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Abstract 
Working memory (WM) is an online memory system that is critical for holding information 

in a rapidly accessible state during ongoing cognitive processing. Thus, there is strong 

value in methods that provide a temporally-resolved index of WM load. While univariate 

EEG signals have been identified that vary with WM load, recent advances in multivariate 

analytic approaches suggest that there may be rich sources of information that do not 

generate reliable univariate signatures. Here, using data from 4 published studies (n = 

286 and >250,000 trials), we demonstrate that multivariate analysis of EEG voltage 

topography provides a sensitive index of the number of items stored in WM that 

generalizes to novel human observers. Moreover, multivariate load detection can provide 

robust information at the single-trial level, exceeding the sensitivity of extant univariate 

approaches. We show that this method tracks WM load in a manner that is (1) 

independent of the spatial position of the memoranda, (2) precise enough to differentiate 

item-by-item increments in the number of stored items, (3) generalizable across distinct 

tasks and stimulus displays and (4) correlated with individual differences in WM behavior. 

Thus, this approach provides a powerful complement to univariate analytic approaches, 

enabling temporally-resolved tracking of online memory storage in humans.  
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Significance Statement 
Working memory (WM) is a workspace used to temporarily hold information in mind, and 

it is critical for complex cognition. Because behavioral measures are influenced by myriad 

task factors (e.g., response bias), neural measures are critical for characterizing WM 

maintenance per se and for tracking its involvement in other processes. Here, we used a 

large dataset to develop multivariate load detection: a new method for tracking active WM 

storage using the human EEG signal. We show that multivariate load detection is 

incredibly sensitive and generalizable, predicting load on single trials and generalizing 

across tasks and observers. Thus, multivariate load detection offers key advances over 

existing univariate measures and will be useful for both basic and applied research (e.g., 

brain-computer interfaces).  
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Introduction 
Working memory serves as a critical interface between perception, memory, and action. 

Given the critical role of working memory in complex cognition, much prior work has been 

dedicated to identifying measures of the human electroencephalogram (EEG) signal that 

track working memory load in near real-time. The most widely-used of these measures is 

the contralateral delay activity (Vogel and Machizawa, 2004; Vogel et al., 2005), though 

other univariate measures such as suppressed alpha power and a sustained negative 

slow-wave have also been identified (Fukuda et al., 2015a, 2016). Tracking online 

working memory storage is critical for testing working memory’s role as an interface 

between varied cognitive demands. Studies taking advantage of univariate measures like 

the CDA have demonstrated filtering within working memory (Vogel et al., 2005), the role 

of working memory in guiding visual search (Emrich et al., 2009; Carlisle et al., 2011; 

Olivers et al., 2011; Woodman and Arita, 2011), the role of working memory in buffering 

retrieval from long-term memory (Fukuda and Woodman, 2017), and the role of existing 

long-term memories in shaping working memory encoding (Xie and Zhang, 2018). In 

cases where behavior is equivocal, ERP measures are critical for disentangling 

competing explanations of an observed behavioral pattern. For example, unobtrusively 

monitoring the CDA during a typical visual search task revealed that search templates 

initially held working memory are moved to long-term memory with experience (Carlisle 

et al., 2011). Given the clear utility of near-real-time measures of working memory load, 

we present a novel analytic approach that provides a strong leap forward in the search 

for more sensitive and precise measures of storage in working memory.  

 

Although univariate measures have been very productive for tackling many important 

questions about how and when working memory resources are deployed, they may miss 

some important aspects of the memory signal. For example, in the domain of spatial 

attention, it has long been known that lateralized, univariate changes to alpha power (e.g., 

contralateral alpha suppression) can be used to track attention to the left versus right 

hemifield, and that the topography of alpha power is modulated by finer-grained 

manipulations of spatial position (e.g., Rihs et al., 2007). In this context, multivariate 
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analysis of alpha topography has been shown to provide a spatially- and temporally-

resolved index of covert attention that substantially improves the utility of this signal for 

covert tracking of spatial attention (Foster et al., 2017). In addition to expanding the utility 

of known univariate measures, multivariate tools allow us to track information that was 

previously opaque to univariate analysis. For example, recent work has shown that 

motion direction of a dot cloud (Bae and Luck, 2019a) and a single remembered 

orientation (Wolff et al., 2015, 2017; Bae and Luck, 2018, 2019b) can be decoded from 

the topography of event-related potentials (ERPs), despite the absence of clear univariate 

signals that track this information. 

 

Here, we show that a similar multivariate approach enables tracking of online memory 

load in a sensitive and temporally-resolved fashion. Note, throughout the paper we define 

working memory load as the increasing amount of information held in mind with increasing 

memory set size. Although there is an ongoing debate about the format of mnemonic 

representations (e.g., item-based versus a flexible resource; Bays, 2018; Hakim et al., 

2019), we do not directly address this issue here. In 3 experiments, we demonstrate that 

we can predict working memory set size from event-related potentials of small groups of 

trials and even with single trials of EEG data. Further analyses demonstrate that this 

multivariate decoding signal has the expected profile of a working memory signal (e.g., 

modulated by working memory task demands; shows higher confusability for supra-

capacity working memory loads) and carries promise for future cross-subject, cross-

experiment decoding applications.    

 

Materials and Methods 

Overview of Datasets 
We used four previously published datasets to examine whether and why we can 

decode working memory load from the electroencephalogram (EEG) signal. Further 

methodological details about the participants, tasks, and data acquisition can be found in 

each of the original published papers (Unsworth et al., 2014, 2015; Fukuda et al., 2015a, 
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2015b; Hakim et al., 2019). Some high-level information about the studies is provided in 

Table 1 and below. 

