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Abstract 12 

The structure of wild animal social systems depends on a complex combination of intrinsic 13 

and extrinsic drivers. Population structuring and spatial behaviour are key determinants of 14 

individuals’ observed social behaviour, but quantifying these spatial components alongside 15 

multiple other drivers remains difficult due to data scarcity and analytical complexity. We 16 

used a 43-year dataset detailing a wild red deer population to investigate how individuals’ 17 

spatial behaviours drive social network positioning, while simultaneously assessing other 18 

potential contributing factors. Using Integrated Nested Laplace Approximation (INLA) multi-19 

matrix animal models, we demonstrate that social network positions are shaped by two-20 

dimensional landscape locations, pairwise space sharing, individual range size, and spatial 21 

and temporal variation in population density, alongside smaller but detectable impacts of a 22 

selection of individual-level phenotypic traits. These results indicate strong, multifaceted 23 

spatiotemporal structuring in this society, emphasising the importance of considering 24 

multiple spatial components when investigating the causes and consequences of sociality. 25 
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Introduction 34 

Social behaviour is an integral component of an animal’s phenotype, driving processes 35 

including disease transmission, mating, learning, and selection (Croft et al. 2008; 36 

VanderWaal et al. 2014; Krause et al. 2015; Firth et al. 2018; Sah et al. 2018; Silk et al. 37 

2019; Firth 2020). Contemporary studies of animal behaviour often use social networks to 38 

derive individual-level social network positions, under the notion that between-individual 39 

variation in network positioning is indicative of between-individual variation in social 40 

behaviour (Franks et al. 2010; Krause et al. 2015; Sosa et al. 2020). However, an animal’s 41 

position in its social network is also dependent on its own spatial behaviour (Webber & 42 

Vander Wal 2018; Albery et al. 2020a), and on a range of extrinsic factors: demography 43 

determines local population density and structuring (Shizuka & Johnson 2019), while the 44 

environment shapes resource distributions, movement corridors, and emergent patterns of 45 

space use, all of which will influence the architecture of the social system (Firth & Sheldon 46 

2016; Webber & Vander Wal 2018; Farine & Sheldon 2019; He et al. 2019). As such, it is 47 

important to consider spatial behaviour and environmental context when assessing the 48 

causes and consequences of individual-level social network positioning (Webber & Vander 49 

Wal 2018; He et al. 2019; Albery et al. 2020a), yet doing so remains difficult in most systems 50 

due to the complexity of spatial-social analyses that incorporate these processes. 51 

The spatial drivers of social network structure are poorly understood because they are highly 52 

multivariate and (therefore) difficult to analyse. On the one hand, there is strong support for 53 

simpler “first-order” associations between spatial and social behaviour. For example, spatial 54 

proximity and social connections are often correlated, because individuals that share more 55 

space are more likely to associate or interact. This finding holds for diverse taxa including elk 56 

(Vander Wal et al. 2014), raccoons (Robert et al. 2012), birds (Firth & Sheldon 2016), and 57 

myriad other systems. Similarly, spatial and social network centrality are occasionally found 58 

to correlate (Mourier et al. 2019), as are temporal variation in population density and social 59 

contact rates (Sanchez & Hudgens 2015), and the social environment can drive spatial 60 

behaviour (Firth & Sheldon 2016; Spiegel et al. 2016). Spatial behaviours can be 61 

summarised using a wide range of metrics, including individuals’ spatial activity levels (e.g. 62 

home range area), pairwise space sharing (e.g. distances or home range overlaps), 63 

demographic structure (e.g. temporal population size or local conspecific density), and point 64 

location on the two-dimensional landscape. For example, are more social individuals simply 65 

wider-ranging, leading them to make more contacts? Do they most often inhabit areas of 66 

high population density or well-used movement corridors? These variable spatial 67 

components take a combination of different data structures, and are therefore difficult to 68 

include in the same models, particularly in large numbers and alongside a range of other 69 
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individual-level phenotypes. It is therefore unclear to what extent individuals’ social network 70 

positions emerge from 1) their own social behaviour; 2) their own spatial behaviour; 3) their 71 

situation within the population and broader social network; 4) other aspects of their biotic and 72 

abiotic environment such as landscape structure; and 5) intrinsic phenotypic traits that 73 

researchers are commonly interested in investigating. 74 

Several frameworks have been proposed to facilitate the untangling of spatial and social 75 

processes in wild animals (Jacoby & Freeman 2016; Silk et al. 2018, 2019; Webber & 76 

Vander Wal 2018; Mourier et al. 2019; Albery et al. 2020a). To date, statistical methodology 77 

focusses on incorporating spatial behaviours into the node-and-edge structure of network 78 

data, using e.g. null network permutations (Firth & Sheldon 2016), spatially embedded 79 

networks (Daraganova et al. 2012), and nested “networks of networks” composed of 80 

movement trajectories (Mourier et al. 2019). Many such analyses involve reducing 81 

movement patterns into some form of spatial network based on home range overlap or 82 

spatial proximity between dyads (Mourier et al. 2019). For example, statistical models 83 

named “animal models” can examine spatial variation by fitting such matrices as variance 84 

components, potentially alongside other dyadic similarity matrices (i.e., pairwise measures of 85 

similarity), to quantify genetic and non-genetic contributions to individuals’ phenotypes 86 

