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Abstract 52 

Outbreaks of emerging coronaviruses in the past two decades and the current pandemic 53 

of a novel coronavirus (SARS-CoV-2) that emerged in China highlight the importance of this 54 

viral family as a zoonotic public health threat. To gain a better understanding of coronavirus 55 

presence and diversity in wildlife at wildlife-human interfaces in three southern provinces in Viet 56 

Nam 2013-2014, we used consensus Polymerase Chain Reactions to detect coronavirus 57 

sequences. In comparison to previous studies, we observed high proportions of positive samples 58 

among field rats (34.0%, 239/702) destined for human consumption and insectivorous bats in 59 

guano farms (74.8%, 234/313) adjacent to human dwellings. Most notably among field rats, the 60 

odds of coronavirus RNA detection significantly increased along the supply chain from field rats 61 

sold by traders (reference group; 20.7% positivity, 39/188) by a factor of 2.2 for field rats sold in 62 

large markets (32.0%, 116/363) and 10.0 for field rats sold and served in restaurants (55.6%, 63 

84/151). Coronaviruses were detected in the majority of wildlife farms (60.7%, 17/28) and in the 64 

Malayan porcupines (6.0%, 20/331) and bamboo rats (6.3%, 6/96) that are farmed. We identified 65 

six known coronaviruses in bats and rodents, clustered in three Coronaviridae genera, including 66 

the Alpha-, Beta-, and Gammacoronaviruses. Our analysis also suggested either mixing of 67 

animal excreta in the environment or interspecies transmission of coronaviruses, as both bat and 68 

avian coronaviruses were detected in rodent feces in the trade. The mixing of multiple 69 

coronaviruses, and their apparent amplification along the wildlife supply chain into restaurants, 70 

suggests maximal risk for end consumers and likely underpins the mechanisms of zoonotic 71 

spillover to people. 72 

 73 
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 76 

Introduction 77 

Human-wildlife contact with a bat or an intermediate host species in China likely 78 

triggered a coronavirus spillover event that may have involved wildlife markets and led to the 79 

pandemic spread of SARS-CoV-2 [1,2]. The pandemic risk of commercial trade in live wildlife 80 

was first recognized during the 2002-2003 Severe Acute Respiratory Syndrome (SARS) 81 

outbreak due to SARS-CoV [3]. This virus spread to more than 29 countries in Asia, Europe, and 82 

the Americas with 8,096 people infected and 774 deaths, costing the global economy about $US 83 

40 billion in response and control measures [4,5]. Unfortunately, the global impact of COVID-84 

19, the disease caused by SARS-CoV-2 has reached nearly every country and greatly surpassed 85 

those numbers by many orders of magnitude [6]. While bats are thought to be the ancestral hosts 86 

for all groups of coronaviruses, including those that were previously thought to be in the rodent 87 

and avian clades [7], for both SARS-CoV and SARS-CoV-2 wildlife trade supply chains are 88 

suspected to have contributed the additional conditions necessary for the emergence, spillover, 89 

and amplification of these viruses in humans [8,9]. To better understand the presence and 90 

diversity of coronaviruses in wildlife we conducted coronavirus surveillance at high-risk 91 

interfaces in Viet Nam from 2009 to 2014 [10]. We sampled in live field rat trade (Rattus sp. and 92 

Bandicota sp.) and wildlife farm interfaces to assess risk from different wildlife supply chains 93 

destined for human consumption, and sampled bat guano farms to assess the potential 94 
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occupational risk of this practice given that bat guano farm artificial roost structures are often 95 

erected near human dwellings. 96 

In the early 2000s, the Vietnamese field rat trade was estimated to process 3,300-3,600 97 

tons of live rats annually for consumption, a market valued at US$2 million [11]. Although rats 98 

are still commonly traded in wet markets and sold live for food consumption along the Mekong 99 