 Experiment 1. Participants performed two conditions of a lateralized change 

detection task (Unsworth et al., 2014, 2015); EEG data were collected from 20 passive 

electrodes. In one condition, participants remembered the colors of items (color change 

detection; set size 2 and 6). In the other condition, participants remembered the shapes 

of items (shape change detection, set size 2 and 6). Here, we collapse across the color 

and shape conditions (i.e., just examining set size 2 versus 6 overall). See Figure S1 for 

confirmation that the general results hold for separately analyzed color and shape 

conditions. The full dataset includes 183 participants, with 200 trials per sub-condition 

(e.g., “shape set size 2”). Participants were analyzed if they had at minimum 160 trials 

per sub-condition after artifact rejection, leaving 152 subjects for analysis (M = 382 trials 

per set size after collapsing across color and shape). 

 Experiment 2a. Participants completed two conditions of a change detection task: 

lateralized change detection and whole-field change detection (Fukuda et al., 2015a); 

EEG data were collected from 20 passive electrodes. Participants (n = 29) completed 80 

trials per set size (1-4, 6, and 8) in each condition (M = 68.8 trials per set size in each 

task condition). 

 Experiment 2b. Participants (n = 31) completed a lateralized change detection 

task (Fukuda et al., 2015b); EEG data were collected from 20 passive electrodes. There 

were eight set size conditions (1-8; M = 201.3 trials per set size).   

 Experiment 3. The full dataset includes 97 sessions from 4 sub-experiments 

(some additional sessions were collected but excluded according to the artifact rejection 

criteria detailed in (Unsworth et al., 2014, 2015; Fukuda et al., 2015a, 2015b; Hakim et 

al., 2019)EEG data were collected from 32 active electrodes. In published work, we 

demonstrated no major differences between these 4 sub-experiments and we performed 

analyses collapsed across all 4 sub-experiments (Hakim et al., 2019). We likewise 

combined data across all 4 sub-experiments here. All participants completed two key task 

conditions: (1) a lateralized working memory task, and (2) a lateralized attention task. In 

some sub-experiments, the lateralized working memory task employed color memoranda 
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and in other cases the lateralized working memory task employed spatial memoranda. In 

all cases, there were two set sizes (2 or 4 items) in each task (M = 263.8 trials per set 

size in each condition). Although participants could complete each sub-experiment only 

once, some participants completed multiple sub-experiments. This resulted in a total of 

73 unique subjects. If a participant completed more than one sub-experiment, we 

averaged their behavioral and classification results across sessions so that each 

participant was equally represented in the full dataset. 

 
Table 1. Overview of datasets 
Exp. Paper Task Set Sizes Total trials Subjects (n) 
1 Unsworth et al., 

2014; 2015 
Lateralized 
change detection  

2, 6 116,101 152 

2a Fukuda, Mance, 
Vogel 2015 

Lateralized & 
Whole-field 
change detection 

1-4, 6, 8 23,951 30 

2b Fukuda, Woodman, 
Vogel 2015 

Lateralized 
change detection 

1-8 49,916 31 

3 Hakim et al. 2019 Lateralized 
change detection; 
Lateralized 
attention task 

2, 4 102,358 73* 
 
  
 

*73 unique subjects participated in one or more of the 4 sub-experiments (total of 97 
sessions).  
 

Tasks 

 Lateralized change detection. On each trial, participants are first cued to attend 

one hemifield (left or right) with a brief spatial cue. After the cue, there is a blank interval 

(“cue-to-array SOA”), and then the memory array appears. The memory array consists of 

brightly colored squares drawn in both hemifields. Participants are instructed to remember 

only the colored squares in the cued hemifield across a blank delay period. At test, a 

single colored square is presented at one of the remembered locations. On 50% of trials 

(“same trials”), the test square is the same color as the item presented at that position. 

On the other 50% of trials (“change trials”), the test square is a different color from before. 

Participants press one of 2 keys to indicate whether the test square is the same color or 

has changed colors. The exact task timing varied slightly across datasets. Experiments 1 
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and 2b used a cue duration of 200 ms, cue-to-array SOA of 500 ms, memory array 

duration of 150 ms, and a delay period of 900 ms. Experiment 2a used a cue duration of 

150 ms, cue-to-array SOA of 1,150 ms, memory array duration of 150 ms, and a delay 

period of 1150 ms. The working memory condition from Experiment 3 used a cue duration 

of 300 ms, cue-to-array SOA of 0 ms, array presentation of 150 ms, delay period of 1,300 

ms, and a blank inter-trial interval of 750 ms. Experiment 3 is a combination of 4 sub-

experiments reported in Hakim et al. 2019. The task events and timing are consistent 

across all 4 sub-experiments. In 2 sub-experiments participants remembered color (as 

described); in the other 2 sub-experiments, participants remembered the spatial position 

of items, and were tested with an item that was either at the same location (“same trial”) 

or with an item that appeared at a foil location a minimum of 1.5 objects’-width away from 

any of the remembered locations (“different trial”). Prior work revealed that these stimulus-

specific differences did not greatly alter the contralateral delay activity, and that it was 

justified to collapse across these sub-experiments for further analysis(Hakim et al., 2019). 

 Whole-field change detection. Experiment 2a used a whole-field version of the 

change detection task. This task is very similar to the lateralized change detection task, 

except there is no spatial cue. Instead, participants receive a task-general cue (e.g., a 

double-sided arrow that does not indicate a side to attend but gives a temporal warning 

that the memory array is coming). Participants remember all items from the array, and to-

be-remembered items are presented in both the left and right hemifields (i.e., “whole-

field”). As before, participants remember colors across a delay and are probed on one 

item, and report whether the probed item is the same or different as the remembered 

item. Exp 2a used a cue duration of 150 ms, cue-to-array SOA of 1150 ms, memory array 

duration of 150 ms, and a delay period of 1150 ms. 

