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Québec, Canada

2Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University
of Oxford, Oxford, United Kingdom

?Joint senior authors, listed alphabetically

June 3, 2020

Abstract

Simulation plays a central role in population genomics studies. Recent years have seen rapid improve-
ments in software efficiency that make it possible to simulate large genomic regions for many individuals
sampled from large numbers of populations. As the complexity of the demographic models we study
grows, however, there is an ever-increasing opportunity to introduce bugs in their implementation. Here
we describe two errors made in defining population genetic models using the msprime coalescent simu-
lator that have found their way into the published record. We discuss how these errors have affected
downstream analyses and give recommendations for software developers and users to reduce the risk of
such errors.

Introduction

In the effort to build more realistic simulations of genetic diversity, scientific software developers often
focus on computational speed and biological realism. As the models simulated become more realistic,
however, they also become more complex and difficult to specify. The interface through which users
define their models is therefore increasingly important. Without an intuitive and thoroughly documented
interface, it is very difficult to simulate complex population models correctly.

The msprime coalescent simulator (Kelleher et al., 2016; Nelson et al., 2020; Kelleher and Lohse, 2020)
is now widely used in genetics studies. Much of its appeal is the large increase in efficiency over the clas-
sical ms program (Hudson, 2002) which makes it feasible to simulate large samples of whole chromosomes
for the first time. Another distinct advantage of msprime is its Python application programming interface
(API), which greatly increases the flexibility and ease of use over the standard approach of text-based
command line interfaces. In particular, programs like ms require users to specify cryptic command line
options to describe demographic models. For example, the Gutenkunst et al. (2009) demographic model
(that is the subject of this note), as written in ms syntax, is

-n 1 1.682020 -n 2 3.736830 -n 3 7.292050

-eg 0 2 116.010723 -eg 0 3 160.246047

-ma x 0.881098 0.561966 0.881098 x 2.797460 0.561966 2.797460 x

-ej 0.028985 3 2 -en 0.028985 2 0.287184

-ema 0.028985 3 x 7.293140 x 7.293140 x x x x x

-ej 0.197963 2 1 -en 0.303501 1 1

This model is relatively simple, and models with many more populations and parameters are increasingly
common. Descriptions of such models in ms syntax are not easy to comprehend. The Python interface
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for msprime, by contrast, allows the user to state models in a more human-readable and programmatic
manner, and has many advantages over ms’s command line interface.

Even when using a high-level programming language like Python, however, implementing multi-
population models of demographic history is difficult and error-prone. In this note we discuss two
implementation errors that arose through unfortunate design decisions in msprime’s demography API
and which then found their way into the scientific record. The first error has relatively mild effects on
genetic diversity but was used in many publications, while the second error was used only once but had a
large impact on the simulation results. In light of these implementation errors, we discuss improvements
to msprime’s API motivated by these discoveries and, more generally, best practices for implementing
and simulating complex multi-population demography.

Case 1: A misspecified model in msprime’s documentation

To illustrate the demography API, msprime included a description of a widely-used three population
Out-of-Africa model (Gutenkunst et al., 2009) as part of its tutorial documentation. In this model
(Fig. 1A), Eurasian (CEU and CHB) and African (YRI) populations split from each other in the deep
past, followed by a more recent split of European and Asian populations, with variable rates of continuous
migration between each of the populations. Regrettably, the implementation in the msprime tutorial was
incorrect. Before the time of the split of African and Eurasian populations, when there should have
been just a single randomly mating population, migration was allowed to occur between the ancestral
population and a second population with size equal to the Eurasian bottleneck size for all time into the
past (Fig. 1B). This incorrect model was introduced into the tutorial for msprime ver. 0.3.0 and remained
in the documentation for around four years.

Fortunately, the effects of this error are subtle. Population sizes and structure since the time of
the earliest split are unaffected, so differences in expected FST are negligible between the correct and
incorrect models. However, the ancient structure distorts the distribution of early TMRCAs (Fig. 1E-G).
The extraneous ancient population increases the long-term effective population size, resulting in roughly
4% excess heterozygosity in contemporary populations compared to the intended model, but the overall
effects on patterns of diversity are minimal (Fig. 1C,D).

Even though the error has a limited effect on simulated data, the tutorial code has been copied many
times and used in publications. By searching for some identifying strings from the model definition on
GitHub, we found 32 repositories containing either direct copies of the erroneous model code, or code
that was obviously derived from it. (We have opened issues on each of these repositories to alert the
authors.) In most cases the publications used simulations to test a non-demographic inference method,
and the model was used as an example of a complex population history (Kelleher et al., 2019; Albers and
McVean, 2020; Tong and Hernandez, 2020). Zhou et al. (2018) used the incorrect model as an example of
how their method for visualising demographic models can support msprime input. Finally, Pfaffelhuber
et al. (2020) used simulations of the incorrect model demography to evaluate their method for choosing
ancestry informative markers. Given the very subtle effect of the incorrect model on demography (and
the fact the method was evaluated using other simulations and real data), it seems unlikely that the
model details had any qualitative effect on their conclusions.