(Kruuk 2004; Stopher et al. 2012b; Regan et al. 2016; Thomson et al. 2018; Webber & 87 

Vander Wal 2018). As yet, the focus on controlling for spatial autocorrelation using space 88 

sharing and network permutations has contributed to a lack of clarity concerning the role that 89 

spatial behaviour and environmental context play in driving social network positioning 90 

(Albery et al. 2020a). 91 

Studies across ecological disciplines increasingly use Integrated Nested Laplace 92 

Approximation (INLA) models to control for spatial autocorrelation in a multitude of contexts 93 

(Lindgren et al. 2011; Lindgren & Rue 2015; Zuur et al. 2017). As well as including fixed and 94 

random effects to quantify individual-level drivers, these models can incorporate dyadic 95 

space sharing components (Holand et al. 2013) and stochastic partial differentiation 96 

equation (SPDE) effects to model 2-dimensional spatial patterns in the response variable, 97 

thereby controlling for and estimating spatiotemporal variation associated with fine-scale 98 

positioning within the landscape (Albery et al. 2019). As such, these models offer an exciting 99 

opportunity to test and compare the roles of a range of spatial behaviours and 100 

autocorrelation structures, alongside phenotypic drivers, in determining social network 101 

positioning. 102 

We address this question using the long-term study in the Isle of Rum red deer (Cervus 103 

elaphus). These study animals comprise an unmanaged wild population with a contiguous 104 
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fission-fusion social system (Clutton-Brock et al. 1982). They experience strong 105 

environmental gradients and exhibit spatial autocorrelation in a number of important 106 

phenotypes: individuals with greater home range overlap have more similar behavioural and 107 

life history traits (Stopher et al. 2012b), and those in closer proximity have more similar 108 

parasite burdens (Albery et al. 2019); further, as with other matrilineal mammalian systems, 109 

closely related individuals frequently associate (Clutton-Brock et al. 1982) and live closer 110 

together (Stopher et al. 2012b). Individuals have highly repeatable home ranges (Stopher et 111 

al. 2012b) that decline in size over their lifetimes, predicting declining survival probability 112 

(Froy et al. 2018). The study area has a strong spatial gradient in resource availability, with 113 

high-quality grazing heavily concentrated in the far north of the system, and with most 114 

individuals aggregating around this area, such that population density decreases outwards 115 

towards the edge of the study population (Clutton-Brock et al. 1982). As such, the deer 116 

comprise an ideal system for assessing spatial-social relationships in the wild.  117 

To assess how individuals’ spatial behaviours translate to social network positions, we 118 

constructed fine-scale social networks from 43 years of censuses of the study population. 119 

We derived 8 different individual-level network positioning measures of varying complexity 120 

that are important to different social processes (Krause et al. 2015; Sosa et al. 2020). Using 121 

multi-matrix animal models in INLA, we examined whether spatial locations, space sharing, 122 

home range area, and local population density explained variation in network position 123 

metrics, alongside a range of individual-, temporal-, and population-level factors. Specifically, 124 

we aimed to test two hypotheses: that the structure of the social network would be highly 125 

dependent on the distribution of population density in space; and that individuals’ social 126 

network centrality would be largely explained by their ranging behaviour, where wide-ranging 127 

individuals were more likely to be socially well-connected. We further expected that space 128 

sharing and point locations would uncover substantial spatial autocorrelation in social 129 

network positioning, and that different social network metrics would exhibit different spatial 130 

patterns and vary drivers. This not only comprises a large-scale empirical examination of the 131 

factors shaping social network positions in this extensively monitored wild mammal, but also 132 

provides a methodological advancement in developing powerful, flexible new methods 133 

(INLA-based multi-matrix animal models) with broad potential for examining spatial-social 134 

processes in this and other systems.  135 

Methods 136 

Study system and censusing  137 

The study was carried out on an unpredated long-term study population of red deer on the 138 

Isle of Rum, Scotland (57°N,6°20′W). The natural history of this matrilineal mammalian 139 
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system has been studied extensively (Clutton-Brock et al. 1982), and we focussed on 140 

females aged 3+ years, as these individuals have the most complete associated census 141 

data, and few males live in the study area except during the mating period. Individuals are 142 

monitored from birth, providing substantial life history and behavioural data, and >90% of 143 

calves are caught and tagged, with tissue samples taken (Clutton-Brock et al. 1982). The 144 

population thus has comprehensive genomic data, allowing high-powered quantitative 145 

genetic analyses: most individuals born since 1982 have been genotyped at >37,000 SNPs, 146 

distributed throughout the genome (e.g. Huisman, Kruuk, Ellis, Clutton-Brock, & Pemberton, 147 

2016). Census data were collected for the years 1974-2017, totalling 423,070 census 148 

observations. Deer were censused by field workers five times a month, for eight months of 149 

the year, along one of two alternating routes (Clutton-Brock et al. 1982). Individuals’ 150 

identities, locations (to the nearest 100M), and group membership were recorded. Grouping 151 

events were estimated by seasoned field workers according to a variant of the “chain rule” 152 