 Lateralized attention task. In Experiment 3, the relative need for working memory 

task demands was manipulated. Participants viewed identical stimuli as in the lateralized 

change detection task described above, but they were given different task instructions 

which could be achieved with sustained spatial attention. This task used identical stimuli 

and task timing as a lateralized change detection task, but asked participants to perform 

a sustained attention task, rather than a working memory task. This allows us to compare 
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mental processes for “attention” and “working memory” tasks while holding visual 

stimulation and task timing constant.  In prior work (Hakim et al., 2019), we showed that 

the contralateral delay activity was present in the working lateralized change detection 

task but not in the lateralized attention task, indicating that the CDA is associated with 

working memory task demands. In the task, participants are first cued to one visual 

hemifield (e.g., attend the hemifield indicated by the green side of a double-sided arrow; 

colors counterbalanced across participants). Rather than remembering the colors and/or 

locations of the items in the “memory array” (e.g., array of colored squares), participants 

were instead instructed to maintain their spatial attention to the positions occupied by the 

items. Participants maintained spatial attention to the positions during a blank array in 

order to detect and discriminate a rare target (titled line) that briefly appeared (66.67 ms) 

at one of the attended positions on 25% of trials. During the attention task, the color and 

position of the item in the “test array” were task-irrelevant. Instead, the test array simply 

indicated the time when participants should make their response. The participants made 

one of three button presses: (1) target absent, (2) target present, top tilted left, (3) target 

present, top tilted right. Note, we discarded the 25% of target-present trials for analysis 

to avoid any potential physical display confounds. We analyzed only the 75% of trials 

where there was a fully blank delay period.  
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Figure 1. Task schematics for a typical Set Size 2 trial. (A) Lateralized changed 
detection task used in Exps. 1, 2a, 2b, and 3. Participants are first cued to one side of 
space (Red cue box shows symbolic cue used in Exp 3, e.g., attend green side; Blue cue 
box shows spatial cue used in other Exps.). Participants remember the items on the cued 
side, and are tested on one of the items. Blue text shows task timing for Exps. 1 and 2b; 
Green text shows timing for Exp. 2a; Red text shows task timing for Exp 3. (B) Whole-
field change detection task used in Exp 2a. Participants are given a non-spatial cue that 
the trial is upcoming, remember all items on the screen across a delay, and are tested on 
one of the items. (C) Attention task used in Exp 3. This task serves as a control for working 
memory task demands. Participants are cued to one side of the display. Rather than 
remember the colors of the squares, participants are asked to pay attention to the spatial 
positions occupied by the squares. They monitor these positions across a target 
monitoring period. A target (tilted lines) appear on 25% of trials. The colored squares 
shown in the test array are task-irrelevant (visual control for WM condition); the array 
indicates when participants should make their response about the target. 

 
EEG data acquisition 

Experiments 1-2. Experiments 1, 2a, and 2b were collected from 20 passive tin 

electrodes (SA Instrumentation Co., San Diego, CA) mounted in an elastic cap 

(ElectroCap International, Eaton, OH). Electrode positions included International 10/20 
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sites F3, Fz, F4, T3, C3, Cz, C4, T4, P3, Pz, P4, T5, T6, O1, and O2 and five non-standard 

sites: OL midway between T5 and O1, OR midway between T6 and O2, PO3 midway 

between P3 and OL, PO4 midway between P4 and OR, POz midway between PO3 and 

PO4. Data were recorded with a left-mastoid reference and re-referenced offline to the 

algebraic average of the left and right mastoid. Horizontal electrooculogram (EOG) and 

vertical EOG were collected from 3 additional passive electrodes affixed to the face with 

stickers. Trials containing ocular artifacts, movement artifacts, or blocking were excluded 

from analyses.  

Experiment 3. Experiment 3 was collected from 30 active Ag/AgCl electrodes 

(actiCHamp, Brain Products, Munich Germany) mounted in an elastic cap positioned 

according to the international 10-20 system (Fp1, Fp2, F7, F8, F3, F4, Fz, FC5, FC6, 

FC1, FC2, C3, C4, Cz, CP5, CP6, CP1, CP2, P7, P8, P3, P4, Pz, PO7, PO8, PO3, PO4, 

O1, O2, Oz). Two additional active electrodes were affixed with stickers to the left and 

right mastoids, and a ground electrode was placed at position Fpz. Data were referenced 

online to the right mastoid and re-referenced offline to the algebraic average of the left 

and right mastoids. Passive electrodes (HEOG, VEOG) and eye tracking were used to 

monitor eye movements and blinks. Trials containing ocular artifacts, movement artifacts, 

or blocking were excluded from analyses.  

 

Classification and significance testing 

 Single-trial classification (within-subject). Classification was performed within 

a subject, on single trials, and within a given time window on raw, baselined EEG data 

(Exp 1). We divided each trial into 50-ms windows and calculated the average voltage for 

each electrode within this window (e.g., 20 electrodes = 20 predictors). Classification was 

performed separately within each time point using a linear discriminant classifier 

(“classify.m”, with option ‘diagLinear’ to use the diagonal covariance matrix estimate; 

MATLAB, MathWorks, Natick MA). We performed 100 iterations of the classification 

analysis at each point; on each iteration, we randomly assigned 2/3 of the trials to an 

independent training set and 1/3 of the trials to a held-out test set. A schematic of the 
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classification procedure is shown in Figure 1A. In all classification procedures, the number 

of trials per set size was balanced in both the training and test sets.  

 Mini-block classification (within-subject). Instead of performing classification 

on single trials, we averaged together groups of like trials (i.e., the same set size 

condition) into “mini-blocks”, and we shuffled the assignment of trials to different mini-

blocks across 100 iterations (Exps. 2 & 3). Classification was still performed using the 

same linear classification routine, training on 2/3 of mini-blocks and testing on a held-out 

1/3 of mini-blocks on each iteration. To assess whether classification generalized across 

tasks (Exps 2 & 3), we used the same method except we trained on 2/3 of mini-blocks 

from one task (e.g., lateralized change detection) and tested on 1/3 of mini-blocks from 

the other task (e.g., wholefield change detection).  