This long-standing error could have been prevented by better API design. To model a population
split currently in msprime, a user must specify a MassMigration event that moves lineages from one
population to another and then must also remember to turn off migration between those populations at
the same time. The demographic events for the correct model are given as
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1 demographic_events = [

2 # CEU and CHB merge into B with rate changes at T_EU_AS

3 msprime.MassMigration(

4 time=T_EU_AS, source=2, destination=1, proportion=1.0),

5 msprime.MigrationRateChange(time=T_EU_AS, rate=0),

6 msprime.MigrationRateChange(

7 time=T_EU_AS, rate=m_AF_B, matrix_index=(0, 1)),

8 msprime.MigrationRateChange(

9 time=T_EU_AS, rate=m_AF_B, matrix_index=(1, 0)),

10 msprime.PopulationParametersChange(

11 time=T_EU_AS, initial_size=N_B, growth_rate=0, population_id=1),

12 # Population B merges into YRI at T_B

13 msprime.MassMigration(

14 time=T_B, source=1, destination=0, proportion=1.0),

15 msprime.MigrationRateChange(time=T_B, rate=0), # NB This line was missing!!!

16 # Size changes to N_A at T_AF

17 msprime.PopulationParametersChange(

18 time=T_AF, initial_size=N_A, population_id=0)

19 ]

Note that the migration rate change on 15 was missing in the incorrect model. The release of msprime
version 1.0 will introduce a PopulationSplit event, which more intuitively links the movement of lineages
with appropriate changes in migration rates at the time of the split.

Case 2: Incorrect model parameters in an analysis pipeline

In another publication using this model (Martin et al., 2017), a separate error was introduced: the
model itself was defined as suggested in the documentation (using updated parameters from Gravel et al.
(2011)) and inspected using the msprime debugging tools. Despite these initial checks being made, the
simulation was performed without passing the parameter defining demographic events, so that the three
populations never merged and remained separated with low levels of migration (Fig 2A), leading to a vast
overestimate of the divergence across human populations. While the correct model predicts a mean FST

of 0.05−0.10 across the three population, the simulated model generated FST ranging between 0.3−0.6,
depending on the populations considered. Overall diversity was also strongly affected: heterozygosity
was more than doubled in African populations and reduced by more than half in Eurasian populations
relative to the correct model.

This simulation was performed to assess the transferability of polygenic risk scores across human
populations. In other words, it sought to explore how human demographic history and population struc-
ture affect our ability to predict genetic risk in diverse populations given the well-documented unequal
representation in medical genetic studies (Popejoy and Fullerton, 2016). The resulting publication has
been influential in the discussion of health inequalities and genomics, with over 350 citations since 2017.
The large excess in divergence under the incorrect model here exaggerated the role of demography and
genetic drift in limiting the transferability of genetic risk scores across populations.

Difficulties in transferability remain in the corrected model (Fig. 2), although risk prediction in each
population is significantly improved (compare to Fig. 5 in Martin et al. (2017)). Simulations under the
correct model indicate that the accuracy of genetic risk scores is still substantially reduced in understudied
populations (Fig. 2E-G), supporting one of the main conclusions of Martin et al. (2017). However, the
reduction is much less pronounced than reported. In particular, we do not observe large differences in
mean predicted risk across populations (Fig. 2C,D), present in data and simulations from Martin et al.
(2017). Thus, a model with continental-scale demographic structure, highly polygenic architecture, and
neutral evolution does not appear to explain the large directional biases in mean predicted risk identified
in Martin et al. (2017).

From a software perspective, this error was easy to make and could have been prevented by better
API design. The original msprime API requires the user to pass three separate parameters to specify a
demographic model. For example,
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dbg = msprime.DemographyDebugger(

population_configurations=population_configurations,

demographic_events=demographic_events,

migration_matrix=migration_matrix)

dbg.print_history()

ts = msprime.simulate(

population_configurations=population_configurations,

demographic_events=demographic_events, # Missing in Martin et al. 2017

migration_matrix=migration_matrix)

Note that the same three parameters must be passed to both the debugger and the simulate function.
To help prevent such errors, msprime ver. 1.0 will introduce a Demography class. The above snippet
would then be rewritten as

demography = msprime.Demography(

population_configurations=population_configurations,

demographic_events=demographic_events,

migration_matrix=migration_matrix)

dbg = demography.debug()

dbg.print_history()

ts = msprime.simulate(demography=demography)

This simple change to the interface makes it much less likely that different models are passed to the
debugger and simulator, reducing the potential for error.

Conclusions

The implementation of complex demographic models is error prone, and such errors can have a large
impact on downstream analyses and interpretation. The discovery and correction of the demographic
models discussed here underscore how API design choice can lead to the propagation of mistakes that
are difficult to notice. We therefore recommend the following steps to ensure more robust simulations.

