produce a continent-scale map of nuclear 55 

genetic diversity for North American mammals and show that genetic diversity and species-level 56 

diversity are spatially correlated and likely have common environmental causes.  57 

 58 

Existing hypotheses for species diversity patterns (Lomolino et al. 2016) generally fall into three 59 

broad categories: those related to evolutionary time for diversification, different diversification 60 

rates, and ecological limits on the number of species a region can support. Evolutionary time 61 

hypotheses predict that regions that have been colonized for the longest times should tend to 62 

have higher species richness than elsewhere due to diversification having taken place for longer 63 

periods (e.g., greater time for speciation in the tropics). Diversification rate hypotheses suggest 64 

that spatial variation in speciation or extinction rates (e.g., due variation in environmental 65 

conditions, mutation rates, and generation times) explain species richness patterns. Finally, 66 

ecological limits hypotheses posit that variation in resource availability sets a species-level 67 
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carrying capacity that limits the number of species able to coexist in a particular area. Here 68 

speciation, extinction, and colonization dynamics of species are analogous to the birth, death, 69 

and immigration dynamics that set population-level carrying capacities. There are at least 26 70 

specific hypotheses that fall under these umbrella categories – detailed reviews can be found in 71 

(Mittelbach et al. 2007; Stein et al. 2014; Worm and Tittensor 2018; Pontarp et al. 2019). 72 

 73 

Evolutionary time, evolutionary rates, and ecological limits hypotheses are often implicitly 74 

treated as competing ideas but speciation can clearly simultaneously be a product of both 75 

ecological and evolutionary processes (Pontarp and Wiens 2017). Indeed, recent modelling 76 

exercises suggest all categories of hypothesis can produce species richness gradients (Etienne et 77 

al. 2019). That said, the preponderance of theory suggests that carrying capacities limiting the 78 

supportable number of species in an environment produces the strongest and most stable species 79 

richness gradients (Vellend 2005; Worm and Tittensor 2018; Brodie 2019; Etienne et al. 2019). 80 

Etienne et al. (2019) used simulations to compare diversification rate, evolutionary time, and 81 

ecological limits hypotheses. Their models suggested that ecological limits on carrying capacity 82 

present the most parsimonious explanation for the latitudinal diversity gradient. There is also 83 

considerable empirical evidence in support of this theoretical work suggesting the likely 84 

importance of ecological limits in the formation of species richness patterns (Brodie 2019; 85 

Storch and Okie 2019). Taken together, there is good reason to consider ecological limits as a 86 

null expectation when exploring the causes of species richness patterns (Etienne et al. 2019).   87 

 88 

We extended the consequences of processes related to ecological limits to explain multispecies 89 

population-level patterns of genetic diversity. If environments limit the number of species they 90 
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can support, they must also limit the population sizes of those species and thus the strength of 91 

genetic drift. Thus, demographic processes acting at the individual and species levels could 92 

simultaneously shape genetic and species-level biodiversity (Fig. 1). We focused on two 93 

prominent ecological limits hypotheses for species richness—the more individuals and 94 

environmental heterogeneity hypotheses. The more individuals hypothesis posits that energy 95 

availability imposes an upper limit on the number of individuals, and as a consequence, the 96 

number of species an area can support (Storch et al. 2018). According to the neutral theory of 97 

molecular evolution (Kimura 1983) and the neutral theory of biodiversity and biogeography 98 

(Hubbell 2001), diversity tends to increase with the number of individuals in an assemblage both 99 

in terms of genetic diversity within populations and the number of species in a community. We 100 

thus predicted positive relationships among genetic diversity, species richness, and energy 101 

availability. The habitat heterogeneity hypothesis suggests that environmental heterogeneity 102 

equates to niche availability, with heterogeneous areas able to support more specialized species, 103 

albeit at smaller population sizes because resources are divided (Kadmon and Allouche 2007; 104 

Allouche et al. 2012; Stein et al. 2014). As increasingly specialized populations diverge, genetic 105 

variation would be partitioned among locally adapted populations that may eventually no longer 106 

interbreed. These smaller populations will also lose genetic diversity due to genetic drift faster 107 

than large populations. We thus predicted that habitat heterogeneity would be positively 108 

associated with species richness and negatively associated with genetic diversity.  109 

 110 

In addition to carrying capacity limits set by climatic factors and habitat complexity, a major 111 

contemporary environmental limitation on diversity is land transformation by humans. Habitat 112 

loss, fragmentation, and homogenization due to human activities such as urbanization reduce the 113 
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amount of habitat available to wild populations (McKinney 2006; Grimm et al. 2008) with 114 

consequences at genetic and species levels. Estimates suggest that within the last century, over 115 