 Mini-block classification (across-subject). To test the generalizability of the 

classification signal across subjects, we performed a leave-1-subject-out analysis (Exp 

2). To do so, we blocked trials in the same way as in the within-subjects version of the 

mini-block analysis. We trained the classifier on all data on a random 2/3 of mini-blocks 

from n-1 subjects and tested data on a random 1/3 of mini-blocks from 1 held-out subject. 

For each held-out subject, we ran 100 iterations of randomly assigning individual trials to 

mini-blocks in both the training and test sets.  

 Statistical tests. In the standard within-subject classification analyses, we trained 

and tested on data from the same time bin (e.g., train and test on data averaged from 0 

– 50 ms). Significance of the time-course of overall classification was assessed via 

Bonferroni-corrected t-tests (one-sided t-tests when comparing to chance level, as we 

would not expect to find meaningfully-below chance values; two-sided tests when 

comparing between conditions). To assess the generalizability of the signal across time 

points, we also performed a cross-temporal analysis where we trained and tested on all 

possible combinations of time-points (e.g., train on the first time point, test on all other 

time points). Significance of the generalizability of decoding was assessed via a cluster-

based permutation test statistic, based on comparing significant clusters of adjacent 

significant t-values to a permuted distribution (Maris and Oostenveld, 2007), using a 

subject-wise permutation function (1,000 iterations) adapted from Fahrenfort et al. (2018). 
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Significance was always assessed in comparison to empirical chance values  (rather than 

to theoretical chance, see Combrisson & Jerbi, 2015); empirical chance was estimated 

by repeating the same classification analysis using randomly shuffled training labels.  

Results 
Experiment 1 

Single-trial classification predicts working memory load in a large sample 
 Using a large sample (n = 152, trials = 116,101) and a linear classifier on raw EEG 

amplitudes from single trials (Figure 2A), we could predict working memory load (set size 

2 versus set size 6) in a sustained fashion throughout the delay period (Figure 2B; dots 

indicate p < 1x10-5, Bonferroni-corrected for 23 time-bins). We could classify set size quite 

early in the trial (50-100 ms time bin), although this early classification could be due to a 

physical display difference between the two and six item arrays. Importantly, classification 

was sustained throughout the delay in the absence of any physical display differences. 

Mean decoding accuracy during the delay period (400 – 950 ms) was 53.2% (SD = 1.7%; 

Figure 2C), significantly above the chance level produced by giving the same classifier 

shuffled labels, t(151) = 22.5, p < 1 x 10-49, 95% CI [2.92%, 3.48%], Cohen’s d = 1.85. 

Finally, decoding generalized to other time-points beginning at the 400-450 ms time bin 

and lasting throughout the delay (Figure 2D; gray boxes indicate that the pixel did not 

survive a cluster-based permutation test). Notably, the decoding signal observed during 

encoding (100 - 300 ms) did not generalize throughout the delay period, indicating that it 

is unlikely that a sensory imbalance signal early in the trial drove the sustained delay 

period decoding.  
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Figure 2. Single-trial decoding of working memory set size in Experiment 1.  (A) 
Schematic of single-trial decoding approach. Decoding was performed within a 
participant, separately at each time bin (1 average value per electrode for a 50 ms time 
bin) using data from all electrodes (Data: t trials x 20 electrodes; Labels: 1 x t trials). On 
each iteration of the analysis, we picked a random 2/3 of trials to serve as a training 
dataset, and the remaining 1/3 of trials were used as a testing dataset. (B) Single trial 
decoding performance over time. Expected chance is 50%; dots indicate Bonferroni-
corrected p < .001. (C) Average single trial decoding performance during the delay period 
(400 – 1000 ms; *** p < .001). (D) Cross-temporal generalization of classification 
performance (training and testing across different time bins in the trial).  Gray indicates 
that the pixel did not survive the cluster-based permutation test.  
 

Global versus lateralized contributions to decoding 

 Although our analysis shows that individual electrode values predicted working 

memory load on a single trial basis, this simple decoding approach was blind to lateralized 

EEG signals that track working memory storage, such as contralateral delay activity 

(CDA) a well-documented electrophysiological marker of storage in visual working 

memory. Thus, the robust performance of our decoder could not be explained by 

contributions from CDA activity. Nevertheless, this leaves open the interesting question 

of whether load detection could be further improved by taking lateralized storage signals 

into account. To test this, we added 8 new predictors corresponding to single-trial paired 

difference waves (contralateral minus ipsilateral, e.g., PO8 minus PO7 for a “remember 
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left” trial, PO7 minus PO8 for a “remember right” trial). Surprisingly, we found that adding 

lateralized predictors did not predict substantial additional variance beyond the single 

electrodes (Figure 3A). On its own, activity from just the 8 lateralized predictors likewise 

tracks working memory load in a sustained fashion throughout the delay period (M = 

52.9%, SD = 1.7%, p < 1x10-16, d = 1.67), in line with many past demonstrations in the 

CDA literature. Including both single electrodes and the 8 lateralized predictors somewhat 

improved classification performance beyond the lateralized predictors alone (53.1% 

combined versus 52.9% lateralized alone, p < .001). Critically, however, a classifier 

combining both the 8 lateralized predictors and the 20 single electrode predictors did 

slightly worse than the 20 single electrode predictors alone (53.1% combined versus 

53.2% single electrodes alone, p < .001).  