Firstly, if possible, we recommend avoiding the implementation of demographic models entirely by
using stdpopsim (Adrion et al., 2019). This is a “standard library” of quality-controlled models and
simulation resources for a growing number of commonly studied species. The resource is built around an
open-source community development model with rigorous code review and quality control procedures.
For example, when a contributor adds a new model it is not fully integrated into the catalog until a
second, entirely independent, implementation of the model is provided by another developer. If the
original and “QC” versions of the model are precisely equal, then we can have a reasonable degree
of confidence in correctness. It is through this QC process that we discovered the misspecified model
in msprime’s documentation. If the required model is not present in stdpopsim, then particular care
should be taken to validate the implementation. This could include verification through code review
or comparison with an independent implementation of the model. If the model is of wider interest to
the community, we would encourage developers to contribute it to stdpopsim: at the very least, the
quality-control procedures in place provide a strong reassurance of correctness.

Secondly, regardless of whether the model has been implemented locally or obtained from a resource
like stdpopsim, basic statistical validation should always be performed on the results. Errors are all too
easy to make, and an analysis of the basic statistical properties of the simulations is essential due diligence.
For example, a brief analysis of FST values would likely would have prevented the error in Martin et al.
(2017). It is understandable that such analyses were not undertaken in this case, as processing such a huge
dataset (600,000 samples) was highly challenging. Recent progress has made statistical analysis this scale
much easier (Ralph et al., 2020), but the problems would have been apparent if smaller pilot simulations
were undertaken and analysed. Graphical inspection of demographic models can also help identify issues,
especially if visualization can be automated. The demography debugging tool in msprime summarizes
demographic events occurring over time, and various efforts are underway to facilitate the specification
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and visualization of population genetics models, such as Zhou et al. (2018) and the demography package
used in this paper.

Finally, openness is essential to the self-correcting nature of science. We only know about these errors
because of open code and open-source development processes. By making their entire pipeline available,
Martin et al. (2017) not only enabled other research teams to build upon their findings, but they made
it possible for errors to be found and corrected. There must be many, many more mistakes out there,
and we need both pre- and post-publication vigilance from users and developers to ensure the soundness
of the large body of simulation-based analyses.

Methods

We computed the expected allele frequency spectrum using moments ver. 1.0.3 (Jouganous et al., 2017),
and LD-decay curves using moments.LD (Ragsdale and Gravel, 2019). FST and other diversity statistics
were computed from the expected AFS and verified using branch statistics from the output of msprime

simulations using tskit ver. 0.2.3 (Ralph et al., 2020). Demographic models were plotted using the
demography package (https://github.com/apragsdale/demography, ver. 0.0.3). We used the original
pipeline from Martin et al. (2017) available from https://github.com/armartin/ancestry_pipeline/

blob/master/simulate_prs.py. We updated the pipeline to run with the correct demographic pa-
rameters and more recent versions of msprime and tskit, and the updated pipeline is available at
https://github.com/apragsdale/PRS. Data and Python scripts to recreate Figures 1 and 2 can be found
at https://github.com/jeromekelleher/msprime-model-errors. A full list of the GitHub repositories
containing copies of the erroneous model are also given here.
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Figure 1: Expected diversity statistics under the Gutenkunst et al. (2009) model. (A) The
correctly implemented model. Dashed arrows depict continuous migration. (B) The incorrectly implemented
model from the msprime tutorial, with migration continuing into the past beyond the mass migration event
with proportion 1 from the ancestral population to the bottleneck population. (C) Marginal allele frequency
spectra under the two models. Heterozygosity in the incorrect model is inflated by ∼ 3.5%, though the
general shape of the distributions are qualitatively similar. (D) Similarly, the increased heterozygosity leads
to excess D2, though the LD-decay is qualitatively similar between models. (E-G) True size history for each
population plotted against the expected size history computed from the inverse coalescence rates under each
model.
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Figure 2: The transferability of PRS under neutrality. (A) In Martin et al. (2017), the simulated
demographic model did not apply demographic events in the past, so continental populations were simulated
as isolated with low levels of migration for all time. The correct model has historical events as shown in
Fig. 1A. (B-G) We repeated the simulation experiment in Martin et al. (2017) using the correct demographic
model. GWAS summary statistics were computed from 10,000 case and control subjects in the European
population, and the distribution of inferred PRS were compared across the three simulated populations.
Correlations between true and inferred polygenic scores were computed over 100 simulation replicates. Unlike
the original study, we do not observe large differences in mean inferred PRS across the three populations
(C, D), and while risk prediction in the African and East Asian populations is still reduced compared to
the European population, the reduction in prediction accuracy is not as large as reported in the original
study (E-G). Panel D shows a comparison of PRS distributions for a simulation replicate with 1,000 causal
variants. For each population in the violin plots, the original correlations from Martin et al. (2017) are
shown on the left, and correlations using the correct model are shown on the right. For direct comparison
to the original study, see Figure 5 in Martin et al. (2017).
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