(e.g. Castles et al., 2014), where individuals grazing in a contiguous group within close 153 

proximity of each other (under ~10 metres) were deemed to be associating, with mean 130.4 154 

groups observed per individual across their lifetime (range 6-943). The mortality period falls 155 

between Jan-March, when there is least available food, and minimal mortality occurs outside 156 

this period. We only used census records in each May-December period, from which we 157 

derived annual social network position measures as response variables (Figure 1-2). We 158 

elected to investigate this seasonal period because it stretches from the spring calving 159 

period until the beginning of the mortality period, simplifying network construction and 160 

avoiding complications arising from mortality events. Our dataset totalled 3356 annual 161 

observations among 532 grown females (Figure 1). 162 

In this system, female reproduction imposes substantial costs for immunity and parasitism 163 

(Albery et al. 2020c), and for subsequent survival and reproduction (Clutton-Brock, Albon, & 164 

Guinness, 1989; Froy, Walling, Pemberton, Clutton-Brock, & Kruuk, 2016). If a female 165 

reproduces, she produces 1 calf per year in the spring, generally beginning in May; the “deer 166 

year” begins on May 1 for this reason. Here, reproductive status was classified into the 167 

following four categories using behavioural observations: True Yeld (did not give birth); 168 

Summer Yeld (the female’s calf died in the summer, before 1st October); Winter Yeld (the 169 

female’s calf died in the winter, after 1st October); and Milk (calf survived to 1st May the 170 

following calendar year). 171 

Generating spatial and social matrices 172 

All code is available online at https://github.com/gfalbery/Spocial_Deer. We constructed the 173 

home range overlap (HRO) matrix using the R package AdeHabitatHR (Calenge 2011), 174 

following previous methodology (Stopher et al. 2012b; Regan et al. 2016; Froy et al. 2018). 175 
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First, using a kernel density estimation method, we derived lifetime home ranges for each 176 

individual with more than five census observations. Previous analysis has shown that this 177 

system is robust to the number of observations used to generate home ranges (Froy et al. 178 

2018). We used lifetime home ranges to fit one value per individual in the animal models; 179 

individual ranges (and range sizes) correlate strongly from year to year (Stopher et al. 180 

2012b; Froy et al. 2018). We derived proportional HRO of each dyad using Bhattacharya 181 

Affinity (following Stopher et al. 2012b), producing values between 0-1 (i.e. no overlap to 182 

complete overlap).  183 

To control for individuals’ two-dimensional point locations, we used a Stochastic Partial 184 

Differentiation Equation (SPDE) effect in INLA. This effect models the distance between 185 

points to calculate spatial autocorrelation, using Matern covariance (Lindgren et al. 2011). 186 

This random effect used individuals’ annual centroids (mean easting and northing in a given 187 

year) or lifetime centroids (mean easting and northing across all observations) as point 188 

locations to approximate spatial variation in the response variable (Lindgren et al. 2011; 189 

Albery et al. 2019).  190 

We used a genomic relatedness matrix (GRM) using homozygosity at 37,000 Single 191 

Nucleotide Polymorphisms, scaled at the population level (Yang et al. 2011; for a population-192 

specific summary, see Huisman et al. 2016). This matrix is well-correlated with pedigree-193 

derived relatedness metrics (Huisman et al. 2016). HRO was well-correlated with distance 194 

between lifetime centroids (i.e., closer individuals tended to share more range), and both 195 

were weakly but significantly correlated with genetic relatedness (Supplementary Figure 1).  196 

To test whether social network positions could be explained by population density, we 197 

derived the local density of individuals again using AdeHabitatHR (Calenge 2011). We 198 

generated density kernels of observations, and then assigned individual deer their local 199 

population density based on their location on this kernel, following previous methodology 200 

developed in badgers (Albery et al. 2020b). This local density value was then fitted as a fixed 201 

explanatory variable. We used four different density metrics, each examining the density of a 202 

different observation type: lifetime centroids (“lifetime density”); annual centroids (“annual 203 

density”); all observations across the study period (“sighting density”); and all observations in 204 

the focal year (“annual sighting density”). Only one such density metric was fitted at once. 205 

We also calculated annual home range areas (HRA) by taking the 70% isopleth of each 206 

individual’s annual space use distribution, following previous methodology (Froy et al. 2018). 207 

This HRA variable was fitted as a fixed effect in the same way as local density. 208 

We constructed a series of 43 annual social networks using “gambit of the group,” where 209 

individuals in the same grouping event (as described above) were taken to be associating 210 
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(Franks et al. 2010). Dyadic associations were calculated using the ‘simple ratio index’ 211 

(Cairns & Schwager 1987) derived as a proportion of total sightings (grouping events) in 212 

which the focal individuals were seen together: SightingsA,B/(SightingsA+SightingsB-213 

SightingsA,B), or IntersectA,B/UnionA,B. In this dyadic matrix, 0=never seen together and 214 