Although it is somewhat surprising that adding lateralized predictors did not 

improve decoding, topographic plots for each set size condition suggest that this failure 

to explain additional variance may be due to the coarse spatial distribution of the signal 

(Figure 3B) and/or to noisiness of using difference waves as predictors on a single trial 

basis. As adding the lateralized predictors failed to improve classification performance, 

we will continue to use the single electrode classifier (i.e., giving the classifier the raw 

voltage value at each electrode). Arguably, insensitivity to stimulus laterality makes the 

analysis more flexible and powerful, providing the potential to train and test classifiers 

across lateralized and non-lateralized working memory tasks; we provide an example of 

such cross-training in Exp 2A/B. In supplemental analyses, we examined decoding 

accuracy separately for individual electrodes and groups of electrodes (e.g., occipital 

alone, Figure S2), and we confirmed that decoding was not driven by a global signal alone 

(Figure S3). 
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Figure 3. Adding lateralized predictors does not improve classification 
performance. (A) We created 8 additional predictors by taking the difference (contra – 
ipsi) of all matched pairs of lateralized pairs (“pairs”, color-coded in the inset diagram). 
Lateralized predictors did a good job of predicting working memory load, but did not 
improve classification above the level of the 20 single electrodes. In this figure, dots 
represent Bonferroni-corrected significance (small p <.05, medium p < .01, large p < 
.001). Purple dots represent the difference between single electrodes and pairs alone. 
Green dots represent the comparison between “single electrodes + pairs” and pairs alone. 
(B) Topographical plots of delay period activity for each set size condition, separated by 
side or averaged across both sides. Color scale is in microvolts (μV).  
 

Improving decoding with mini-block classification 
 Although the prior analyses demonstrated that single-trial classification is 

extremely robust during the delay period (d = 1.85), single trials are noisy and thus 

classification accuracy is numerically low (~53% given a chance level of 50%). To 

accommodate the lower numbers of trials and participants in some experiments, we 

tested whether averaging across small sub-sets of trials (“mini blocks”) would improve 

overall classification accuracy (Figure 4). Here, we performed the same basic analysis 

(training on 2/3 of data and testing on 1/3 of data, for 100 iterations of randomly assigning 

trials to training or testing). However, rather than training on single-trials, we averaged 

small groups of trials together to reduce noise of each instance given to the classifier. 

This “mini-block” procedure was quite effective at improving overall classification 
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accuracy, both early and late in the trial (Figure 1A). During the encoding period (100-300 

ms), classification accuracy improved monotonically with the number of trials per mini-

block, F(1.1,155.7)* = 2615, p < 1x10-106, η2p = .95. In the peak sensory time bin (200-

250 ms), decoding accuracy reached as high as 89.4% (SD = 7.7%; 25 trial mini-blocks).  

During the delay period, classification accuracy likewise improved monotonically with the 

number of trials per mini-block, F(1.03,156.14) = 571.6, p = < 1x10-54, η2p = .79, topping 

out at 63.9% (SD = 7.1%) with 25 trial mini-blocks (Figure 1B). Note, however, the number 

of trials that may be used in mini-blocks is limited by the number of available trials per 

condition. For consistency of comparisons across experiments, we will use 10-trial mini-

blocks for further analyses. This will allow us to improve classification accuracy while still 

accommodating the varied numbers of trials per experiment (~80 – 400 trials per set size).   
 

 

 

 

 

                                                        
*Greenhouse-Geisser correction applied when the assumption of sphericity is violated 
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Figure 4. Decoding accuracy by number of trials in classification “mini-blocks”.  
We examined changes to decoding accuracy for training and testing on single trials 
versus training and testing on averaged values from small groups of trials (e.g., a “mini 
block” of five Set Size 2 trials). (A) Classifier accuracy over time for single trial decoding 
and mini-block decoding of various block sizes. Shaded error bars indicate ±1 SEM. (B) 
Mean classification accuracy during the delay period (400 ms – end of delay). *** p < .001 
(Bonferroni corrected, 5 comparisons).   
 

Experiment 2  
Decoding differentiates item-by-item increments in load 
 In Exp 1, we demonstrated that we can discriminate between two memory load 

conditions (set size 2 vs. set size 6) using the multivariate EEG signal across electrodes 

(training and testing the classifier within a subject). In Exp 2A and 2B, we tested whether 

this within-subject classification signal is sensitive to finer-grained set size manipulations. 

In Exp 2A, participants performed two working memory tasks (lateralized and whole-field) 

with 6 set sizes (1-4, 6, and 8); In Exp 2B, participants performed a lateralized working 

memory task with 8 set sizes (1-8). As shown in Figure 5A, we could robustly predict set 

size in a sustained fashion throughout the delay period (all p’s < 1x10-8, Cohen’s d = 1.55, 
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1.49, and 2.27 for panels left to right in Figure 5A). As in Exp 1, this classification signal 

sustained through the end of the delay and generalized to all later time bins beginning 

mid-way through the delay (650-700 ms, 600-650 ms, and 600-650 ms, for the panels 

shown left to right in Figure 5B). 

 

 
Figure 5. Decoding accuracy in Experiments 2A and 2B. (A) Classification accuracy 
over time for Exps. 2A and 2B. Chance level is 1/6 in Exp 2A and 1/8 in Exp 2B (black 
line depicts empirical chance from shuffled analysis). Shaded error bars represent ±1 
SEM. Transparent gray lines represent individual subjects. Dots indicate Bonferroni-
corrected significance of each 50 ms time-bin (small dots, p < .05, medium, p < .01, large, 
p < .001). (B) Cross-temporal generalization of classification performance (training and 
testing across different time bins in the trial) for Exps. 2A and 2B. Gray indicates that the 
pixel did not survive the cluster-based permutation test.  
 

 In addition to examining overall decoding, the inclusion of more set sizes in 

Experiments 2A and 2B provided the chance to look at classifier errors and 

discriminability of set size. Figure 6A and 6B shows confusion matrices for the encoding 

period (100-300 ms) and delay period (400 ms to end of delay) in Exps. 2A and 2B. Much 

prior work on univariate neural signatures of working memory maintenance (e.g., (Luck 

and Vogel, 1997; Todd and Marois, 2004) has found that, consistent with a capacity limit 

of 3-4 items, univariate measures increase from set sizes 1 to 3, but reach an asymptote 
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around 3-4 items (but see Bays, 2018). Given this key signature of univariate working 

memory measures, we predicted that delay period decoding, but not sensory period 

decoding, should show particularly poor or no discriminability amongst larger set sizes. 