Delta in southern Viet Nam, no recent published data on the scale and scope of the trade is 100 

available [12]. This human-wildlife interface involves the capture of wild caught field rats, 101 

subsequent trade, and consumption along a supply chain involving the entire Mekong Delta 102 

region, particularly Cambodia and Viet Nam [13]. Driving this trade are consumers in Viet Nam 103 

and Cambodia, who report eating rats at least once per week because of their good flavor, low 104 

cost, and perception of rats as ‘healthy, nutritious, natural, or disease free’ [13]. Rodent parts 105 

(heads, tails, and internal organs discarded at slaughter) are also often fed to domestic livestock 106 

or herptiles raised in captivity including frogs, snakes, and crocodiles [12]. Records of this local 107 

trade in field rats include official rat hunts, instituted by French administrators, that killed 108 

upwards of 10,000 rats a day prior to the arrival of bubonic plague in Ha Noi in 1903 [14].  109 

Over the past three decades, commercial wildlife farming has developed in many 110 

countries in Southeast Asia, including Viet Nam. Although there are historic references to the 111 

occurrence of wildlife farms in Viet Nam dating back to the late 1800s, the rapid expansion in 112 

terms of farm numbers, species diversity, and scale of operations has occurred in recent decades 113 

in response to growing domestic and international demand for wildlife [15]. A 2014 survey 114 

across 12 provinces in southern Viet Nam identified 6,006 registered wildlife farms of which 115 

4,099 had active operations. The surveyed farms were stocked with approximately one million 116 

wild animals including, rodents, primates, civets, wild boar, Oriental rat-snakes, deer, crocodiles, 117 
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and softshell turtles. Ninety-five percent of the farms held 1-2 species of wildlife, and 70% of the 118 

farms also raised domestic animals on the same premises [16]. A key component of the wildlife 119 

farm industry in Viet Nam is the raising of wild species for meat for human consumption [16]. 120 

These farms sell to urban wild meat restaurants serving increasingly affluent populations 121 

throughout the country and also supply international markets with wild meat [17]. Commercial 122 

wildlife farming in Viet Nam is part of the expanded international trade of wildlife that has been 123 

hypothesized to contribute to the cause of global epidemics, such as SARS [18] and now 124 

COVID-19. 125 

Emerging evidence suggests zoonotic virus spillover risk is a concern at bat-human 126 

interfaces in Asia. Guano harvested from a cave in Thailand were positive for a group C 127 

betacoronavirus, which includes MERS-CoV, and 2.7% of 218 people living in close proximity 128 

to bats known to carry viruses related to SARS-CoV tested positive for SARS-related antibodies 129 

in China [19,20]. The traditional practice of guano farming in parts of Cambodia and Viet Nam 130 

involves the construction of artificial bat roosts in gardens or backyard farms, under which 131 

domestic animals and crops are raised, and children often play [21,22]. Cambodian development 132 

programs promoted the practice in 2004 to enhance soil fertility, reduce reliance on chemical 133 

fertilizers, generate income ($US 0.50/kg), control insect pests, and protect the lesser Asiatic 134 

yellow bats (Scotophilus kuhlii) that were being hunted [21–23]. No personal protection 135 

measures are taken when harvesting the guano, which is used as fertilizer and is reported to 136 

improve the growth rate in five economically important plant species [24].   137 

In this study we investigated the presence and diversity of coronavirus sequences in the 138 

field rat trade distribution chain, wildlife farms specializing in rodents for human consumption, 139 
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and bat guano “farms” and roosts near human dwellings to better understand the natural hosts of 140 

coronaviruses and the risk for these interfaces to facilitate spillover into humans. 141 

 142 

Materials and Methods  143 

Sampling Locations 144 

Sampling was performed at multiple sites representing several high-risk interfaces for 145 

contacts among people, rodents, and bats. Rodent sampling focused on the live rodent trade 146 

supply chain and rodent farms. Along the supply chain, we targeted eight sites involved in the 147 

private sale and processing of live rodents for consumption, defined as ‘traders’ for the purpose 148 

of this study in Dong Thap and Soc Trang provinces, 14 large markets sites in Dong Thap and 149 