1=never seen apart. 215 

Statistical Analysis 216 

Metrics. Using the annual social networks, we derived eight individual-level network metrics 217 

which are commonly used across animal social networks and have been considered in 218 

detail(Whitehead 2008; Brent 2015; Krause et al. 2015; Firth et al. 2017). We set each of 219 

these network metrics for use as response variables in separate INLA Generalised Linear 220 

Mixed Models (GLMMs) with a Gaussian family specification. In increasing order of 221 

complexity, our measures included four direct sociality metrics, which only take into account 222 

an individual’s connections with other individuals: 1) Group Size – the average number of 223 

individuals a deer associated with per sighting; 2) Degree – the number of unique individuals 224 

she was observed with; 3) Strength – sum of all their weighted social associations to others; 225 

4) Mean Strength – the average association strength to each of the unique individuals she 226 

was observed with (equivalent to strength divided by degree). We also included four more 227 

complex “indirect” metrics (all using algorithms as specified from (Csardi & Nepusz 2006)), 228 

which also take into account an individual’s connections’ connections: 5) Eigenvector 229 

centrality – which considers the sum of their own connections and the sum of their 230 

associates’ connections; 6) Weighted Eigenvector – which is akin to eigenvector centrality 231 

but also accounts for the weights of theirs, and their associates, connections; 7) 232 

Betweenness – the number of shortest paths that pass through the focal individual to 233 

traverse the whole network; 8) Clustering (local) – the tendency for an individual’s contacts 234 

to be connected to one another, forming triads. The raw, untransformed correlations were 235 

assessed for all metrics, and R lay between -0.5 and 0.879 across metrics (Supplementary 236 

Figure 2). When modelling them as response variables, to approximate normality, all social 237 

metrics were square root-transformed apart from eigenvector centralities (which were left 238 

untransformed), group size (which was cube root-transformed), and betweenness (which 239 

was log(X+1)-transformed). Each social network metric was fitted as a response variable in 240 

a separate model set (as outlined conceptually in Figure 1).  241 

Base model structure. We ensured that all models followed the same base structure. 242 

Random effects included individual identity and year (categorical random intercepts), as well 243 

as the genetic relatedness matrix. Fixed effects included Age (continuous, in years), 244 

Reproductive Status (four categories: True Yeld; Summer Yeld; Winter Yeld; and Milk), and 245 

Number of observations (continuous, log-transformed to approximate normality), as well as 246 
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year-level continuous factors including Year (continuous) and that year’s study Population 247 

Size (log-transformed). All continuous response and explanatory variables were 248 

standardised to have a mean of zero and a standard deviation of 1. Fixed effect estimates 249 

were provided by the mean and 95% credibility intervals of the posterior estimate 250 

distribution. 251 

Adding spatial components. To investigate the divergent value of different spatial 252 

behaviours, we iteratively added spatial effects to the base model, investigating which 253 

behaviours best fit the data. These spatial behaviours corresponded to four broad 254 

components in Figure 1: space sharing (HRO matrix); home range area (HRA); point 255 

locations (SPDE effect); and local population density (density fixed effect). For space 256 

sharing, we only used one metric: lifetime HRO (see above). For point locations, we selected 257 

between 1) lifetime centroids; 2) annual centroids; and 3) annual centroids with a 258 

spatiotemporally varying annual field. For density, we used the four metrics outlined above 259 

(“lifetime”, “annual”, “sighting”, and “annual sighting” density). To distinguish between 260 

competitive models we used Deviance Information Criterion (DIC). In each round, we added 261 

each spatial behaviour individually and then kept the best-fitting one, until all four had been 262 

added or their addition did not improve the model, using a cutoff of 2 DIC. 263 

Comparing all spatial and non-spatial drivers. To compare the relative importance of all 264 

fixed and random effects, we examined the model’s predicted values and their correlations 265 

with the observed values, representing the proportion of the variance that was explained by 266 

the model (i.e., R2). We used the model to predict each social behaviour metric, and 267 

iteratively held each explanatory variable’s predictions at the mean, one at a time. We then 268 

assessed the squared correlations of these values with the observed values, relative to 269 

those of the full model. Variables with greater effects in the model produced less accurate 270 

predicted values when held constant. 271 

Results 272 

Spatial behaviours were important in determining all eight individual-level social network 273 

position variables. The non-spatial model was far the poorest-fitting for all eight metrics, and 274 

the DIC changes associated with adding spatial components were substantial (Figure 3A). 275 

Generally, wide-ranging individuals and those living in areas of greater population density 276 

tended to be more central, and space sharing and point location effects both revealed 277 

substantial spatial autocorrelation (Figure 3). 278 

As expected, home range area and population density had substantial effects on social 279 

network centrality (Figure 3). Population density was positively associated with all centrality 280 
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measures except betweenness and clustering (Figure 3A), and the best-fitting density metric 281 

was annual density. Individuals with larger home ranges likewise tended to be more social, 282 

except in the case of clustering (no effect) and mean strength, which were negatively 283 

associated with HRA (Figure 3A). 284 

Notably, point location-based SPDE effects tended to improve model fit over these fixed 285 

effects, and had a greater effect than on model fit space sharing HRO effects, even when 286 

conceptualised at the same timescale (i.e., across the individual’s lifetime). Investigating the 287 