To test this, we compared confusion matrix discriminability amongst the lower set sizes 

(1-3 in Exp 2A, 1-4 in Exp 2B) versus discriminability amongst higher set sizes (4,6,8 in 

Exp 2A, 5-8 in Exp 2B) in both the encoding period and delay period. Discriminability was 

quantified as the difference between the true category value (e.g., proportion of the times 

the classifier chose set size 1 when the true value was 1) and the mean of the incorrect 

values (e.g., how often the classifier instead chose other low set sizes 2 or 3). As we 

predicted for the delay period signal, we observed significantly higher decoding amongst 

low set sizes than high set sizes for all 3 experiments (p < .001) and we observed a null 

effect for discriminability amongst high set sizes during the delay in all 3 experiments (p 

> .10). We likewise observed higher discriminability amongst low set sizes than high set 

sizes during the sensory period (100-300 ms, all p’s < .01) but significant encoding period 

decoding for both high and low set sizes (all p’s < .001). As such, we found a general 

pattern of results that is consistent with a delay period working memory signal, which is 

expected to show higher confusability amongst supra-capacity set sizes. However, future 

work will be needed to examine changes to decoding while perfectly controlling for 

display-wise sensory differences. For example, it is unclear whether the poorer 

discriminability for high versus low set sizes during the encoding period (100-300 ms) was 

driven by bottom-up sensory differences or by attentional selection of items (e.g., a 

capacity limit in the number of selected items could contribute to the increased 

confusability for higher set sizes even during the early encoding period).  
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Figure 6. Confusion matrices and discriminability between set sizes. (A) Confusion 
matrix during the encoding period (100 – 300 ms). (B) Confusion matrix during the delay 
period (400 ms – end of delay). (C) Discriminability metric amongst lower versus higher 
set sizes during the encoding period and the delay period. Symbols indicate Bonferroni-
corrected significance (6 comparisons), n.s. p > .10, * p < .05, ** p < .01, *** p < .001.  
 
Generalization of classification across subjects and tasks 

 Up to this point, we have always trained and tested the classifier within a given 

subject. Exp 2 provided an opportunity to examine the generalizability of the classification 

signal across tasks, subjects, and experiments with distinct stimulus displays. In Exp 2A, 

the same subjects performed two different working memory task variants (one lateralized 

with distractors presented in the irrelevant hemifield, one whole-field display that 

contained no distractors). Thus, Exp 2A provided the opportunity to look at decoding 
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within the same subject, but across distinct tasks (Figure 7A-B). Relative to decoding 

within the same task, decoding across tasks was impaired (p < 1x10-9). We quantified 

impairment across 3 task epochs: encoding (100-300 ms), early delay (400 – 900 ms) 

and late delay (900 ms to end of delay). We found a main effect of Training (better 

performance for within versus across tasks), F(1,29) = 79.25, p < 1x10-9, η2p = .73, and 

of Epoch (better performance earlier in the trial), F(2,58) = 31.49, p < 1x10-9, η2p = .52. 

We also found an interaction of Training and Epoch, F(1.50,43.44) = 34.81, p < 1x10-7, 

η2p = .55, indicating that the late delay period signal was more robust to cross-

generalization across task variants than the early sensory signal.  

 In Figure 7C-D, we examined the ability of the classification signal to generalize 

across subjects within Experiment 2A, showing that there is a generalizable multivariate 

signature of working memory load in humans. We trained the classifier on 2/3 of data 

from n-1 subjects, and tested the classifier on 1/3 of data from one held-out subject. For 

both the within- and across-subjects analyses, we performed the analysis separately for 

training within a task versus across tasks (as above). In Figure 7C-D, we have collapsed 

across this task dimension but it is depicted in Figure S4. Similar to generalizing across 

tasks, we found that found a main effect of Training (better performance for within versus 

across subjects), F(1,29) = 45.33, p < 1x10-6, η2p = .61, and of Epoch (better performance 

earlier in the trial), F(2,58) = 27.19, p < 1x10-8, η2p = .48. We again found an interaction 

of Training and Epoch, F(2,58) = 44.94, p < 1x10-11, η2p = .61, indicating that the late 

delay period signal was more robust to cross-generalization across subjects than the 

early sensory signal.  

 Finally, in Figure 7E-F, we examined the ability of the classification signal to 

generalize across subjects from different experimental samples. These experiments were 

the same in some important ways (e.g., same electrode montage, sampling rate, and 

similar tasks), but differed in many minor ways (e.g., exact size of stimuli). We trained the 

classifier on 2/3 of data from n-1 subjects in one experiment (e.g., train Exp 2A) and tested 

the classifier on 1/3 of data from 1 subject in the other experiment (e.g., test Exp 2B). For 

both the within and across experiment analyses, we again performed the analysis 

separately for training within versus across tasks. In Figure 7E-F, we have collapsed 
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across the task dimension but it is depicted in Figure S4. We found that, relative to training 

across subjects but within a specific experiment, training across subjects and across 

experiments was slightly worse (Figure 7E-F), as indicated by a main effect of Training, 

F(1,29) = 31.33, p < 1x10-5, η2p = .52. Here, we found no main effect of Epoch, F(2,58) = 

1.91, p = .16, η2p = .06, and no interaction of Training and Epoch, F(2,58) = .60, p = .55, 

η2p = .02, indicating that the performance decrement for training across versus within 

experiments was consistent throughout the trial.   