400 vertebrate species have gone extinct (Ceballos et al. 2020), vertebrate population sizes 116 

worldwide have shrunk by an average of 60% (WWF 2018), and intraspecific genetic diversity 117 

across taxa has declined by approximately 6%  (Leigh et al. 2019). Contemporary rapid 118 

environmental change contributes to biodiversity patterns in addition to long-term processes. 119 

Because humans are known to influence both levels of biodiversity, our effects should be 120 

examined alongside natural factors. By reducing habitable area and environmental heterogeneity, 121 

we predicted that the effects of urbanization should also cause species richness and genetic 122 

diversity to decrease in more heavily disturbed areas. 123 

 124 

Our objectives in this study were twofold. Biogeographic-scale correlations between nuclear 125 

genetic and species-level diversity patterns have not yet been established, so we first tested for 126 

shared spatial patterns at both levels of biodiversity. Having established shared patterns of 127 

variation we then tested for common environmental causes of genetic and species-level diversity 128 

using structural equation modelling (SEM). Structural equation modelling fits hypothesis 129 

networks that can accommodate multiple predictor and response variables within a hierarchical 130 

modelling framework. This allows the relative importance of multiple hypotheses to be assessed 131 

while accounting for species-level variation. Our data were repurposed publicly archived raw 132 

neutral nuclear genetic data for North American mammals spanning 801 sample sites, 38 species, 133 

and 34,841 individuals.  134 

 135 

Methods 136 
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Data assembly 137 

Genetic diversity database. We used the database of genetic metrics in North America compiled 138 

by Schmidt et al. (2020a,b). This database repurposed raw microsatellite data from 34,841 139 

individuals across 38 mammalian species sampled at 801 sites in the United States and Canada, 140 

and includes consistently calculated measures of gene diversity (Nei 1973) and population-141 

specific FST (Weir and Goudet 2017). See Table S2 for a summary of the dataset. Microsatellite 142 

markers estimate genome-wide diversity well (Mittell et al. 2015). They are commonly used in 143 

wildlife population genetic stusdies because they are cost-effective and do not require a reference 144 

genome, which allowed us to maximize sample size. We chose to focus on North America to 145 

control for regional history. Detailed methods for assembling this dataset can be found in 146 

(Schmidt et al. 2020a). Briefly, we performed a systematic search for species names of native 147 

North American mammals with keywords “microsat*”, “single tandem*”, “short tandem*”, and 148 

“str” using the ‘dataone’ R package, which interfaces with the DataONE platform to search 149 

online open data repositories (Jones et al. 2017). We discarded search results that did not meet 150 

our criteria for inclusion and removed results where study design may have influenced genetic 151 

diversity.  For example we excluded non-neutral data and samples taken after a recent 152 

bottleneck, translocations, managed or captive populations, or island populations. We 153 

additionally removed populations with fewer than 5 individuals sampled. Gene diversity 154 

estimates the richness and evenness of alleles in a population, and we used it here as our metric 155 

for genetic diversity because it is minimally affected by sample size (Charlesworth and 156 

Charlesworth 2010)(Fig. S1). Sample sites are treated as point locations.  157 

Population size. Because species-level censuses are not generally available, we used body size as 158 

a proxy for species-level population size. The inverse relationship between body size and species 159 
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population size is well documented and is especially reliable in mammals (Damuth 1981, 1987). 160 

Neutral genome-wide genetic diversity is also negatively correlated with body size (Frankham 161 

1996; Romiguier et al. 2014), the most likely explanation being strong links between body size 162 

and effective population size (Frankham 1996). We recorded mean adult body mass (g) for each 163 

species using data from the PanTHERIA database (Jones et al. 2009). Mass was log-transformed 164 

before analysis. There were no obvious outliers in these data.  165 

Species richness. We downloaded range maps for terrestrial mammals native to North America 166 

from the IUCN Red List database (IUCN 2019). We filtered these maps to retain ranges for 167 

extant, native, resident, mainland species in ArcMap Desktop 10.3.1 (ESRI, Redlands, CA). To 168 

generate a map of species richness coincident with genetic sample sites, we estimated species 169 

richness at each site within a 10 km buffer. For the range-wide measure of species richness used 170 

in our hierarchical structural equation models, we summed the number of ranges that overlapped 171 

each of our 38 focal species’ ranges. To correct for potential biases due to differences in range 172 

size (e.g. species with large ranges tending to have more overlapping ranges), we divided the 173 

number of overlapping ranges by the species’ range area (km2), giving us species richness per 174 

square kilometer for each species. 175 

Environmental variables. We used potential evapotranspiration as our measure of energy 176 

availability (Currie 1991). Specifically, potential evapotranspiration measures the atmosphere’s 177 

ability to remove water from the Earth’s surface and is an indicator of atmospheric energy 178 

availability. Potential evapotranspiration is one of the strongest environmental correlates of 179 

species richness in mammals (Currie 1991; Kreft and Jetz 2007; Fisher et al. 2011; Jiménez-180 