Soc Trang provinces (>20 vendors), and two restaurant sites in Soc Trang province (Fig 1). The 150 

28 rodent farm sites we targeted in Dong Nai province produced Malayan porcupines (Hystrix 151 

brachyura) and bamboo rats (Rhizomys sp.) for human consumption (Fig 2). Other species 152 

observed or raised at the wildlife farm sites included dogs, cattle, pigs, chickens, ducks, pigeons, 153 

geese, common pheasant, monitor lizards, wild boar, fish, python, crocodiles, deer, civets, non-154 

human primates as pets or part of private collections, free-flying wild birds, and free-ranging 155 

peri-domestic rodents. 156 

 157 

Fig 1. Slaughtering rodents (left) and rodent market (right) in Dong Thap province, 158 

October 2013.  159 

 160 

Fig 2. Malayan porcupines (Hystrix brachyura) farm in Dong Nai province, November 161 

2013. 162 

 163 
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Bat sampling occurred at bat guano “farms” and a natural bat roost located at a religious 164 

site. Bat guano farms consisted of artificial roosts constructed with a concrete base and pillars 165 

topped with fronds of coconut palm or Asian Palmyra Palm (Borassus flabellifer) (Fig 3). 166 

Seventeen bat guano farms were sampled in the two provinces of Dong Thap and Soc Trang. The 167 

natural bat roost was located at a religious site in Soc Trang province known as the “bat pagoda”, 168 

where Pteropus sp. have historically roosted in trees protected from hunting, and light and noise 169 

pollution [25]. 170 

 171 

Fig 3. Bat guano farms in Soc Trang Province, October 2013. 172 

 173 

All study sampling occurred from January 2013 to March 2014 at 41 sites in the wet 174 

(south Viet Nam: May 1st - November 30th) and 30 in the dry (south Viet Nam: December 1st - 175 

April 30th) seasons. Given the distances between sites, all sites were sampled once except the bat 176 

pagoda natural roost in Soc Trang province, which was visited three times and sampled in both 177 

seasons. 178 

Animal sampling  179 

Samples were humanely collected using standard and previously published protocols 180 

[26]. Feces, swabs of the pen floors, and urine/urogenital swabs were collected from rodents at 181 

wildlife farms. Samples were classified as ‘fecal sample’ when collected from animals housed 182 

individually, and as ‘environmental sample’ when collected below cages housing multiple 183 

individuals. Samples from rodents in the trade included primarily oral swabs in addition to 184 

tissues (i.e. brain, kidney, lung, and small intestine), rectal swabs, and urine/urogenital swabs. 185 

These samples were collected from individual carcasses after the rodents were slaughtered by a 186 
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market vendor, trader, or restaurant kitchen staff. However, the rodents were usually butchered at 187 

a common site for each observed time period that was only cleaned intermittently following the 188 

trader’s, vendor’s, or restaurant’s regular practices. Oral swabs were taken from the severed 189 

heads, and additional tissue samples were collected from the internal organs and the 190 

gastrointestinal tracts which were removed during the butchering process. 191 

Fecal samples and a small number of urine samples from bats in guano farms and the 192 

natural roost site were collected on clean plastic cover sheets within 1-2 hours after placement 193 

under bat roosts, and thus each sample may represent one or multiple bats. Oral and rectal swabs 194 

were also collected from live-captured bats at the natural pagoda roost site.  195 

Animals were identified in the field to the lowest taxonomic level possible based on 196 

morphological characteristics, and species was identified in a subset of animals through genetic 197 

barcoding [15]. Due to difficulty of morphologic identification in the field, unless barcoded, 198 

rodents (Rattus argentiventer, R. tanezumi, R. norvegicus, R. exulans, R. losea, and Bandicota 199 

indica; [12,27]) were categorized as “field rats”. Bats were classified as “Microchiroptera” 200 

following the traditional taxonomic classification (new classification of two new suborders 201 