 

 
Figure 7. Classifier success at generalizing across task variants and across 
subjects. (A-B) Time-course and violin plot summaries for training/testing within a task 
versus across tasks (within-subjects, e.g., train on lateralized task, test on wholefield 
task). Shaded errors bars represent ±1 SEM. (C-D) Time-course and violin plot 
summaries for training/testing within subjects versus across subjects (averaged 
within/across tasks) (E-F) Time-course and violin plot summaries for training/testing 
within an experiment versus across experiments 2A and 2B (across subjects; average of 
within/across tasks). 
 

Experiment 3 
Delay-period decoding is specific to working memory task demands.  

 In all experiments discussed so far, the amount of sensory stimulation was 

confounded with set size (i.e., there was more sensory stimulation on higher set size 

trials). Although our analyses suggest that sustained delay period decoding likely was not 
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driven by this transient sensory confound (e.g., decoding of set sizes generalized 

amongst time points within the delay period, but decoding during the stimulus period did 

not generalize to the delay period), we wanted to test whether delay-period decoding is 

modulated by working memory task demands while holding visual stimulation constant. 

To do so, we examined data from Hakim et al. (2019). In this experiment, participants 

performed two different cognitive tasks using visually identical stimuli. In one condition 

(“Attention”) participants performed a spatial attention task. Prior work has shown that this 

condition did not recruit neural signatures of working memory maintenance (i.e., 

contralateral delay activity was absent). In the other condition (“Working memory”), 

participants performed a typical working memory task, and robust signatures of working 

memory maintenance were observed. This experiment thus provides a critical test of 

whether delay period decoding of set size respects the relative recruitment of working 

memory task demands while holding the sensory confound constant (i.e., the difference 

in sensory stimulation between set sizes 2 and 4 is identical for the working memory and 

attention task conditions).  

Consistent with a signature of working memory maintenance, we observed 

sustained decoding of set size throughout the delay period when participants performed 

the working memory task, but not when they performed the spatial attention task (Fig 8A). 

To quantify this effect, we again divided data into the same 3 task epochs (encoding, 

early delay, and late delay). A repeated measures ANOVA with within subjects factors 

Epoch and Task revealed a main effect of Task, F(1.80,129.68) = 47.79, p < 1x10-14, η2p 

= .40, a main effect of Epoch, F(1,72) = 25.90, p < 1x10-5, η2p = .27, and an interaction of 

Task and Epoch, F(2,144) = 3.46, p = .034, η2p = .05, Fig 8B. This demonstrates that 

early in the trial, when the sensory confound likely contributed to decoding, we observed 

no difference in decoding strength between the two task conditions. However, during the 

delay period, decoding was significantly weaker in the attention condition and completely 

disappeared by the late delay period (Fig 8B). This pattern of results is consistent with 

sustained delay period decoding as being driven by working memory task demands. To 

show that the null effect in the attention condition was not driven by a relatively weaker 

training set, we performed classification while training and testing across tasks. If the lack 
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of decoding in the attention condition was just due to the attention condition serving poorly 

as a training set, then training on the working memory task should rescue delay period 

decoding for the attention task. However, we found no evidence of sustained delay period 

decoding when training across tasks. Although we were initially able to discriminate 

between set sizes, this early classification dissipated by around 700 ms (Fig 8C). We 

again performed an ANOVA with factors Epoch and Task (train Attention test WM versus 

train WM test Attention). We found a main effect of Epoch, F(1.74,125.41) = 46.55, p < 

1x10-13, η2p = .39, an effect of Task, F(1,72) = 6.38, p = .014, η2p = .08 (slightly better 

overall decoding when training on the attention task, counter to the hypothetical 

explanation of poor attention decoding), and no interaction of Task and Epoch, F(2,144) 

= 1.19, p = .31, η2p = .02 (Fig 8D). Thus, this analysis suggests that multivariate load 

detection is determined by storage in working memory rather than by the physical 

characteristics of the display, or the deployment of spatial attention alone. 
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Figure 8. Decoding within and across tasks in Experiment 3. (A) Classification time-
course for the working memory task and the lateralized attention task. Dots indicate one-
tailed t-tests with Bonferroni-corrected significance (23 timepoints x 2 conditions = 46 
comparisons), small dots, p < .05, medium p < .01, large, p < .001. (B) Average 
classification within tasks during encoding, early delay, and late delay. Stars indicate 
Bonferroni-corrected significance (9 comparisons), n.s. p > .10, ~p <.10, *p <.05, **p <.01, 
***p < .001. (C) Classification time-course training and testing across tasks (e.g., train on 
attention task, test on working memory task). (D) Average classification across tasks 
during encoding, early delay, and late delay.  

 
Cross-Experiment Analyses 

Individual differences in decoding predict overall behavioral performance. 
 Finally, we combined data from all experiments (unique subjects only) to test 

whether classification performance relates to behavioral performance. We reasoned that 

participants with higher working memory capacity would have more states to discriminate 

between (e.g., we would expect someone with a capacity estimate of 1.0 items to show 

similar neural signatures on all trials, whereas someone with a higher capacity estimate 

would have greater variability in delay period signatures across set size conditions). As 

such, we predicted that those with higher working memory capacity would likewise have 

higher delay period classification accuracy. Within each experiment, we z-scored 
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behavior (average capacity, or “K”) and average delay period classification accuracy. This 

step was necessary to normalize differences in chance level (e.g., 50% versus 16%) and 

behavioral performance across experiments. We excluded participants with capacity 

values lower than 2 SD’s below the group mean (i.e., who were not performing the task 

as instructed). We then performed a correlation using all unique subjects from all 

experiments. We found that classification accuracy and capacity were correlated, r = .26, 

p < 1x10-4, 95% CI = [.14, .36]. Note, this correlation value did not noticeably change if 

we included subjects with poor behavioral performance or if we included duplicate 

subjects (Figure S5). Correlations of raw classification accuracy and behavior values are 

shown in Figure 9B.   