R2 components of the models containing only HRO (i.e., without SPDE effects) revealed that 288 

in general spatial overlap accounted for more variation than the genetic matrix 289 

(Supplementary Figure 3), but comparing these with the other models revealed that the point 290 

location effects contributed more than either of these matrices (Figure 3B). Annually varying 291 

centroids further improved model fit, and allowing the spatial field to vary between years in 292 

our spatiotemporal models improved models even more (Figure 3A). Although the space 293 

sharing and genomic relatedness matrices had similar sized impacts on the full models 294 

(Figure 3B), removing the SPDE effect resulted in a substantial increase in the HRO effect, 295 

but with very little impact on the GRM’s R2 (Supplementary Figure 3). These findings were 296 

relatively consistent across all metrics (Figure 3A-B), although the SPDE effect was notably 297 

smaller for betweenness (Figure 3B). Taken together, these results reveal that lifetime space 298 

sharing was good at accounting for variation in social behaviour, but that its effect was 299 

surpassed by increasingly complex temporal formulations of point location effects. 300 

We compared the importance of all fixed and random effects by predicting selectively from 301 

the model, revealing overwhelmingly strong effects of spatiotemporal drivers (Figure 3B). 302 

Our models fit well and explained a substantial amount of variation in social network 303 

centrality (>70%); the majority of the fit was lent by a combination of the INLA SPDE effect, 304 

fixed effects of local population density, and random effects of year (Figure 3B). Space 305 

sharing (HRO) and home range area (HRA) had comparatively small effects.  306 

Observations also had a notable impact for Degree, Betweenness, and Clustering (Figure 307 

3B). Fixed effects for year and observation numbers were generally strong and significantly 308 

positive across metrics, except in the case of clustering, for which observation number’s 309 

effect was significantly negative (Figure 3B). There were also small positive effects of 310 

population size on betweenness and degree centrality (Figure 3B). 311 

Although individual-level drivers (reproduction, age, and individual identity) had a negligible 312 

impact on all variables’ R2 (Figure 3B), many had a significant effect (i.e., their 95% 313 

credibility intervals did not overlap with zero; Figure 3C). Individuals whose calves lived to 314 

the winter and then either died before the 1st May (“Winter Yeld”) or survived (“Milk”) were 315 
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generally less central than those that did not give birth (“True Yeld”) or whose calf died 316 

before 1st October (“Summer Yeld”). Similarly, there were minor age-related decreases in 317 

network centrality for the direct metrics (Group Size, Degree, and Strength; Figure 3C). 318 

To investigate spatial patterns of sociality when accounting for our fixed and random effects, 319 

we projected the annual SPDE random effect in two-dimensional space (Figure 4; 320 

Supplementary Figures 5-12). The spatial distributions of network centrality metrics were 321 

highly variable, but direct metrics generally peaked in the centre of the study system and 322 

decreased outwards (Figure 4). Mean Strength was an exception, being lowest in the centre 323 

and increasing outward (Figure 4D); Clustering was patchily distributed, such that no clear 324 

pattern was evident (Figure 4H); and Betweenness was slightly offset, being highest in the 325 

north-northeast of the study area rather than in the central north (Figure 4G). The range of 326 

autocorrelation also varied among metrics; Betweenness and Clustering had notably shorter 327 

ranges than the other metrics (Supplementary Figure 4). We also plotted the spatial fields 328 

through time, revealing substantial variation in the spatial fields across the study period 329 

(Supplementary Figures 5-12). 330 

Discussion 331 

The role of spatial behaviour in driving social network structure 332 

The position individuals occupy within their social networks can affect many aspects of their 333 

ecology and evolution (Krause et al. 2015; Firth et al. 2018; Sah et al. 2018), and our results 334 

confirm the powerful role of fine-scale spatial context in shaping such traits (e.g. Farine & 335 

Sheldon, 2019; Mourier et al., 2019; Webber & Vander Wal, 2018). Capitalising on our 336 

models’ ability to compare the influence of a wide range of spatial and non-spatial 337 

components, we found that spatial behaviour and environmental context were the most 338 

important determinants of social network centrality -- more so than a suite of individual-level 339 

phenotypes and demographic factors. Individuals with larger ranges and inhabiting higher-340 

density areas were more central in the social network, revealing the important role of 341 

individual spatial activity levels and location within the broader population structure. As 342 

expected, models were further improved when we incorporated pairwise space sharing and 343 

two-dimensional point locations, demonstrating that an individual’s social network position is 344 

not determined simply by the density of nearby individuals and by its own spatial activity, but 345 

by other aspects of the fine-scale surrounding environment such as microclimate, resource 346 

distribution, and landscape architecture (Spiegel et al. 2018; Webber & Vander Wal 2018; 347 

He et al. 2019). Reciprocally, individuals may be altering their spatial behaviour, e.g. opting 348 

to share more space or live closer together if they are more socially connected (Firth & 349 

