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Abstract 17 

 18 

Gene expression signatures (GES) connect phenotypes to mRNA expression patterns, providing a 19 

powerful approach to define cellular identity, function, and the effects of perturbations. However, 20 

the use of GES has suffered from vague assessment criteria and limited reproducibility. The 21 

structure of proteins defines the functional capability of genes, and hence, we hypothesized that 22 

enrichment of structural features could be a generalizable representation of gene sets. We derive 23 

structural gene expression signatures (sGES) using features from various levels of protein 24 

structure (e.g. domain, fold) encoded by the transcribed genes in GES, to describe cellular 25 

phenotypes. Comprehensive analyses of data from the Genotype-Tissue Expression Project 26 

(GTEx), ARCHS4, and mRNA expression of drug effects on cardiomyocytes show that structural 27 

GES (sGES) are useful for identifying robust signatures of biological phenomena. sGES also 28 

enables the characterization of signatures across experimental platforms, facilitates the 29 

interoperability of expression datasets, and can describe drug action on cells. 30 

 31 

MAIN TEXT 32 

 33 

Introduction 34 

Gene expression signatures (GES) are generally defined as a ranked list of genes whose 35 

differential expression is associated with a defined biological phenomenon (1–3). GES are 36 

typically obtained by measuring the transcriptional level of genes through RNA sequencing or 37 

previously by array-based experiments. Often, GES sets are determined, for example, by taking 38 

the top 100 or 200 highly expressed genes, or by using particular p-value cutoffs (3). Thousands 39 

of GES have been identified and claimed to characterize a wide variety of biological phenomenon 40 

(1–3). GES have been used to characterize subcellular and whole cell functions (4, 5), 41 

pathological states (6, 7) and cellular response to perturbagens (8). However, due to differences in 42 

technology, normalization protocols, and practices across laboratories, there is variability in 43 

identifying robust GES for a given phenotype, which has hindered its utility in the clinic (9, 10).  44 

Determining the reproducibility of a signature for a phenotype of interest remains a challenge, 45 

often requiring meta-analyses of existing GES to validate a signature for a phenotype (2, 3, 10). 46 

This process includes analyses of thousands of independent samples to generate a robust signature 47 

for a single phenotype (11). For example, GES variability has led to the cancelation of clinical 48 

trials that linked endpoints to specific GES and can produce inconsistent results in the 49 

classification of patients for distinct subtypes of a cancer (10, 12). Numerous studies have 50 
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analyzed the robustness of gene expression signatures across studies –further highlighting GES 51 

limitations (10, 12–16).  52 

One way to improve the robustness of GES is to integrate multiple types of useful biological 53 

information (1, 17). Because genes encode proteins whose 3D structures execute functions, we 54 

hypothesize that enriched protein structures may define a generalizable representation of any 55 

given gene set. Particularly, one common structural characteristic of proteins is the overall 56 

structural family or ”fold” of the protein and/or its individual domains, which have direct 57 

association with gene function (18–20). For example, incorporating structural information has 58 

enhanced the prediction of protein-protein interaction networks and disease pathways (21, 22). In 59 

this study, we derived higher order structural features from ranked gene lists to yield robust 60 

structural GES (sGES). We show that sGES can produce reliable signatures of distinct tissue 61 

types. Additionally, integration of sGES with GES, through an autoencoder, can be used to 62 

precisely identify outlier samples between distinct gene expression datasets, facilitating 63 

interoperability between experiments that use differing transcriptomic methodologies. Finally, we 64 

demonstrate that sGES can be used to characterize biological phenomena, such as cellular 65 

response to perturbagens, adding an additional dimension of insights to existing transcriptomics 66 

analysis.  67 

 68 

Results  69 

Quantitative metrics to evaluate GES and sGES reproducibility 70 

To characterize reproducibility of signatures of given phenotype we defined relevant, quantitative 71 

properties to the describe the quality of a dataset. We posit that a reproducible GES would have 72 

three major properties: 1. consistency across independent samples and replications; 2. high 73 

predictive capacity for the phenotype using standard performance measures (23); and 3. 74 

robustness across different measurement platforms.   75 

We use the Jaccard coefficient (JC), which measures the overlap between two distinct gene sets, to 76 

measure consistency between signatures characterizing the same phenotype in independent 77 

samples (Methods; Fig. 1A). A high JC demonstrates that the gene signature is consistent across 78 

experimental samples. Furthermore, a low variance for a distribution JC values across several 79 

hundred independent samples may indicate signatures with high reproducibility.  80 