Yangochiroptera and Yinpterochiroptera, was only published near the end of the study, so for 202 

consistency we used the historical classification [28]).  203 

All samples were collected in cryotubes containing RNAlater (RNA stabilization reagent, 204 

Qiagen), and stored in liquid nitrogen in the field before being transported to the laboratory for 205 

storage at -80 ˚C. Samples were tested by the Regional Animal Health Office No. 6 (RAHO6) 206 

laboratory in Ho Chi Minh City. The study was approved by the Department of Animal Health of 207 

the Ministry of Agriculture and Rural Development and protocols were reviewed by the 208 
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Institutional Animal Care and Use Committee at the University of California at Davis (protocol 209 

number 16048). 210 

Sample Testing 211 

RNA was extracted (RNA MiniPrep Kit, Sigma-Aldrich) and cDNA transcribed 212 

(SuperScript III First Strand cDNA Synthesis System, Invitrogen). Coronavirus RNA was 213 

detected using two broadly reactive consensus nested-PCR assays targeting the RNA dependent 214 

RNA polymerase (RdRp) gene [29,30]. The positive control was a synthetic plasmid containing 215 

the primer-binding sites for both assays. Distilled water was used as a negative control and 216 

included in each test batch. PCR products were visualized using 1.5% agarose gels, and bands of 217 

the correct size were excised, cloned, and sequenced by Sanger dideoxy sequencing using the 218 

same primers as for amplification.  219 

Phylogenetic analysis 220 

For sequence analysis and classification operating taxonomic units were defined with a 221 

cut off of 90% identity, i.e. virus sequences that shared less than 90% identity to a known 222 

sequence were labelled sequentially as PREDICT_CoV-1, -2, -3, etc. and groups sharing ≥ 90% 223 

identity to a sequence already in GenBank were given the same name as the matching sequence 224 

[7]. A phylogenetic tree was constructed for sequences amplified using the Watanabe protocol, 225 

as this PCR protocol yielded longer sequences and more positive results than the Quan protocol. 226 

Several representative sequences for each viral species found in our study were included for 227 

analysis and are available in GenBank (Table S3). Alignments were performed using MUSCLE, 228 

and trees were constructed using Maximum likelihood and the Tamura 3-parameter model in 229 

MEGA7 [31]. The best-fit model of DNA substitution was selected in MEGA7 using BIC scores 230 

(Bayesian Information Criterion) and Maximum Likelihood values (lnL). Bootstrap values were 231 
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calculated after 1000 replicates. In addition, a median-joining network was constructed using 232 

Network 5.0.0.3 [32] to explore phylogenetic relationships among bat coronavirus 512/2005 233 

sequences at the intraspecies level, as haplotype networks may better represent the relationships 234 

among viral sequences with low sequence diversity compared with phylogenetic trees [33]. 235 

Statistical analyses 236 

Visualization of sampling locations in provinces in Viet Nam, along with the distribution 237 

by species and interface was constructed with the ggmap, ggplot2, and sp packages [34]. All 238 

analyses were done using R version 3.5.0 or higher (R Development Core Team, Vienna, 239 

Austria). Data (S1 Data) and code (S1 R Code) are available in the supplementary materials. The 240 

effect of risk factors (season, sub-interface type) was examined and limited to interfaces for 241 

which the distribution of samples across factors could support the analysis. These included 242 

season for Pteropus bat samples collected in the bat pagoda natural roost and the effect of season 243 

and sub-interface for samples collected in the rodent trade in southern Viet Nam. Given the low 244 

sample size, the effect of season for Pteropus bats samples positive for coronaviruses was 245 

assessed using a Fisher exact test. The effect of season (dry, wet, with dry season as reference 246 

category) and sub-interface type (trader, large markets, restaurants, with trader as reference 247 

category) in traded rodent samples positive for coronaviruses was assessed with a mixed effect 248 

multivariable logistic regression, with sites as random effect (i.e. grouping variable) using the 249 

lme4 R package [35]. A p-value of less than 0.05 was considered statistically significant. The 250 