Sheldon 2016; Spiegel et al. 2016). As such, we propose that social network studies should 350 
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more regularly incorporate both space sharing and (temporally varying) point locations in 351 

their statistical approaches to anticipate these effects, alongside specific spatial behaviours 352 

thought to drive social network position. This practice will help to buffer for the fact that the 353 

spatial environment not only correlates with social proximity, but can alter the fabric of the 354 

network itself. 355 

The landscape of sociality 356 

One of the foremost advantages of our approach is the ability to flexibly investigate two-357 

dimensional spatial patterns of social network centrality. This allowed us to qualitatively 358 

assess the spatial structure of the social network, while providing clues towards the causal 359 

factors. Most notably, betweenness peaked in the north-northeast of the system, likely 360 

because the far northeastern community is relatively isolated from the rest of the population 361 

due to the landscape structure (Figure 2), so that many ‘social paths’ that traverse the 362 

population (the criteria for betweenness centrality) go through individuals in this intermediate 363 

(north-northeast) area. That is, individuals living in this area are more likely to be connected 364 

to both the far eastern communities and the central and western ones.  365 

As expected, direct centrality metrics (group size, degree, and strength) were affected by 366 

local population density, which peaks in the central north study area due to the concentration 367 

of high quality grazing (Clutton-Brock et al. 1982). Individuals’ resource selection behaviours 368 

increase local density in this area (Clutton-Brock et al. 1982), and will increase social 369 

connectivity as a result (Ostfeld et al. 1986; Sanchez & Hudgens 2015; Webber & Vander 370 

Wal 2018). This comprises strong evidence for density-related increases in social contact 371 

frequency, and accentuates the vital importance of considering resource distribution, habitat 372 

selection, and population structure when examining social network correlates (Spiegel et al. 373 

2016; Webber & Vander Wal 2018; Farine & Sheldon 2019; He et al. 2019). However, 374 

because density was accounted for as a fixed effect in the models, the spatial patterns of 375 

location effects for the direct metrics did not strictly follow the spatial pattern of density. 376 

Instead, these metrics peaked in the centre of the study population, demonstrating that 377 

individuals living in this central region are more well-connected when accounting for 378 

population density. Combining these spatial components allowed us to effectively 379 

differentiate what we do know (that greater population density drives increased social 380 

connectedness) from what we do not (the drivers of greater sociality for individuals in the 381 

central area). Without using the SPDE effect (i.e., relying only on generalised pairwise space 382 

sharing rather than accounting for specific two-dimensional spatial patterns), these insights 383 

into these patterns may have been harder to detect. An alternative method could involve 384 

splitting the population into subpopulations and analysing them separately or comparing 385 

them, but this method has been shown to be less powerful in this population (Albery et al. 386 
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2019), and is ultimately based on arbitrary choices if a population is mixed. The causes of 387 

the spatial distribution of clustering remain unresolved, but the pattern highlights areas 388 

where individuals are connected together in triads or tight cliques, and appears to be 389 

negatively correlated with betweenness (Figure 4). For traits such as this, it is unlikely that a 390 

simpler explanatory variable could be formulated to quantify the spatial-social processes at 391 

play. 392 

Regardless of the causes of the spatial patterns, such fine-scale variation across the 393 

landscape holds important ecological consequences, particularly for the more complex 394 

network metrics. For instance, the areas of high clustering may act as ‘incubator’ areas 395 

where cliques can develop new socially influenced behaviours (Centola 2018; Guilbeault et 396 

al. 2018; Firth 2020) such as cooperative behaviours (Rand et al. 2011). The high contact 397 

rates in the northern central areas might sustain high local burdens of directly transmitted 398 

diseases (Cote & Poulin 1995), while individuals inhabiting the high-betweenness 399 

intermediate areas may be important for transmitting novel diseases across the population 400 

as a whole (VanderWaal et al. 2014).  401 

Analytical benefits of INLA animal models 402 

Analyses using multiple layers of different behaviours are well-suited to extricating space 403 

and sociality in wild animal systems (Silk et al. 2018; Webber & Vander Wal 2018; Finn et al. 404 

2019), and there is increasing conceptual and analytical overlap with the related field of 405 

movement ecology (Jacoby & Freeman 2016; Mourier et al. 2019; Pasquaretta et al. 2020). 406 

Notably, many spatial-social studies suffer from the necessity to reduce complex movement 407 

patterns into simpler metrics, which risks losing important information in the process. As 408 

such, recent studies have pushed for researchers to incorporate movement trajectories 409 

themselves into complex network data structures (Mourier et al. 2019). Our approach allows 410 

incorporation of multiple dyadic and non-dyadic behavioural measures, and with several 411 

analytical timescales, offering an alternative workaround to this problem. Although other 412 

methods can control for point locations (e.g. using autoregressive processes and 413 

row/column effects; Stopher et al. 2012b), INLA models allow greater precision, fit quickly, 414 

and allow incorporation of spatiotemporal structuring. Furthermore, plotting the SPDE effect 415 

in two dimensions, as in Figure 4, gives an easily interpretable and intuitive portrayal of 416 

network traits in space that can be hard to visualise using other methods. For these reasons, 417 

we highly recommend further exploration of INLA animal models as a flexible method with 418 

which to extricate individual, demographic, spatial, and temporal contributors to sociality 419 

where sample sizes are sufficient (Thomson et al. 2018; Webber & Vander Wal 2018). In 420 

addition to carrying out network-level manipulations (Daraganova et al. 2012; Davis et al. 421 