Alfaro et al. 2016). We estimated mean potential evapotranspiration (mm/yr) across each 181 

species’ range using annual potential evapotranspiration data from 1970-2000 available via the 182 
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CGIAR Consortium for Spatial Information (Trabucco and Zomer 2019). We used a global 183 

topography map (NOAA and U.S. National Geophysical Data Center) to record the range in 184 

elevation across focal species ranges to quantify environmental heterogeneity (Stein et al. 2015). 185 

As with species richness, we corrected elevation range for potential biases introduced by species 186 

range area, because larger ranges tended to encompass greater topographical heterogeneity. 187 

Finally, human influence was a site level variable estimated using the human population density 188 

within a 10 km zone around each site, following (Schmidt et al. 2020b) finding its strong effect 189 

on mammalian genetic diversity. 190 

 191 

Analysis 192 

Genetic diversity and species richness maps. All analyses were conducted in R version 3.6.1 (R 193 

Core Team 2019). Our first step was to identify spatial patterns in genetic diversity. We 194 

accomplished this using distance-based Moran’s eigenvector maps (MEMs) in the R package 195 

‘adespatial’ (Dray et al. 2017). MEMs detect spatial patterns in data from a modified matrix of 196 

distances between sites—a neighbor matrix—whose eigenvalues are proportional to Moran’s I 197 

index of spatial autocorrelation (Borcard and Legendre 2002; Borcard et al. 2004; Dray et al. 198 

2006). MEMs are spatial eigenvectors that represent relationships between sites at all spatial 199 

scales detectable by the sampling scheme and can be included in linear models because they are 200 

orthogonal. A total of 199 positive MEMs were detected. Next, we used the forward selection 201 

procedure described in (Blanchet et al. 2008) to select two sets of MEMs: one describing site-202 

level spatial patterns in genetic diversity and the other describing site-level species richness. 203 

Thirteen MEMs explained important spatial variation in gene diversity. In order of increasingly 204 

fine spatial scales, significant patterns were MEMs 2, 3, 4, 5, 22, 27, 30, 31, 47, 49, 101, 145, 205 
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152. Forty-three MEMs were important predictors of species richness, and 8 of these patterns 206 

were shared by genetic diversity (significant MEMs are listed in Fig. S3).  207 

We then subset MEMs based on Moran’s I to retain only those explaining broad-scale spatial 208 

patterns (MEMs with Moran’s I > 0.25). The cut-off for broad-scale MEMs was MEM 5 for 209 

genetic diversity and MEM 11 for species richness. We then fit individual linear regression 210 

models for species richness and genetic diversity with the broad-scale MEMs, and plotted the 211 

predicted values on a map of North America. 212 

 213 

Variation partitioning. We next quantified the extent to which genetic diversity and species 214 

richness covary spatially. Because MEMs for species richness and genetic diversity were 215 

computed from the same set of coordinates, they were directly comparable. This allowed us to 216 

identify shared spatial MEMs that might be related to a common environmental cause. We used 217 

linear regressions and variance partitioning to determine what fraction of the total variation in 218 

species richness and genetic diversity could be attributed to: (1) non-spatial variation, (2) non-219 

shared spatial variation, and (3) shared spatial variation. We partitioned variation as follows: 220 

y�� ~ � � �
1�

�MEM1�
� � �

2�
�MEM2S

� � �� �
��
�MEM��� � 	 

y�� ~ � � �
1�

�MEM1�
� � �

2�
�MEM2G

� ��� �
��
�MEM��� � 	 

Where α is the grand mean, and ySR and yGD are site-level metrics of species richness and genetic 221 

diversity. MEMiS and MEMiG refer to the set of MEMs explaining spatial variation in species 222 

richness and genetic diversity, respectively, and βs are their slopes. The coefficients of variation 223 