95% binomial confidence intervals for proportions were calculated using binom.test in R. 251 

The comparison of the proportion of coronavirus positives in different sample types was 252 

performed on positive individuals sampled in the rodent trade with multiple sample types 253 
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collected per individual. We then calculated the proportion of individuals positive for each 254 

sample type, as a proxy for the probability of detection by each sample type. 255 

 256 

Results 257 

Detection of coronavirus by animal taxa and interface 258 

A total of 2,164 samples collected between January 2013 and March 2014 from rodents 259 

and bats were tested for coronaviruses (Table 1, S1 Table). Assuming that non-invasive samples 260 

from bats and farmed rodents represented unique distinct individuals, these samples came from 261 

1,506 individuals, including 1,131 rodents and 375 bats from 70 sites sampled in Dong Thap, 262 

Soc Trang, and Dong Nai provinces in the southern region near the Mekong River Delta (Fig 4).  263 

 264 

Fig 4. Map of sampling sites by province and multi-panel plots showing individual counts 265 

of animals sampled by province, taxa, and interface. The color of each bar represents the 266 

animal taxonomic group sampled in Dong Nai, Dong Thap, and Soc Trang provinces. Sciuridae 267 

and Rattus argentiventer were only sampled one time apiece from wildlife farms. 268 

 269 

Out of 70 sites, coronavirus positives were detected at 58 including 100% (24/24) of live 270 

rodent trade sites, 60.7% (17/28) of rodent wildlife farm sites, 94.1% (16/17) of bat guano farm 271 

sites, and at the one natural pteropid bat roost. Wildlife farms were only sampled in Dong Nai 272 

province and the live rodent trade and bat interfaces were sampled in Dong Thap and Soc Trang 273 

provinces (Fig 4).  274 
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Table 1: Summary of coronavirus positives by taxa and interface. Co-infection is defined as the detection of two different 275 
coronavirus taxonomic units in an individual animal.  276 
 277 

Taxa 
group 

Interface Sub-interface Taxa group % site 
positive 

% individual 
positive 

Viral species  
 

# of co-
infected 
animals 

Rodents Rodent 
trade 

Trader Field ratᵅ 100% (8/8) 20.7% (39/188) Murine coronavirus (n=36), 
Longquan aa coronavirus (n=5) 

2 

  Large market Field ratᵅ 100% (14/14) 32.0% (116/363) Murine coronavirus (n=103), 
Longquan aa coronavirus 
(n=31) 

18 

  Restaurant Field ratᵅ 100% (2/2) 55.6% (84/151) Murine coronavirus (n=70), 
Longquan aa coronavirus 
(n=20) 

6 

 Wildlife 
farm 

 Hystrix sp. 47.8% (11/23) 6.0% (20/331) Bat coronavirus 512/2005 
(n=19), Infectious bronchitis 
virus (IBV) (n=1) 

0 

   Rhizomys sp. 45.5% (5/11) 6.3% (6/96) Bat coronavirus 512/2005 
(n=5), Infectious bronchitis 
virus (IBV) (n=1) 

0 

   Rattus sp.b 100% (1/1) 100% (1/1) Bat coronavirus 512/2005 (n=1) 0 
   Sciuridae sp. 0% (0/1) 0% (0/1)   
Bats Human 

dwelling 
Natural bat 
roost  

     

   Pteropus sp. 100% (1/1) 6.7% (4/60) PREDICT_CoV-17 (n=3), 
PREDICT_CoV-35 (n=1) 

0 

   Cynopterus 
horsfieldii 

0% (0/1) 0% (0/2)   