To evaluate the predictive performance of a signature to a phenotype, we used a standardized 81 

machine learning algorithm (a random forest) across all signatures to assess the baseline 82 

effectiveness of a given signature, in terms of area under the ROC curve (AUC), without any 83 

significant parameter optimizations or feature selection (Methods; Fig. 1A). To measure signature 84 

robustness, we computed both JC and AUC values of signatures across two independent datasets 85 

measuring an identical phenotype (Methods; Fig. 1A). We analyzed expression data from GTEx 86 

(v8.0), which categorizes 11,688 samples across 53 healthy tissues from 714 donors (Table 87 

S1)(24). We leverage ARCHS4 (25), a collection of GES mined from the Gene Expression 88 

Omnibus, as an independent, and nonoverlapping, collection of GES of tissue types analyzed in 89 

GTEx (Fig. 1B,D). The overall workflow is shown in Fig. 1E. 90 

Protein structure enrichment at any level captures relevant biological information from gene 91 

expression experiments   92 

Protein structures encoded by the genes constituting the expressed genes may characterize the 93 

cell’s phenotype. Therefore, we hypothesize that using features derived from protein structures in 94 

GES can improve reproducibility across experimental platforms. A ‘structural gene expression 95 

signature’ (sGES) for each gene set was determined by identifying available structural features 96 

from the encoded protein of each gene (Methods; Fig. 1C-D). We define a structural feature as 97 
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the structural hierarchy from the Structural Classification of Proteins extended [SCOPe] (26) and 98 

InterProscan (27) databases, where protein domains (10,637 domains, ex. Serine-99 

threonine/tyrosine-protein kinase, catalytic domain) are categorized into families (4,919 families, 100 

ex. Protein kinases, catalytic subunit), which are categorized into superfamilies (2,026 101 

superfamilies; Protein kinase-like) and further grouped into distinct folds (1,232; Protein kinase-102 

like) (Methods; Fig, 1C). For a given gene set, each structural feature was evaluated for 103 

enrichment in the gene set, compared to the counts of the structural feature in the human 104 

proteome (Methods; Fig, 1D). sGES are defined as the complete set of structural features derived 105 

from a ranked list of genes, at each structural level (domain to fold levels).  106 

To determine if protein structure enrichment captures biological information observed in GES, we 107 

utilized t-distributed Stochastic Network Embedding (t-SNE) (28) to cluster GTEx tissues 108 

samples based on top 250 highest expressed genes and their enriched structural features (Fig. 2, 109 

Fig. S1). We observed that sGES are capable of clustering tissue types at both the lowest 110 

structural level (domains) and, surprisingly, the highest structural level (folds). Importantly, the 111 

clusters at all structural levels capture functional and spatial relationships among tissues (Fig. S1). 112 

For example, ovary tissue sGES cluster near uterine signatures. Both tissues’ GES are enriched 113 

with protein domains related to sex hormone production such as Follistatin/Osteonectin EGF 114 

domain, Kazal domain, SPARC/Testican, and Fibrillar collagen domain (Fig. S2). Both tissues’ 115 

sGES also retain tissue-specific domain differences, such as ovarian tissue having structural 116 

signatures containing Glutathione transferase domains, which is a biomarker of oocyte viability 117 

and quality (18). While the uterine tissue enriching for proteins containing structural domains 118 

such as the Tubulin/FtsZ domain (19).  119 

This result is surprising because conservation of high level protein structure (i.e., fold) is not 120 

necessarily always predictive of protein function (20), yet, using a representation of folds, 121 

domains and families, independently, can constitute an expression signature that captures tissue 122 

types.  123 

sGES improves within-dataset consistency of gene expression data.  124 

We computed the JC values for each pair of samples from the same tissue type, using both GES 125 

and sGES (Fig. 3A). Consistency of sGES, as measured by JC, at all structural levels, increases as 126 

higher order sGES are used (Fig. 3A, Fig. S3). For a gene set size of 250, sGES significantly 127 

increase the mean within-tissue JC compared to GES across all tissue types (Fig. 3A, Table S2). 128 