 

 
Figure 9. Individual differences in working memory performance and decoding 
accuracy. (A) Correlation between capacity and classification accuracy (z-scored) for all 
unique subjects in all experiments. (B) Correlations between capacity and classification 
accuracy (raw values) for individual experiments.  
 

Discussion 
Here, we used a large dataset (4 published experiments, n = 286, >250,000 trials) to 

develop multivariate load detection, a new time-resolved method for tracking human 

working memory load using the raw EEG signal. Multivariate load detection offers several 

key advances over existing univariate working memory signals (e.g., contralateral delay 

activity, “CDA”). Most importantly, multivariate load detection is generalizable across 
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stimulus/task differences, observers, and experiments, suggesting that it taps into a 

common human electrophysiological signature of working memory load. In the contexts 

analyzed here, it was possible to train the classifier on one set of observers, and then 

examine the deployment of working memory resources in a new task and set of 

observers. As such, multivariate load detection will allow us to study working memory in 

new, more flexible task contexts (e.g., without relying on lateralized displays which incur 

a dual task of filtering out one hemifield) and applied settings (e.g., brain-computer 

interfaces).  

 

The benefits of multivariate load detection mirror similar advances made in multivariate 

detection of the locus of spatial attention (Rihs et al., 2007; Foster et al., 2017), attentional 

selection (Fahrenfort et al., 2017; Munneke et al., 2019), and an item’s visual features 

(Wolff et al., 2015; Bae and Luck, 2018, 2019a). Lateralized univariate EEG signals (e.g., 

lateralized alpha power, N2PC, CDA), have been fundamental for developing an 

understanding of human attention and working memory. By presenting identical visual 

stimuli in both hemifields, these lateralized signals exploit the contralateral organization 

of the human visual system. Conversely, however, to take advantage of these lateralized 

signals we must use specialized lateralized displays.  

 

Lateralized displays offer some advantages, such as eliminating physical confounds and 

allowing for clever designs which place stimuli that are “invisible” to the analysis on the 

vertical mid-line (Hillyard et al., 1973; Hillyard and Anllo-Vento, 1998; Vogel and 

Machizawa, 2004; Hickey et al., 2009; Feldmann-Wüstefeld and Vogel, 2019). However, 

lateralized CDA designs also introduce potential disadvantages. First, when presenting 

to-be-remembered items in both hemifields, there is some ambiguity as to whether 

differences in the CDA and behavior are confounded by the joint need to suppress 

irrelevant visual information. With increasing memory set size, there is both an increased 

need to remember more information and an increased amount of irrelevant visual 

information to suppress. Second, to measure lateralized components such as the CDA, 

we must construct a difference score (contralateral – ipsilateral). The statistical reliability 
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of difference scores is poor when the two underlying measures are highly correlated 

(Rodebaugh et al., 2016). Due to the poor spatial resolution of EEG, trial-by-trial voltage 

scores for contralateral and ipsilateral electrodes are highly correlated, thus the reliability 

of single trial difference scores is lower than from individual electrodes. Although we still 

obtain reliable estimates of CDA amplitude when averaging across many hundreds of 

trials, this traditional univariate approach potentially throws away valuable single-trial 

information that could be exploited to better predict working memory load.  

 

In the current work, we used several datasets to demonstrate the utility of multivariate 

load detection in many contexts. We consistently found robust, sustained decoding of 

working memory load throughout the memory delay period, and this decoding predicted 

individual differences in working memory behavior. Multivariate load detection was 

sensitive to fine-grained variations in memory load as well as to working-memory specific 

(as opposed to general attentional) task demands. Further, we showed that multivariate 

load detection generalized across stimulus differences (e.g., remembering colors versus 

shapes; lateralized versus whole-field presentation of the items) and generalized across 

observers (e.g., we can train the decoder on a large group of subjects, then predict 

memory load in a new subject whose data the classifier has never seen). The high 

generalizability, in particular, will be critical for future work; using the approach outlined 

here, we think it is possible to build a generalizable, pre-trained classifier which will be 

able to predict visual working memory load using relatively small amounts of data from 

new tasks and observers. 

 

Future work will need to address some potential limitations of the current work. First, 

because we used previously published datasets, we were limited in our ability to perfectly 

control for potential confounds such as visual stimulation (i.e., transient luminance 

changes also increased with memory load).  Future work using manipulations such as 

selective encoding (i.e., holding visual stimulation constant but varying which items are 

encoded) or retro-cues (Griffin and Nobre, 2003; Lepsien and Nobre, 2007; Rose et al., 

2016; Sprague et al., 2016), will be critical for disentangling encoding-related decoding 
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from bottom-up, visually-driven decoding of load during the early part of the trial. Second, 

a key contribution of this work is its demonstration of the feasibility of building a 

generalizable, pre-trained classifier for detecting working memory load in new tasks and 

observers. Here, we demonstrate that this type of generalizability is feasible across some 

stimulus differences and across observers within a site (i.e., controlling for high-level 

differences in experimental procedures such as amplifier, referencing, and montage). 

Future work will be needed to further investigate the cross-site generalizability of 

multivariate load detection (e.g., variations in EEG systems, reference, experimental 

procedures, and subject pools) to build a generalizable, pre-trained working memory load 

detector (Dansereau et al., 2017; Scheinost et al., 2019).  

 

We argue that multivariate load detection is a generalizable electrophysiological marker 

of human working memory load, and that this approach will allow for the unprecedented 

combination of disparate datasets to build a powerful, generalizable model of human 

working memory load. Because multivariate load detection is generalizable across tasks 

and observers, we anticipate that this method will be useful in many basic and applied 

research settings (i.e., unobtrusively monitoring the contribution of working memory 

during other cognitive contexts). All data shown here are available on the Open Science 

Framework (upon publication). We encourage other labs using distinct populations (e.g., 

developmental; clinical), research sites (e.g., outside of the U.S.) and task variants to use 

our published data to test the extent of the generalizability of this new method.  
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