  Bat guano 
farm 

Microchiropterac 94.1% (16/17) 74.8% (234/313) PREDICT_CoV-17 (n=1), 
PREDICT_CoV-35 (n=38),  
Bat coronavirus 512/2005 
(n=216) 

21d 

    82.9% (58/70) 33.5% 
(504/1506) 

 47 

        
ᵅ Field rat here refers to a mix of Rattus sp. and Bandicota sp. 278 
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ᵇ This environmental sample collected from a porcupine cage on a porcupine farm was barcoded as Rattus sp., suggesting this species 279 
was free-ranging at the site (Fig 2). The detection of a bat virus from this sample is suggestive of either environmental mixing or viral 280 
sharing. 281 
c Suborder 282 
d Co-infections included PREDICT_CoV-17 with Bat coronavirus 512/2005 (n=1) and PREDICT_CoV-35 with Bat coronavirus 283 
512/2005 (n=20). 284 
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Coronaviruses were detected in the field rat trade (a mix of Rattus and Bandicota genera) 285 

at all sites in Dong Thap (n=16) and Soc Trang (n=8) provinces, with 34.6% (95% CI 29.8 – 286 

39.7%, 129/373) and 33.4% (95% CI 28.4 – 38.9%, 110/329) positives respectively. The overall 287 

proportion of positives in field rats was 34.0% (95% CI 30.6 – 37.7%, 239/702), ranging from 288 

3.2% to 74.4% across sites. Field rats sampled in the rodent trade had an increasing proportion of 289 

positives along the distribution chain. Starting with traders, the proportion positive was 20.7% 290 

(95% CI 15.3 – 27.4%, 39/188), 32.0% (95% CI 27.2 – 37.1%, 116/363) in large markets, and 291 

55.6% (95% CI 47.3 – 63.6%, 84/151) at restaurants (Fig 5). The proportion of positives was 292 

higher in the wet season (36.7%, 95% CI 32.8 – 40.8%, 210/572) than the dry season (22.3%, 293 

95% CI 15.7 – 30.6%, 29/130). In a multivariate model with site as random effect, both season 294 

and interface type were significantly associated with the risk of rodent infection, with higher risk 295 

of infection in the wet season (OR=4.9, 95% CI 1.4 – 18.0), and increasing risk along the supply 296 

chain from traders (baseline) to large markets (OR=2.2, 95% CI 1.05 – 4.7), to restaurants 297 

(OR=10.0, 95% CI 2.7 – 39.5) (S2 Table). It should be noted, however, that since sites were only 298 

visited during one season, both independent variables were defined at the site level and 299 

confounding effects with other site-level characteristics cannot be excluded.  300 

 301 

Fig 5. Plot of the proportion of coronavirus positives in field rats by interface. Bars show 302 

95% confidence intervals. 303 

 304 

Among the positive field rats with more than one sample tested (n=220), the proportion 305 

positive by sample type was 79.9% (95% CI 73.9 – 84.9%, 175/219) in oral swabs, 52.9% (95% 306 

CI 38.6 – 66.8%, 27/51) in lung, 51.6% (95% CI 43.5 – 59.7%, 80/155) in small intestine, 31.2% 307 
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(95% CI 12.1 – 58.5%, 5/16) in brain, 23.1% (95% CI 6.2 – 54.0%, 3/13) in kidney, 50.0% in 308 

feces (1/2), 100% in spleen (1/1), and 0% in urine/urogenital swabs (0/1).  309 

At the rodent farm interface, 6.0% (95% CI 3.8 – 9.3%, 20/331) of Hystrix brachyura and 310 

6.3% (95% CI 2.6 – 13.6%, 6/96) of Rhizomys sp. were positive. The overall proportion of 311 

positives was 6.3% (95% CI 4.3 – 9.1%, 27/429) (Table 1 and Fig 4). There was no difference 312 

among species or season and proportion positive in rodent farms, and low sample size and 313 

unequal sampling limited analysis. 314 

The proportion of coronavirus positives at the two bat interfaces differed by an order of 315 

magnitude as 74.8% (95% CI 69.5 – 79.4%) of the non-invasive samples collected from 316 