2015; Firth & Sheldon 2016; Farine 2017), researchers concerned about spatial confounding 422 
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could implement relatively familiar linear models of social behaviour, but with additional 423 

spatial components such as SPDE random effects and similarity matrix variance 424 

components, with trustworthy and interpretable results (Albery et al. 2020a). 425 

Although space accounted for an overwhelming amount of variation, many non-spatial 426 

factors had substantial effects. The categorical random effect for interannual variation was 427 

substantial, and there were detectable linear annual effects and population size effects, as 428 

expected given the important roles of demography in structuring social networks (Shizuka & 429 

Johnson 2019). Interestingly, there was a substantial positive association with study year 430 

that was not attributable to the growth in population size over the same period. It is possible 431 

that this represents a change in the deer’s social phenotypes over time, although the 432 

potential specific mechanisms now would benefit from further examination. Individual-level 433 

factors had weaker contributions to model fit and smaller effect sizes: most notably, genetic 434 

and individual random effects were negligible when spatial autocorrelation was accounted 435 

for, confirming the importance of considering space when assessing heritability 436 

independently of space in this population (Stopher et al. 2012a). Nevertheless, individual-437 

level effects were encouragingly still detectable and significant, particularly for simpler 438 

“direct” metrics. It is possible that more complex social network positions are less 439 

determined by individual social behaviours, particularly for animals with fission-fusion 440 

societies such as the deer; this hypothesis could be tested using similar spatial-social 441 

analyses in a number of other systems. This finding demonstrates that even when spatial 442 

structuring plays a vital role in determining social network structure, controlling for this 443 

structuring analytically can reveal important, conservative individual-level effects. Future 444 

analyses within this population, and potentially other long-term studies, could take 445 

advantage of this framework by including environmental drivers such as food availability and 446 

climatic factors to explain patterns of social connectivity, while further unpicking the causes 447 

of the individual-level trends that we observed. 448 
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 449 

 450 

 451 
Figure 1: Data processing and analysis pipeline, demonstrating how behavioural census 452 

data were collected, used to derive social and spatial behavioural traits, and fitted in INLA 453 
animal model GLMMs. Numbers in brackets represent sample sizes, and only include 454 

females aged 3+ years. Blue arrows represent social behaviour; red arrows represent spatial 455 
behaviours. See methods for the fixed and random effects. The text box displays the 456 

definitions for the different spatial effects. 457 
 458 
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 459 

Figure 2: Spatial structuring of the 2016 social association network as a representative 460 
example. A: the spatial locations (centroids) of individual deer, connected by their social 461 

associations. Line opacity and width are weighted by connection strength. Ten axis units = 462 
1KM. B: the same social network with the nodes positioned in a network spring-layout 463 

(Csardi & Nepusz 2006) and then expanded into an even, circular grid according to their 464 
nearest spatial positions in A. The points’ (i.e. nodes’) sizes and colours show individuals’ 465 

strength centrality (large and red=high strength; small and blue=low strength). Thickness of 466 
the lines (i.e. edges) connecting them shows dyadic association strength between 467 

individuals.  468 
 469 

B B 
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470 
Figure 3: Model outputs demonstrating strong effects of spatial and non-spatial drivers on 471 

social network positions. A: DIC changes associated with addition of different spatial 472 
components, for all eight social network centrality measures. Variables are arranged in order 473 

of mean contribution to model fit, which varied little among response variables. Different 474 
colours correspond to different network centrality response variables, with the same colour 475 
key as panel C. GRM = Genomic Relatedness Matrix. HRA = Home Range Area. HRO = 476 

home range overlap. The SPDE models are differentiated into those using annual centroids 477 
(“SPDE”) and the version with spatiotemporally varying annual spatial fields (“tSPDE”). B: 478 

Variance accounted for by each variable for all eight network position measures, expressed 479 
as contribution to R2 in the annual model (squared correlation between observed and 480 

predicted values). Different shades correspond to different variables. fYear = year as a 481 
categorical random effect. HRA = Home Range Area. GRM = Genomic Relatedness Matrix. 482 

HRO = home range overlap. Name = individual identity. NObs = number of observations 483 
(i.e., sampling bias). PopN = population size. Status = reproductive status. SPDE = point 484 

location effects estimated using the Stochastic Partial Differentiation Equation effect in the 485 
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INLA models. For all response variables, individual level effects (Age, Reproductive Status, 486 
Name) had a negligible effect. C: Fixed effect estimates for the models. Fixed effects are 487 
grouped into individual factors (age and three reproductive status effects), annual factors 488 
(continuous time in years since study began, and annual population size), and sampling 489 

factors (observation number). Reproductive status effects are separated into four levels: did 490 
not reproduce (the intercept); calf died in the first few months of life (“Summer Yeld”); calf 491 
died during the winter (“Winter Yeld”); and calf survived to May the following year (“Milk”). 492 