For example, at the fold level, the mean within tissue JC reaches a value of 0.75, while the mean 129 

across-tissue JC reaches a value of 0.54 (Fig. 3B). The increase in JC at higher structural levels 130 

indicates increasing consistency of signatures (Fig. 3A). 131 

One explanation for this improvement in consistency may be due to the number of possible 132 

structures diminishing as higher order structural features are used (Fig. S4). However, we observe 133 

that while the mean JC generally increases using sGES, disparate tissue types have significantly 134 

lower JC values at each structural level (Fig. 3B); retaining tissue-specific information, as 135 

observed from the t-SNE (Fig. 2). Importantly, the average consistency of dissimilar (or across-136 

tissue) samples using sGES is similar to that of GES (for Domain and Family levels), even at 137 

increasing GES sizes (Fig. 3B-C). This result asserts that the higher average JC seen in sGES is 138 

unlikely to be an artifact of decreasing feature space sizes since GES have similar across-tissue JC 139 

values to sGES, despite a higher feature space.  140 

sGES accurately classifies cell type with a simple machine learning model 141 

A major test of GES reproducibility is the ability of a GES for a phenotype, obtained in one 142 

sample, to accurately predict the phenotype for a gene signature derived in an independent sample 143 

measuring the same phenotype (i.e., predictivity, Fig. 1A). To evaluate the baseline predictivity of 144 
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both GES and sGES across different tissues, and signature types (Methods), we trained a random 145 

forest to identify tissues from either GES of size of 250 or sGES from GTEx expression data. 146 

Notably, the parameters for the random forest were standardized and neither feature selection nor 147 

parameter optimization was performed on any model (Methods, Fig. 3D, Fig. S5).  148 

We observe that both GES and sGES (at any structural level) have high predictivity for any given 149 

tissue type within the GTEx dataset, after 10-fold cross validation. For example, the best area 150 

under the ROC curve (AUC) values for each tissue range from 0.891 (ectocervix) to 1 (lung) (Fig. 151 

S5). Importantly, the tissue with the largest variance in JC distribution (i.e., ectocervix) has the 152 

lowest predictive performance, indicating a relationship between the two metrics. There are small 153 

differences in the predictivity among gene set sizes of 50, 250, and 1,000 across all tissue types 154 

within GTEx (Fig. S6).  155 

sGES enable the classification of robust expression signatures across databases 156 

We used an independent validation set from the ARCHS4 (25) database to evaluate the robustness 157 

of tissue GES and sGES from GTEx data (Fig. 4, Fig. S7-S10). In brief, ARCHS4 is a collection 158 

of gene expression data derived from the Gene Expression Omnibus (GEO) (29), which collates 159 

gene expression data generated from a wide variety of sequencing technologies and platforms. 160 

Specifically, we evaluated GTEx signatures for consistency (Fig. 4A-B, Fig. S7- S8) and 161 

predictivity against ARCHS4 (Fig. 4C-D, Fig. S9-S10).  162 

In general, ARCHS4 GES consistency is much more variable across tissue types than that of 163 

GTEx GES (Fig. 4A; purple, and Fig. S7), likely because of the heterogeneity of the samples in 164 

ARCHS4. Samples in ARCHS4 can be obtained from both pathological and healthy tissues, or 165 

may characterize distinct subtypes of tissues, or may have artifacts due to differing sequencing 166 

methodologies. Importantly, measuring the consistency between ARCHS4 and GTEx by 167 

overlapping their GES alone demonstrated low JC values across most tissue types (Fig. 4A; blue, 168 

Fig. S7). Critically, we observed that for all tissues, sGES, at any structural level, increases the 169 

average JC overlap between GTEx and ARCHS4 signatures, and thus improves the consistency 170 

between the two datasets (Fig. 4B, Fig. S8). 171 

Surprisingly, there is high predictivity of tissues from ARCHS4 using standardized models 172 

trained either on GES or sGES from GTEx (Fig. 4C-D and Fig. S9-S10). For example, AUC 173 

values for each tissue range from 0.70 (pancreas) to 0.999 (vagina) (Fig. 4C, Fig. S9). 174 

Importantly, decreasing GES size to 50 genes for many tissue types has significant effects on the 175 

performance of the classifier (Fig. 4C, Fig. S9). Several tissues such as pancreas and heart exhibit 176 

better performance using a small GES size. This indicates that much of the predictive 177 

performance of these signatures may be due to a select set of genes, rather than the signature as a 178 

whole (Fig. 4C, Fig. S9-10). 179 

Using both metrics, we can identify that certain tissues such as pancreas, lung and esophagus, are 180 

not robust across GTEx and ARCHS4 due to relatively low AUC and JC values. The only 181 

potentially robust signature observed is muscle tissue, where high internal consistency within 182 

ARCHS4 and GTEx GES led to a relatively higher overlap JC distribution across the two datasets 183 