(R2) for these models gave us the total proportion of variation in each response variable 224 
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attributable to spatial variation. Subtracting these values from 1 gives the amount of non-spatial 225 

variation. 226 

To determine the amount of shared variation, we used the set of MEMs shared between species 227 

richness and genetic diversity (MEMSG) as predictors in the regressions below: 228 

y�� ~ � � �
1��

�MEM1��
� � �

2��
�MEM2SG

� ��� �
���
�MEM���� � 	 

y�� ~ � � �
1��

�MEM1��
� � �

2��
�MEM2SG

� ��� �
���
�MEM���� � 	 

R2 values from these models yielded the proportion of variation in genetic diversity and species 229 

richness explained by shared spatial variation. Subtracting these values from the total spatial 230 

variation in species richness and genetic diversity gives the proportion of non-shared spatial 231 

variation. 232 

 233 

Structural equation modeling. Next, we tested the hypothesis that differential carrying capacities 234 

and human disturbance simultaneously shape biodiversity patterns on genetic and species levels. 235 

To explore the common causes of genetic and species-level diversity, we fit our conceptual 236 

model integrating population genetics and ecological limits (Fig. 3a) to data using structural 237 

equation modelling. Using this approach we can examine cause-effect relationships within 238 

hypothesis networks that accommodate multiple predictor and response variables in a 239 

hierarchical modeling framework. Multiple hypotheses can be retained in a final model. 240 

Structural equation modeling is an extension of multivariate multiple regression where variables 241 

can be thought of as nodes in a network, and directional paths connecting nodes represent causal 242 

relationships. The strengths of paths are equal to regression coefficients (Shipley 2016). In 243 

addition to direct effects, you can quantify indirect effects between variables by multiplying 244 

direct effects over paths. Using standardized coefficients, we can compare the strength of 245 
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relationships and the relative support for retained hypotheses both within and across levels of 246 

biodiversity. The appropriateness of links in the hypothesis network can be tested using tests of 247 

directed separation (Shipley 2016), where the null hypothesis is that the two variables are 248 

independent conditional on other predictors of either variable. This means that although we start 249 

with a focus on ecological limits, the data can suggest the addition or removal of links 250 

representing alternative hypotheses. 251 

 252 

We have primarily focused on modeling broad-scale effects of the environment on continental 253 

patterns of species richness and genetic diversity. We therefore focus here on hierarchical 254 

modeling of patterns at the population and species level. Additionally, because the spatial 255 

coverage of genetic sample sites in the data was not evenly distributed, some species ranges 256 

could be oversampled if we considered site-level environmental variation, and thus 257 

overrepresented compared to species ranges that contain fewer sampled populations. To capture 258 

the broad spatial patterns depicted in Figure 2, and to avoid biasing our model as a result of 259 

uneven sample site locations, we considered species richness, energy availability, and 260 

heterogeneity at the species level in this analysis.  261 

We implemented SEMs using the piecewiseSEM package (Lefcheck 2016; Lefcheck et al. 262 

2019). PiecewiseSEM offers greater flexibility than other SEM software because it uses a local 263 

estimation approach where each model is assessed individually (Lefcheck 2016). All variables 264 

were scaled and centered before analysis.  265 

We translated our conceptual model (Fig. 3a) into a series of 3 linear models with a single model 266 

for each response variable (gene diversity, population size/body mass, and species richness). We 267 

accounted for species-level differences in gene diversity using a linear mixed-effects model 268 
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controlling for species as a random effect within our structural equation model network. 269 

Hierarchical models in piecewiseSEM were fit using the lme4 package (Bates et al. 2015). 270 

Conceptually, a hierarchical model is a model of models—here, we are modelling gene diversity 271 

within species and summarizing effects across species. Multiple linear regression models are fit 272 

in base R. 273 

Goodness-of-fit in SEM is determined by evaluating whether there are any missing links in the 274 

causal structure, i.e. whether adding paths between pairs of variables would be more consistent 275 

with the data. In piecewiseSEM missing links are tested using tests of directed separation 276 

(Shipley 2016), where the null hypothesis is that the two variables are independent conditional 277 

on other predictors of either variable. Starting with our conceptual model (Fig. 3a), we iteratively 278 

updated models by adding links according to tests of directed separation until no further 279 

biologically sensible links were suggested. We assessed model fit using the p-value for the 280 

model network, where the null hypothesis is that the model is consistent with the data. Thus, 281 

models with p > 0.05 are considered acceptable—we fail to reject our causal structure. We also 282 

assessed fit using R2 values for each response variable in the model network. For genetic 283 

diversity, we used marginal (R2
m) and conditional R2 (R2

c) values which respectively measure 284 

the total variation explained by fixed effects, and the variation explained by both fixed and 285 

random effects. We tested the residuals from component models for spatial autocorrelation using 286 