Microchiroptera bats at bat guano farms were positive, and 6.7% (95% CI 2.2 – 17.0%) of the 317 

Pteropus genus samples at the natural roost in Soc Trang province (Fig 4) were positive (Table 318 

1). Pteropid bats sampled at the natural roost had higher proportions of positives in the wet 319 

season (27.3%, 95% CI 7.3 – 60.7%, 3/11) compared with the dry season (2.0%, 95% CI 0.1 – 320 

12.2%, 1/50; Fisher exact test p=0.02, OR=16.6 [1.2 – 956.8]), although low sample size and 321 

single sampling per season warrants cautious interpretation.  322 

 323 

Phylogenetic analysis 324 

Six distinct taxonomic units of coronaviruses corresponding to bat coronavirus 512/2005, 325 

Longquan aa coronavirus, avian infectious bronchitis virus (IBV), murine coronavirus, 326 

PREDICT_CoV-17, and PREDICT_CoV-35 were detected. All these viruses were detected 327 

using both the Watanabe and Quan assays, except IBV sequences that were detected only using 328 

the Quan protocol. Of the 504 positive animals, 433 were positive by the Watanabe assay, 410 329 

were positive by the Quan assay, and 339 were positive by both. Phylogenetic analysis showed 330 
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that among the six coronaviruses detected, PREDICT_CoV-35 and bat CoV 512/2005 clustered 331 

within the Alphacoronaviruses, while PREDICT_CoV-17, Longquan aa CoV and murine CoV 332 

clustered within the Betacoronaviruses. The virus identified within the Gammacoronavirus 333 

genus was avian IBV. 334 

PREDICT_CoV-17 and PREDICT_CoV-35 were first reported by Anthony et al. [17]. 335 

We found PREDICT_CoV-17 in Pteropus bats and in Microchiroptera (Table 1). The 336 

PREDICT_CoV-17 sequences from Pteropus detected in this study clustered closely with 337 

PREDICT_CoV-17 sequences from Pteropus giganteus bats in Nepal and Pteropus lylei bats in 338 

Thailand [36] (Fig 6, S3 Table). PREDICT_CoV-35 was found in Microchiroptera in bat guano 339 

farms and in a pteropid bat (Table 1). PREDICT_CoV-35 sequences from Viet Nam clustered 340 

with other PREDICT_CoV-35 sequences found previously in samples from hunted Scotophilus 341 

kuhlii bats in Cambodia (S3 Table; Dr. Lucy Keatts personal communication), and with 342 

sequences found in bats from an earlier study in the Mekong Delta region in Viet Nam (Fig 6). 343 

Bat coronavirus 512/2005 was detected in Microchiroptera bat guano; and in H. 344 

brachyura (feces and environmental samples), R. pruinosus (feces barcoded), and R. 345 

argentiventer (barcoded environmental sample) in wildlife farms (Table 1 and S1 Table). In 346 

Microchiroptera, Bat coronavirus 512/2005 was frequently found in co-infection with 347 

PREDICT_CoV-35 (Table 1, S1 Table). Network analysis showed the relationships among the 348 

bat coronavirus 512/2005 sequences from the three provinces in south Viet Nam (Fig 7). We 349 

observed two main clusters and a shallow geographic structure of genetic diversity, perhaps 350 

illustrative of sampling effort but also of localized transmission and circulation of bat 351 

coronavirus 512/2005 strains in these provinces. One cluster was exclusively detected in 352 

Microchiroptera and mostly restricted to Dong Thap province and another cluster included 353 
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sequences shared among all hosts and distributed in the three provinces (Fig 7). Parts of the 354 

network showed a star-like topology (Fig 7), typical of populations in expansion that have 355 

recently increased size. There were three sequence types that were shared among 356 