(Fig. 4A-D). We hypothesize that identifying and removing pathological and other atypical 184 

samples (‘outliers’) present in the ARCHS4 data will improve reproducibility across datasets. 185 

(Fig. 4A).  186 

Integration of sGES and GES enable high outlier detection 187 

To identify potential outliers in GTEx samples, we used a neural network architecture called an 188 

autoencoder (Methods) (30). Autoencoders encode high dimensional data to a lower dimensional 189 

feature space that can regenerate the input of the network. The performance of an autoencoder is 190 

measured by the reconstruction error between the original inputs and the reconstructed output. 191 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2020. ; https://doi.org/10.1101/2020.06.03.133066doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.03.133066
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 5 of 22 
 

Samples with high reconstruction error are often samples that are considered anomalies, or 192 

outliers, compared to the samples used to train the model.  193 

We trained a stacked denoising autoencoder on 80% of GTEx GES. The remaining 20% of the 194 

GTEx GES was used to determine the baseline level of reconstruction error of the autoencoder 195 

(Fig. 5A; green, Fig. S11). We defined samples with reconstruction errors greater than two 196 

standard deviations of the reconstruction error (.00725) as outlier samples within GTEx. 197 

Importantly, based on this definition, very few GTEx samples can be considered outliers.  198 

When using our trained GTEx model with ARCHS4 GES, the majority of ARCHS4 samples, 199 

within the same tissue type, are classified as ‘outliers’ (Fig. 5A; purple, Fig. S11). This result 200 

corroborates some results such as pancreas tissue – whose signature was demonstrated to be not 201 

robust across ARCHS4 and GTEx (Fig. 4). However, all ARCHS4 muscle tissue samples, which 202 

was shown to have some level of robustness (Fig. 4), can be considered wholly distinct datasets 203 

using this approach. Because sGES improve the overlap of JC scores across datasets and do not 204 

dramatically impact their predictivity (Fig. 4), we trained an autoencoder using sGES to see if 205 

outlier detection can be improved.  206 

While we expected outlier detection to be less sensitive by ascending the structural hierarchy, as 207 

observed before (Fig. 2-4), surprisingly, distinct levels of structure have differing sensitivity to 208 

outliers (Fig. 5B, Fig. S12). For muscle tissue, the family and superfamily levels of sGES 209 

identified less outliers than those identified by domain, fold or gene level signatures. This 210 

indicates that distinct levels of the structure hierarchy characterize unique aspects of biological 211 

information present in GES.  212 

We hypothesized that integrating GES and sGES would allow us to obtain a consensus 213 

classification of outlier vs non-outlier samples. To do so, we normalized and then averaged the 214 

reconstruction errors from autoencoders trained on GES and sGES (Fig. 5C, Fig. S13). Compared 215 

to either the GES (Fig. 5A) or sGES models (Fig. 5B), incorporating all signature information 216 

enables a clearer separation of true outliers in the data (Fig. 5C, Fig. S13). For example, this 217 

approach indicated that all pancreas tissue signatures from the ARCHS4 database can be 218 

considered outliers to GTEx pancreas signatures and thus, validated that the pancreas signature is 219 

not robust across datasets. However, for tissues such as muscle, ovary, heart, and spleen, outliers 220 

can be easily identified (Fig. 5C). For instance, GSM1281783, the sample with the largest 221 

reconstruction error in heart tissue in ARCHS4, characterizes dilated cardiomyopathy. Likewise, 222 

GSM2071283 (muscle) represents a sample from fetal skeletal muscle tissue, which is different 223 

from healthy adult muscle cells characterized in GTEx (Fig. 5C). Importantly, when identifying 224 

and removing outlier samples from ARCHS4, the predictivity and consistency of the signatures 225 

across GTEx and ARCHS4, for both GES and sGES, increased (Fig. 5D-E, Fig. S14-S15). We 226 

also observed increase in ARCHS4 internal GES consistency after outlier removal (Fig. S16).  227 

After outlier removal, we were able to identify specific signature genes and sGES that are 228 

common across all ARCHS4 and GTEx samples (Table S7-S8). Table S8 shows signature genes 229 

and enriched domains, families, superfamilies, and folds seen across every ARCHS4 and GTEx 230 

whole blood samples, after outlier removal. While only two genes are consistently seen across 231 

both datasets (Actin Beta, Ferritin Light Chain), several domains (such as protein kinase domain, 232 