Moran’s tests and spatial correlograms.  287 

 288 

Effect of heterogeneity on population divergence. After detecting a negative effect of 289 

heterogeneity on intraspecific genetic diversity in our SEM, we performed a post hoc analysis to 290 

test whether topographic heterogeneity also caused greater population differentiation within 291 
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species. A positive correlation between FST and heterogeneity, while controlling for distance, 292 

would suggest that individuals move less between local environments, possibly due to niche 293 

specialization. To test for differentiation we used population-specific FST (Weir and Goudet 294 

2017) as a measure of genetic divergence, which was included in the genetic diversity database 295 

(Schmidt et al. 2020a) where it was calculated in R using the ‘hierfstat’ package (Goudet and 296 

Jombart 2015). Population-specific FST can be interpreted as a relative estimate of the time since 297 

a population has diverged from a common ancestor. This metric requires at least 2 sampled 298 

populations within a study to estimate, and due to this constraint 16 sites were excluded from this 299 

analysis (n = 785). We controlled for isolation-by-distance by including MEMs significantly 300 

related to FST to account for spatial structure. We scaled and centered all variables, then used a 301 

linear mixed model controlling for species differences by including it as a random effect. 302 

 303 

Results 304 

Spatial patterns in genetic diversity and species richness 305 

We detected spatial patterns at genetic and species levels of diversity. Sixty-five percent of the 306 

total variation in species richness and 24% of variation in genetic diversity was spatially 307 

structured (Fig. S2). Variance partitioning suggested that 85% of the total spatial variation in 308 

genetic diversity, and 32% of spatial variation in species richness was accounted for by spatial 309 

patterns shared at both levels of diversity (Fig. S2). We found no obvious relationship between 310 

latitude and nuclear genetic diversity. Similar to patterns of species richness, a longitudinal 311 

gradient in genetic diversity is the dominant pattern for North American mammals—however, 312 

diversity gradients at the two levels trend in opposite directions. Nuclear genetic diversity 313 
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appears markedly lower in regions with high species richness, such as on the west and mid-314 

Atlantic coasts, where there is high energy availability and topographic relief (Fig. 2).  315 

 316 

Joint environmental causes of genetic diversity and species richness 317 

Our conceptual model, updated according to tests of conditional independence among variables 318 

(directed separation), fit the data well (SEM p= 0.23, Fisher’s C= 2.92; Fig. 3b, Table S1). Note 319 

that for structural equation models, p > 0.05 indicates that we fail to reject our model. There was 320 

no spatial autocorrelation in the body size model residuals, but genetic diversity and species 321 

richness models had statistically significant spatially autocorrelated residuals at very local scales 322 

(genetic diversity Moran’s I = 0.025, species richness Moran’s I = 0.029). These Moran’s I 323 

values do not indicate strong spatial structure in the data, and we decided not to integrate it into 324 

our model. Positive spatial autocorrelation at such short distances is likely an artifact of irregular 325 

site locations and the hierarchical nature of the data. A lack of strong spatial autocorrelation in 326 

the model residuals suggests that the spatial structure of the diversity data was well captured by 327 

our model’s environmental covariates (Fig. S3).  328 

 329 

All predicted links in our conceptual model were supported (Fig 3a, b). Tests of directed 330 

separation suggested additional direct links from energy availability to species richness, genetic 331 

diversity to species richness, and heterogeneity to genetic diversity (Fig. 3b). Energy availability, 332 

niche heterogeneity, and human population density, acting both directly, and indirectly through 333 

species population size, explained 32% of the variation in genetic diversity. The species-level 334 

variation explained by the random effect for species brought the total variation in genetic 335 

diversity explained by our model to 75%. The same model explained 90% of the variation in 336 
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species richness. The strength of effects related to the more individuals hypothesis was most 337 

prominent at the genetic level of diversity. The strength of the indirect effect of energy on 338 

genetic diversity acting via population size was 0.13 compared to 0.02 for species richness (Fig. 339 

3b, Table S1). Environmental heterogeneity, however, was the strongest single predictor of 340 

species richness (path coefficient = 0.70 ± 0.01 SE), and a good predictor of genetic diversity 341 

(path coefficient = -0.30 ± 0.07 SE). Directions of effects were as expected if greater niche 342 

availability reduces population sizes, leading to increased genetic drift (Fig. 3, Table S1). Gene 343 

diversity is not a measure of divergence so we tested whether environmental heterogeneity 344 

predicted evolutionary divergence at the population level. Divergence increased in 345 

heterogeneous environments (β = 0.13 ± 0.06 SE). Finally, human population density both 346 

directly and indirectly (via body mass/population size) affected species richness and genetic 347 

diversity (Fig. 3b). Human population density had the strongest effect on population size/body 348 

mass (path coefficient = -0.15 ± 0.03 SE), and relatively weaker direct effects on genetic 349 

diversity and species richness (Fig. 3b, Table S1). 350 

 351 

Discussion 352 

We found striking content-wide spatial gradients in nuclear genetic diversity and show that these 353 

patterns are negatively correlated with well-described biogeographic patterns in species richness 354 