Different colours correspond to different network centrality response variables. Points 493 
represent the posterior mean; error bars denote the 95% credibility intervals for the effects. 494 

Asterisks denote significant variables (i.e., those whose estimates did not overlap with zero). 495 
Significant variables are fully opaque, while non-significant ones are transparent. 496 

 497 

 498 

Figure 4: Spatial fields for the SPDE random effect for each response variable, taken from 499 
the INLA animal models and based on annual centroid point locations. Metrics can be 500 

conceptualised as simpler “direct” metrics (top row) and more complex “indirect” metrics 501 
(bottom row). Darker colours correspond to greater values. Each axis tick corresponds to 502 

1km; for the values associated with the Easting and Northings, see Figure 1. 503 
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Supplementary Figures for Albery et al:  670 
 671 

 672 

Supplementary Figure 1: Correlation among pairwise values in lifetime point location distances, home 673 
range overlap matrix, and genomic relatedness matrix. The data have been fitted with a Generalised 674 

Additive Model (GAM) smooth. 675 
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 677 

 678 

Supplementary Figure 2: Pairwise correlations among network position response variables. Values 679 
were transformed, scaled to have a mean of 0 and a standard deviation of 1, with outliers removed, 680 

before analysis. The data have been fitted with a Generalised Additive Model (GAM) smooth. 681 
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 682 

Supplementary Figure 3: Variance accounted for by each variable for all eight network position 683 
measures, expressed as contribution to R2 in the models with home range overlap. This output differs 684 
from Figure 3B in the main text because the model did not include the SPDE random effect. Different 685 

shades correspond to different variables. fYear = year as a categorical random effect. GRM = 686 
Genomic Relatedness Matrix. HRO = home range overlap. Name = individual identity. NObs = 687 

number of observations (i.e., sampling bias). PopN = population size. Status = reproductive status. 688 
For all response variables, individual level variables (Age, Reproductive Status, Identity) had a 689 

negligible effect. 690 
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 692 

 693 

Supplementary Figure 4: The INLA SPDE autocorrelation ranges for each response variable. Different 694 
shades and line types correspond to different response variables. The X axis is in kilometres. 695 
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 697 

Supplementary Figure 5: Annual spatial fields for the SPDE random effect for group size, taken from 698 
the INLA animal models and based on annual centroid point locations. Darker colours correspond to 699 

greater values. Each axis tick corresponds to 1km distance; for the values associated with the Easting 700 
and Northings, see Figure 1 in the main text. 701 
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 703 

Supplementary Figure 6: Annual spatial fields for the SPDE random effect for degree centrality, taken 704 
from the INLA animal models and based on annual centroid point locations. Darker colours 705 

correspond to greater values. Each axis tick corresponds to 1km distance; for the values associated 706 
with the Easting and Northings, see Figure 1 in the main text. 707 
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 708 

Supplementary Figure 7: Annual spatial fields for the SPDE random effect for strength centrality, 709 
taken from the INLA animal models and based on annual centroid point locations. Darker colours 710 

correspond to greater values. Each axis tick corresponds to 1km distance; for the values associated 711 
with the Easting and Northings, see Figure 1 in the main text. 712 
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 713 

Supplementary Figure 8: Annual spatial fields for the SPDE random effect for mean strength 714 
centrality, taken from the INLA animal models and based on annual centroid point locations. Darker 715 

colours correspond to greater values. Each axis tick corresponds to 1km distance; for the values 716 
associated with the Easting and Northings, see Figure 1 in the main text. 717 
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 718 

Supplementary Figure 9: Annual spatial fields for the SPDE random effect for Eigenvector centrality, 719 
taken from the INLA animal models and based on annual centroid point locations. Darker colours 720 

correspond to greater values. Each axis tick corresponds to 1km distance; for the values associated 721 
with the Easting and Northings, see Figure 1 in the main text. 722 
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 723 

Supplementary Figure 10: Annual spatial fields for the SPDE random effect for weighted Eigenvector 724 
centrality, taken from the INLA animal models and based on annual centroid point locations. Darker 725 

colours correspond to greater values. Each axis tick corresponds to 1km distance; for the values 726 
associated with the Easting and Northings, see Figure 1 in the main text. 727 
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 728 

Supplementary Figure 11: Annual spatial fields for the SPDE random effect for betweenness 729 
centrality, taken from the INLA animal models and based on annual centroid point locations. Darker 730 

colours correspond to greater values. Each axis tick corresponds to 1km distance; for the values 731 
associated with the Easting and Northings, see Figure 1 in the main text. 732 
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 733 

Supplementary Figure 12: Annual spatial fields for the SPDE random effect for clustering, taken from 734 
the INLA animal models and based on annual centroid point locations. Darker colours correspond to 735 

greater values. Each axis tick corresponds to 1km distance; for the values associated with the Easting 736 
and Northings, see Figure 1 in the main text. 737 
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