Immunoglobulin-like domain), families (such as C1 set domains, Pyruvate oxidase and 233 

decarboxylase PP module), superfamilies (such as EF-hand, Clathrin adaptor appendage domain), 234 

and folds (such as P-loop containing nucleoside triphosphate hydrolases, SH3-like barrel) were 235 

observed in the whole blood signature, demonstrating that sGES can illuminate additional 236 

biological information not present in GES alone.  237 
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Taken together, our results indicate that utilization and integration of both gene and protein 238 

structure information can dramatically improve the identification of outliers and enables the 239 

detection of robust expression signatures across datasets.  240 

sGES captures drug action on cardiomyocyte-like cell lines  241 

We investigated if sGES alone can describe drug action on newly obtained transcriptomics data. 242 

We analyzed expression data from cardiomyocyte-like cell lines generated by the DToxS LINCS 243 

Center, to identify perturbagen specific cardiomyocyte response to specific drugs. We observed 244 

that certain over and underrepresented protein folds distinguish kinase inhibitor response from 245 

anthracycline drugs (Fig. 6A-C). For example, the kinase inhibitors nilotinib (NIL), regorafenib 246 

(REG), sorafenib (SOR), pazopanib (PAZ), and vemurafenib (VEM) have a characteristic 247 

underexpression of folds relating to metabolism (Table S9). Conversely, the anthracyclines drugs 248 

epirubicin (EPI) and doxorubicin (DOX), have characteristic overexpression of folds related to 249 

cytokine action (Table S9) as well as underexpression of folds relating to tRNA regulation such 250 

as: Proline tRNA ligase; Prolyl-tRNA synthetase; Aminoacyl-tRNA synthetases; Transmembrane 251 

ATPases; aminoacyl-tRNA synthetases; Anticodon-binding and Cortactin-binding protein (Table 252 

S10). Taken together, fold level sGES alone can further specify drug activity on cardiomyocytes, 253 

in addition to ranked lists of expressed genes.  254 

 255 

Discussion  256 

 257 

In this study, we hypothesized that transforming gene signature space into protein structure space 258 

(e.g., domain, fold, superfamily) can characterize a robust, reproducible structural GES (sGES), 259 

and accurately define a phenotype. Additionally, integrating higher order structural features with 260 

ranked gene lists through an autoencoder, can be used to precisely identify outlier samples 261 

between distinct gene expression datasets, facilitating interoperability between experiments that 262 

use differing transcriptomic methodology. Three key findings emerge from this study.  263 

First, we define complementary metrics for evaluating the robustness of the GES: consistency, 264 

corresponds to the overlap of top ranked genes based on expression level (JC; Fig. 1); and 265 

predictivity assesses the predictive power of a phenotype using GES derived in different samples. 266 

(Fig. 1,3-5).  267 

Second, we develop a new signature type termed structural gene expression signature (sGES), 268 

using features derived from various levels of protein structure (Fig. 1). The structural signature 269 

alone is able to characterize biological phenomena such as tissue type (Fig. 2). sGES overall 270 

improve the consistency of GES, while not impacting the predictive performance of signatures 271 

both within the same GES dataset and across gene expression datasets (Fig. 3-4).  272 

We also observed that integration of sGES and GES (using an autoencoder) facilitates the 273 

identification outliers among experimental samples enabling the filtering of unrelated samples to 274 

identify a robust expression signature and  improve the reproducibility of transcriptomics analysis 275 

studies (Fig. 5).  276 

Third, the structural signature was tested on multiple independent datasets, including a newly 277 

generated set of differentially expressed genes from DToxS (Fig. 6). This finding shows that 278 

distinct structural signatures can also be used to characterize the effects of perturbation. For 279 

example, structural signatures distinguish kinase inhibitors from anthracyclines, since 280 

anthracyclines down regulate several folds associated with tRNA regulatory factors. It has been 281 

shown that doxorubicin and its analogs bind to tRNA molecules which has been thought to 282 

contribute to their antitumor activity; however, explicit downregulation of tRNA molecules has 283 

not been previously reported, demonstrating a potential novel mechanism of anthracycline drug 284 

action (31–33). We expect that further investigation of sGES can lead to the identification of co-285 

expressed structures which may reveal novel interactions between certain types proteins.   286 

 287 
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Materials and Methods 288 
 289 
Computation of gene set consistency 290 

Gene expression data was downloaded from the GTEx, version 7. For each experimental sample, 291 

each gene was sorted by expression level, in transcripts per million (TPM), and the top 50, 250, 292 

and 1,000 expressed genes were selected. For each pair of experimental samples from the same 293 

tissue subtype, the Jaccard coefficient (JC) was calculated to measure the overlap of GES between 294 

samples of the same tissue type. The Jaccard Coefficient JC was computed as follows:  295 