(Simpson 1964) (Fig. 2). Controlling for species-level variation, a considerable portion of the 355 

variation in both genetic diversity and species richness patterns could be explained by just three 356 

environmental factors – these were environmental energy availability, niche availability, and 357 

human disturbance. Our model was consistent with the hypothesis that environmentally set 358 

species-level carrying capacities simultaneously limit species population sizes, and consequently 359 
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genetic diversity through their effects on the strength of genetic drift. Niche availability was the 360 

strongest contributor to broad-scale patterns at both levels of diversity, followed by energy 361 

availability, and then human disturbance. This is strong empirical evidence suggesting that 362 

genetic diversity and species richness patterns emerge from the same processes thus jointly 363 

forming the base of the biodiversity hierarchy.   364 

 365 

In support of the more individuals hypothesis (solid lines in Fig. 3b), our data indicated that low 366 

energy environments supported fewer species and smaller population sizes with lower genetic 367 

diversity. High energy areas had greater species richness and larger, more genetically diverse 368 

populations. However, effects related to the more individuals hypothesis were weaker than those 369 

of environmental heterogeneity (dashed lines in Fig. 3b). Heterogeneity appeared to increase 370 

species richness and facilitate coexistence through greater niche availability, however 371 

partitioning resources among niches seemed to support smaller numbers of individuals from 372 

those species, creating a negative relationship between species richness and genetic diversity. At 373 

the genetic level, greater population divergence in more heterogeneous environments suggests 374 

that genetic drift is strong and gene flow limited in these areas. Selection is more spatially 375 

varying in heterogeneous environments, and coupled with low gene flow, this could create 376 

sufficient conditions for local adaptation—which can happen even under relatively high levels of 377 

genetic drift (Hämälä et al. 2018). At lower latitudes where small-bodied species with large 378 

effective population sizes dominate, heterogeneity and spatially varying selection could be 379 

efficient drivers of ecological speciation. These results lend support to the idea that there are 380 

higher diversification rates in more complex environments because there are more opportunities 381 

for speciation. We additionally speculate that the direct effect of energy on species richness we 382 
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detected even after accounting for population size and heterogeneity (Fig. 3b) may be related to 383 

niche availability as well. This relationship has been noted elsewhere and has sometimes been 384 

interpreted as refuting the more individuals hypothesis (Storch et al. 2018). Vegetation structure 385 

may drive the link between species richness and temperature (Pautasso and Gaston 2005; 386 

Jiménez-Alfaro et al. 2016), as complex, vegetation-rich habitats in warmer environments also 387 

have greater niche availability. Because both links are retained in our model it seems clear that 388 

this additional link does not negate the more individuals hypothesis, but rather is additive and 389 

indeed more important in determining species richness than the more individuals effect.  390 

 391 

The specific ways environments shape nuclear genetic- and species-level diversity will likely 392 

differ across taxa. This carrying capacity-based interpretation of our results assumes that an 393 

environmentally set equilibrium between speciation, immigration and extinction has been 394 

reached. There is good evidence for this in North American mammals, where diversification 395 

rates have slowed as diversity increased (Brodie 2019). It seems likely that processes other than 396 

ecological limits will be more important for the diversity dynamics of taxa that may not have 397 

reached or have been knocked out of equilibrium at the genetic or species levels. Speciation is a 398 

product of both ecological and evolutionary processes, and it is unlikely ecological limits act in 399 

isolation. Indeed, the underlying causes of species richness gradients—be they ecological limits, 400 

evolutionary time, or diversification rates—have likely been debated for so long precisely 401 

because several processes operating with different importance across the timeline of 402 

diversification are capable of producing gradients (Etienne et al. 2019). Recent thinking (Pontarp 403 

and Wiens 2017) advocates a more interconnected view, suggesting that time for speciation 404 

should be most detectable more immediately following broad-scale environmental change. When 405 
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all locales are colonized, habitats that provide more opportunities for speciation should over time 406 

become the most diverse. As diversity increases, diversification rates slow as regions approach 407 

equilibrium (Brodie 2019). It follows that evolutionary time and diversification rates may have 408 

each at different periods of history been the dominant driver of biodiversity, but both are 409 

ultimately affected by variation in carrying capacity (Pontarp and Wiens 2017). 410 