Eqn. 1      𝐽 =  
| ∩ |

|  ∪ |
  296 

Where A and B are sets of genes names of size N (the top 50, 250, and 1,000 expressed genes). 297 

Distributions of JC for each gene set size, from selected tissues, were collected to measure 298 

robustness transcriptional signatures. A null distribution was generated by computing 1,000 299 

bootstrap JC values between pairs of gene sets from distinct tissue types, without replacement, for 300 

gene sets of sizes 50, 250, and 1,000.  301 

Definition of a structural gene expression signature (sGES) 302 

A structural signature for each gene set was determined by identifying available structural 303 

features from the encoded protein of each gene (Fig. 1). We defined a structural feature as a 304 

member of the structural hierarchy from the Structural Classification of Proteins extended 305 

(SCOPe) database (version 2.07). Here, structural features such as domains are categorized into 306 

families, which are categorized into superfamilies, which are further classified into distinct folds. 307 

We used HHpred (version 3.2.0) to annotate the SCOPe structural features of each protein, in the 308 

entire proteome. We used the following minimum threshold values for assigning SCOPe 309 

identifiers to proteins: length of alignment to a structure 30 residues, probability score: 50, 310 

overlap coverage: 80%, p-value: 1e-05, e-value: 1e-05, percent identity: 30%, coverage against 311 

template 30%.   312 

In addition to the SCOPe hierarchy, we also obtained InterProScan (version 5.36) protein domain 313 

annotations for the human proteome, from UniProt (downloaded June 2018). For a given gene set, 314 

each structural feature was evaluated for enrichment in the gene set using a one-sided Fisher’s 315 

exact test, comparing the counts of the structural feature in the given gene set to the counts of 316 

each structural feature in the human proteome. For each gene set, a resulting structural signature 317 

is derived at the domain, family, superfamily, and fold levels, along with the log10x change, the 318 

p-value of enrichment (association), and the Bonferroni adjusted p-value (q-value) for each 319 

structural feature.  320 

A random forest algorithm for predicting tissue type 321 

We trained a random forest classifier to predict tissue labels from gene set sizes of 50, 250, and 322 

1,000 from GTEx expression data. We used a random forest model from the R package Ranger, 323 

for each sample from GTEx where each feature was a gene, and the value was the rank of the 324 

gene, based on the TPM observed from RNA sequencing. Genes not seen in a sample’s gene set 325 

were given a value of 0. The random forest model was trained using default parameters (mtry 326 

=20, ntree = 100). Ten-fold cross validation was used to measure performance of the GES, using 327 

a 50/50 testing-training, per tissue, split; meaning 50% of all samples, per tissue was used for 328 

either testing and training, with replacement. Receiver operator curves (ROC) were generated 329 

using the pROC package in the R programming language. Importantly, we did not perform 330 

parameter optimization for the random forest method since our goal was not optimal predictive 331 

performance, but rather to determine the baseline predictive performance of GES.     332 

Predictivity of random forest models on ARCHS4 gene sets  333 

Gene expression datasets of the following tissues: adipose, brain, colon, esophagus, fallopian 334 

tube, heart, kidney, liver, lung, muscle, nerve, ovary, pancreas, prostate, small intestine, spleen, 335 

stomach, testis, thyroid, uterus, vagina, and whole blood, were downloaded from the ARCHS4 336 

database (March 2019). The top 250 overexpressed genes from each of the samples of the tissue 337 
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types were obtained by ranking the read counts of the Kalisto aligned expression data. We then 338 

predicted ARCHS4 tissue class using the random forest model trained on GTEx GES.     339 

Signature consistency  340 

A structural signature was obtained for gene sets of sizes 50 to 1,000, across all GTEx tissue 341 

types. Pairwise Jaccard coefficients (JC; Eqn. 1) were then computed between structural 342 

signatures of the same gene set size, and the same tissue. The median JC at each gene set size per 343 

tissue defined the overall consistency.  344 

Clustering GTEx samples  345 

For each tissue sample, the log10X change for each structure in the structural signature derived at 346 

250 genes was used as input for t-distributed Stochastic Network Embedding (t-SNE) using the 347 

Rtsne package, using default perplexity (28) settings and was run for 1,000 iterations. For tissues 348 

where a structure was not observed, a value of 0 was used.  349 

sGES predictivity  350 

As described above for GES, 10x cross validation was performed for predicting GTEx tissues 351 

class from the p-value of association of each structural feature in the signature. Structural 352 

signatures were generated from the ARCHS4 gene signature set and were used to validate the 353 

performance of the random forest classifier trained on GTEx structural signatures.  354 