 411 

Contemporary drivers of biodiversity patterns are rarely modeled in a way that makes them 412 

comparable to evolutionary scale causes. Understanding the ecological processes generating 413 

gradients in genetic diversity and species richness has important implications for understanding 414 

how biodiversity responds to human-caused environmental transformation. Cities are the world’s 415 

newest and most rapidly expanding biome, and it is clear that they have already had profound 416 

effects on biodiversity patterns (Palumbi 2001; WWF 2018; Schmidt et al. 2020a). The negative 417 

effect of human population density we detected on body size is consistent with previous findings 418 

showing that urban communities tend to be made up of smaller species (Merckx et al. 2018). 419 

Although it seems human presence and heterogeneity both have negative effects on genetic 420 

diversity in our model, species richness was reduced in more urban environments (Fig. 3b). This 421 

result suggests that cities reduce population sizes and gene flow (Schmidt et al. 2020a), but 422 

currently do not support diverse communities. Because cities are relatively new habitat types and 423 

they are still in the initial phase of colonization, we would not expect them to be in equilibrium. 424 

At this stage processes related to evolutionary time will likely predominate until all available 425 

niches are occupied. Indeed, there is some evidence that following an initial extinction debt after 426 

rapid urbanization, older cities support more biodiversity (Aronson et al. 2014; Norton et al. 427 
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2016). Presently, a subset of species do well in cities (McKinney 2006), but the broader effects 428 

of habitat transformation remain to be seen in the long term. 429 

 430 

It is notable that the negative correlation we find between species richness and nuclear genetic 431 

diversity contradicts relatively consistent positive correlations found between species richness 432 

and mitochondrial (mtDNA) genetic diversity (Miraldo et al. 2016; Manel et al. 2020; Millette et 433 

al. 2020; Theodoridis et al. 2020). This contrast warrants deeper exploration because it has 434 

implications for how we interpret biogeographical patterns in genetic diversity to advance 435 

general evolutionary knowledge, and how we apply this knowledge for the purposes of 436 

conservation and management. mtDNA has several idiosyncrasies associated with the specific 437 

biology of mitochondria that distinguish it from genetic diversity measured with neutral nuclear 438 

DNA. It is inherited as a single non-recombining locus, and has highly variable mutation rates 439 

which can vary 100-fold across species (Nabholz et al. 2008). Cellular metabolism within 440 

mitochondria produces reactive oxygen species which affect mutation rates in mtDNA, but these 441 

oxygen radicals do not cause oxidative damage in the nucleus (Hoffmann et al. 2004; Lanfear et 442 

al. 2007)—further decoupling mtDNA and nuclear DNA diversity. The most commonly used 443 

markers in mtDNA studies are the protein-coding genes cytochrome oxidase I and cytochrome b, 444 

which are involved in cellular respiration and very likely do not evolve under neutrality (Galtier 445 

et al. 2009). Unlike neutral nuclear DNA, it has been shown that mtDNA diversity is unrelated to 446 

life history, ecological traits, and census and effective population sizes (Bazin et al. 2006; 447 

Nabholz et al. 2008). mtDNA diversity is thus a very different quantity than the neutral nuclear 448 

diversity estimates we use here. Its lack of relationship with population size makes it unsuited for 449 

testing demographic hypotheses related to ecological limits or environmental stability, where 450 
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instability causes population size fluctuations which limit species richness. Using genetic 451 

diversity metrics estimated from neutral nuclear DNA allows us to more clearly link 452 

environments to species richness and genetic diversity through demography, population size, and 453 

by extension, species life history traits which partly set the effective population size.  454 

 455 

Given the above-described concerns about the suitability of mtDNA for detecting patterns of 456 

interest, what then could drive the positive correlation between species richness and mtDNA 457 

diversity? Such a relationship could be due to an analytical issue. Studies of mtDNA diversity – 458 

species richness correlations tend to aggregate sequences within pre-defined geographic 459 

sampling units, calculate mtDNA diversity for each species, then use the average diversity of all 460 

species sampled in a spatial unit as their measure of genetic diversity in subsequent analyses 461 

(Miraldo et al. 2016; Manel et al. 2020; Theodoridis et al. 2020). We suspect that this metric of 462 

variation captures phylogenetic signals in mtDNA, and thus that it must be positively correlated 463 

with species diversity because it reflects the accumulation of mutations following reproductive 464 

divergence. Given the peculiarities of mtDNA noted above, we are concerned that conservation 465 

recommendations for maintaining genetic diversity based on positive correlations between 466 

mtDNA diversity and species diversity are misplaced (Miraldo et al. 2016; Theodoridis et al. 467 