Integration of GES and sGES  355 

A stacked denoising autoencoder was used to embed structural signatures into a lower 356 

dimensionality matrix. We utilized a typical symmetrical autoencoder architecture of 3 dense 357 

(fully connected) encoding and decoding layers with 100, 50, 25 neurons and a bottleneck layer of 358 

10 neurons using the Keras package in R. Each layer’s activation function was set to ‘relu’, 359 

except for the final layer whose activation function was set to ‘sigmoid’. We used the mean 360 

squared error between the input and output layers as the loss function for the model, ran the 361 

autoencoder for 50 epochs and utilized the ‘adam’ optimizer to update network weights. For each 362 

of the structural layers the bottleneck layer was selected and combined into a flattened matrix.  363 

Interoperability of GTEx and ARCHS4 GES 364 

We then used two simple neural network models to predict 1) ARCHS4 tissue classes trained on 365 

the  integrated signature of GTEx data, and 2) GTEx tissue classes from ARCHS4 integrated 366 

signatures to investigate interoperability of the two datasets. The neural network architecture is as 367 

follows: 3 densely connected hidden layers of 100 neurons each using the Keras package in R. 368 

The input layer and the first two hidden layers utilized the ‘relu’ activation function, while the 369 

final hidden layer used the ‘softmax’ activation function. The neural network used the ‘adam’ 370 

optimizer, and the ‘categorical_crossentropy’ loss function since the output layer consisted of 22 371 

tissue categories.  372 

Experimental protocols for cell culture, drug treatment and transcriptomics 373 

Details of the experimental protocols for cell culture, drug treatment and transcriptomics have 374 

been described as step-by-step standard operating procedures for the various experiments 375 

available on www.dtoxs.org. 376 

Classification of Promocell Cardiomyocyte cell lines 377 

For each control Promocell cardiomyocyte sample that were not exposed to a perturbagen, a set of 378 

250 top overexpressed genes were obtained. Structural signatures were generated and plotted 379 

against a t-SNE of GTEx samples, using the log10X change of each structural feature. Pairwise 380 

Euclidean distances were taken between each control Promocell sample and all other samples in 381 

GTEx to determine the tissue type Promocells were most similar to.  382 

Processing and exploratory analysis of gene expression data 383 

The median log-transformed gene expression fold-change value was calculated across all cell 384 

lines for each individual small molecule drug. The resulting matrix of gene fold change values by 385 

drugs was used for the regression analysis. To obtain insight in the general patterns present in this 386 

drug-perturbed transcriptomics dataset, we generated rankings of the top 500 genes for each drug, 387 
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by their absolute mean fold change value, i.e. whether positive or negative. For each of these 388 

drug-associated rankings we determined the frequency of these changes being also present in the 389 

ranking of other drugs, e.g. the similarity in genes present in the top 250 gene lists for each drug. 390 

This was visualized using the Jc, and by plotting the most highly drug-connected genes against 391 

the associated drugs. Principal component analysis for the first 3 principal components on the 392 

absolute mean fold-change values for each drug was performed to further assess similarity 393 

between drugs in their gene expression values. 394 

Structural characterization of DEGs from perturbagen studies 395 

For each experimental sample from the DToxS set, the top 250 DEGs were obtained by ranking 396 

the observed p-value for each gene. Structural enrichment was performed for all DEGs combined, 397 

only overexpressed genes (by positive log10x change) or only underexpressed genes (by negative 398 

log10x change). The log10x change of each structure in the structural signature of the combined 399 

gene set was used for t-SNE clustering, where structures that were unseen for a given gene set 400 

were set to 0. Each drug is colored by their level 4 Anatomic Therapeutic Code (ATC), if 401 

available. Otherwise, drugs were manually assigned to an ATC code based on the known target of 402 

the drug tested.  403 

Clustering of kinase inhibitors 404 

Selected kinase inhibitors were hierarchically clustered based on the log10x change of each 405 

structural feature from over- and under expressed gene sets using the Ward method from the 406 

hclust method in the R programming language.  407 

 408 
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Figures and Tables 551 

 552 

Fig. 1: Study design. A) Evaluation metrics for GES (GS) consistency, predictivity, and 553 

robustness. B) Approach of measuring consistency, robustness and outlier detection. C) SCOPe 554 

hierarchy of protein structural features, with examples. D) Workflow to generate structural gene 555 

expression signatures (sGES). E) Workflow for evaluating the reproducibility of GES, structural 556 

signatures, and integrated signatures from GTEx and ARCHS4. 557 

  558 
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 559 

 560 

Fig. 2: Protein structure enrichment clusters tissue-specific gene expression. The top 250 561 

highest expressed genes from GTEx (in terms of transcripts per million) were obtained. Tissue 562 

samples were then clustered based on the presence or absence of the GES using t-SNE. sGES 563 

were then derived from the GES, and tissue samples were clustered by using t-SNE based on the 564 

presence or absence of structural features at the domain and fold levels. Each sample is colored by 565 

tissue type.    566 
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Fig. 3: Signature consistency improves using protein structure. A) Distributions of Jaccard 568 

coefficient (JC) values within tissue types. For each pairs of samples, in each tissue type (as 569 

cataloged by GTEx), a JC was computed for the top 250 highly expressed genes (by TPM) and 570 

their derivative sGES at each structural level. The JC is defined as the intersection over the union 571 

of two sets and can be thought of as the percentage overlap of two sets. All distributions are 572 

statistically significant from each other using pairwise t-tests, with FDR correction (Table S2). 573 

The red line indicates a JC of 0.25. B) distributions if structures are randomly assigned to each 574 

gene (1,000 bootstraps). ‘Across tissues’ are JC distributions between unlike tissue types (1,000 575 

bootstraps). ‘Within tissues’ are the JC distributions between the same tissue type. Within tissue 576 

comparisons are significantly higher than random structure comparisons and JC values between 577 

distinct tissue type. Red line indicates a JC = 0.25. C) Pairwise GES JC distributions across 578 

randomly selected, distinct tissues types, repeated 1,000 times. D) A random forest was trained 579 

using GES (of size 250) and sGES at different structural levels (Domain, Family, Superfamily 580 

[Sfamily], and Fold) for GTEx tissue expression data. Area under the curves (AUC) are displayed 581 

for each structural level.  582 

  583 
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 584 

 585 

Fig. 4: Robustness of GTEx GES using the ARCHS4 database. A) Distributions of JC  values 586 

for a gene signature size of 250 for tissues within the ARCHS4 database (purple), the GTEx 587 

database (green), and across the ARCHS4 and GTEx databases (blue). Red line indicates a JC = 588 

0.25. B) Overlap of GTEx sGES with ARCHS4 signatures, across all structure levels. Red line 589 

indicates a JC = 0.25. C) Predictive performance of a Random Forest model on GTEx gene sets of 590 
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size 50, 250, and 1,000 highly expressed genes for predicting tissues from the ARCHS4 database, 591 

after 10-fold cross validation. D) Performance of a random forest classifier to predict ARCHS4 592 

tissue type trained on GTEx top 250 GES or derived sGES. 593 
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Fig. 5: Integrated signatures enable identification of robust signatures across databases. A) 596 

Detection of outlier samples compared to GTEx gene signatures using a stacked denoising 597 

autoencoder trained to reconstruct gene signature membership from GTEx gene signatures (of 598 

size 250). Samples with high reconstruction error indicate that the sample is an outlier when 599 

compared to GTEx gene signatures. The red line indicates error values 2 standard deviations away 600 

from the mean of the distribution of errors reconstructing a validation GTEx set (error of .00725). 601 

Overlap of GTEx GES and structural signatures with ARCHS4 signatures, across tissues. B) 602 

Outlier detection using distinct structural signature levels. C) Outlier detection using integrated 603 

signatures. D)  Predictive performance of GTEx GES to predict ARCHS4 tissue types, before and 604 

after outliers were removed.  E) Consistency of GES and sGES of across ARCHS4 and GTEx for 605 

muscle and whole blood tissue types, before outlier removal (black) and after outlier removal 606 

(turquoise). Red line indicates a JC = 0.25.  607 
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 609 
Fig. 6: Characterization of kinase inhibitor activity using structural signatures. A) t-SNE 610 

clustering of fold signatures from distinct type of drugs on Promocell cardiomyocyte-like cell 611 

lines. Rows are labeled by Drug name, or level 3 ATC category. B) Overexpressed fold signatures 612 
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for certain drugs. C) Under-expressed fold signatures for certain drugs. Distinct over and under-613 

expressed clusters of folds are given numbers and are described in Tables 2-3.   614 
 615 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2020. ; https://doi.org/10.1101/2020.06.03.133066doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.03.133066
http://creativecommons.org/licenses/by-nc-nd/4.0/