2020). Studies of mtDNA diversity – species richness correlations often interpret regions with 468 

high mtDNA variation as indicative of a population’s capacity to adapt, and thus warranting 469 

conservation concern (Theodoridis et al. 2020). Regardless of whether one accepts the concerns 470 

we describe, this too seems inappropriate. A population’s capacity to adapt is defined as the 471 

additive genetic variance underlying fitness (Fisher 1930). Though theory, based on strong 472 

assumptions, suggests that neutral nuclear genetic diversity should predict additive genetic 473 
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variation (Falconer and Mackay 1996), it appears that this relationship is not strong enough to be 474 

useful in practice (Mittell et al. 2015). There is no expectation of correlations between mtDNA 475 

diversity and either neutral nuclear genetic diversity, or additive genetic variation (Mittell et al. 476 

2015). mtDNA diversity thus cannot be interpreted as a population’s capacity to adapt. Neutral 477 

microsatellite variation does indeed reflect genome-wide variation well (Mittell et al. 2015). 478 

Though not strongly correlated with the capacity to adapt, genome-wide variation is indicative of 479 

the efficiency of selection through its link to effective population size and the scope for 480 

inbreeding. Given that we have no reason to suspect that mtDNA reflects adaptive potential and 481 

that mtDNA diversity trends opposite of nuclear genetic diversity, general management 482 

strategies aimed at conserving high mtDNA genetic diversity regions would seem to have the 483 

opposite effect of the conservation intent.    484 

 485 

Ecosystem sustainability given environmental perturbations occurring more frequently due to 486 

human causes, depends on the resiliency of landscapes, communities, and populations (Oliver et 487 

al. 2015). Genetic diversity is crucial to a population’s adaptive potential because the efficiency 488 

with which selection can act is determined by the effective population size which sets the rate of 489 

genetic drift. Yet genetic diversity is not equally distributed in space and indeed, in mammals, 490 

appears to be lower in heterogeneous environments which exert greater spatially varying 491 

selection. Knowledge of how natural environments shape population genetic composition is 492 

fundamental to understanding how these natural patterns will shift with continued land 493 

transformation by humans. Mammals are one of the best-studied taxa, however, rules applicable 494 

to them may not generalize well across other groups. For instance, the relevance of the more 495 

individuals hypothesis for ectotherms has been questioned because their energy usage is well 496 
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below that of endotherms (Buckley et al. 2008). Indeed, continental patterns of species richness 497 

differ across taxa, which may stem from life history or physiology differences (Currie 1991). It 498 

will be necessary to test the hypothesis developed here on other taxonomic groups and in 499 

different regions to gain a more holistic understanding of the causes of biodiversity. The intimate 500 

connections between the environment, species richness, and genetic diversity we find here 501 

suggest that changes on one level can cascade throughout the system and profoundly reshape 502 

biodiversity patterns across multiple biological levels in ways we do not yet fully grasp.  503 
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Fig. 1. Carrying capacities at population and species levels. Green areas represent total habitat 701 
area, and are all equal in size. Purple areas are niches, which increase in number with increasing 702 
heterogeneity (y axis), and increase in area with higher energy availability (x axis). In general, as 703 
energy availability increases, individual carrying capacities are higher, resulting in greater 704 
diversity at species and genetic levels (the more individuals hypothesis). As heterogeneity 705 
increases, species richness is higher due to the increased availability of niches. However, 706 
population sizes are reduced because niche area is smaller in more heterogeneous areas, 707 
generating a negative relationship between species richness and genetic diversity (heterogeneity 708 
hypothesis).  709 
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 710 

Fig. 2. Maps depicting spatial patterns of biodiversity and environmental factors. (Top row) 711 
Points are the locations of 801 North American mammal populations for which raw 712 
microsatellite data was available in public repositories. Point color indicates predicted values of 713 
genetic diversity and species richness based on spatial patterns detected in the data. (Bottom row) 714 
Maps showing the three environmental variables which we tested for simultaneous effects on 715 
genetic diversity and species richness. 716 
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  717 
Fig. 3. Structural equation models. (a) Our conceptual hypothesis network combining the more 718 
individuals hypothesis (solid lines) with the effects of environmental heterogeneity (dashed 719 
lines) and human presence (dotted lines). Arrows represent unidirectional relationships between 720 
variables. (b) Structural equation model results. Green and black lines positive and negative 721 
relationships, respectively. Line widths reflect coefficient estimates, which are listed above each 722 
path with standard errors. R2 values are the amount of variation explained for each response 723 
variable. Mass and species richness were measured at the species level, and genetic diversity was 724 
measured at the population level and fit with a random effect for species: R2

m is the variation 725 
explained by fixed effects only, and R2

c is the variation explained by fixed and random effects. 726 
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