Microchiroptera and rodents. 357 

Murine coronavirus and Longquan aa coronavirus were detected in 209 and 56 field rat 358 

samples, respectively, and 26 were coinfected with both (Table 1). Two sequences of IBV were 359 

detected in rodent feces collected on two wildlife farms, one in a bamboo rat and another in a 360 

Malayan porcupine. The rodent interfaces where bat and avian coronaviruses were detected in 361 

feces were not full containment facilities and possibly had bats and birds flying and roosting 362 

overhead (Fig 2). The IBV positives were detected in fecal samples from wildlife farms that had 363 

chickens, pigs, and dogs on site.   364 

 365 

Fig 6. Phylogenetic tree of bat and rodent coronavirus sequences detected in Viet Nam. The 366 

analysis is based on 387 bp fragment of the RdRp gene using maximum likelihood with the 367 

Tamura 3-parameter model, Gamma distributed with Invariant sites (G+I), and 1000 bootstrap 368 

replicates via MEGA7. The analysis included 17 sequences from this study (red from bat hosts, 369 

blue from rodent hosts), six sequences (in gray) from a previous study in Viet Nam [27], and 25 370 

reference sequences (in black) available in the GenBank database (S3 Table). The tree was 371 

rooted by a strain of  Night-heron coronavirus HKU19 (GenBank accession No. NC_016994).  372 

 373 

Fig 7. Median-joining networks of bat coronavirus 512/2005 RdRp sequences color-coded 374 

according to (A) host and (B) sampling location. Each circle represents a sequence, and circle 375 

size is proportional to the number of animals sharing a sequence. Numbers on branches indicate 376 

the number of mutations between sequences (if >1). Circles are colored-coded by animal host: 377 

bat (Microchiroptera), rodent (Rattus & Bandicota, Rhizomys, and Hystrix) and sampling 378 

location (Dong Thap (blue), Dong Nai (yellow) and Soc Trang (green)). Small black circles 379 

represent median vectors (ancestral or unsampled intermediate sequence types). 380 
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 381 

Discussion 382 

High prevalence and amplification along the supply chain for 383 

human consumption 384 

Significant findings of this study are the high proportion of coronavirus positive animals 385 

and the increasing proportion of positives found along the rodent trade supply chain from the 386 

capture site to restaurants. The transit of multiple animal species through the supply chain offers 387 

opportunities for inter- and intra-species mixing. Overcrowding and close confinement of live 388 

animals in cages results in increased animal contact, likely leading to stress. While 389 

methodologically similar to rodent surveys in Zhejiang province, China (2%), Dong Thap 390 

province, Viet Nam (4.4%), and globally (0.32%), our overall proportion of coronavirus 391 

positives was much higher among field rats (34.5%) and somewhat higher among farmed rodents 392 

(6.3%) [7,27,37]. Stress and poor nutrition likely contributes to shedding by reducing animal 393 

condition and altering immune functions [38]. Together, these factors may result in increased 394 

shedding and amplification of coronaviruses along the supply chain for human consumption. 395 

The amplification of coronavirus along the supply chain may be associated with season 396 

as field rats were significantly more positive in the wet season. Rattus argentiventer generally 397 

reproduce year-round in Viet Nam, but are particularly abundant in the wet season (May through 398 

October) following the rice harvest when an abundance of food supports the population increase 399 

[39]. If these seasonal population increases affect density dependent contact, there could be 400 

increased coronavirus prevalence and shedding in wild field rats during certain times of the year, 401 

which could then be further amplified along the trade. 402 
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Our survey was not a comprehensive multi-year evaluation of the field rat supply chain 403 

and it was restricted to two provinces with this interface. These limitations mean we are not able 404 

to make inferences about larger spatial patterns or the inter-annual variability of coronavirus 405 

prevalence in wildlife populations found in this interface, which spans into neighboring 406 

Cambodia.  407 

However, from a mechanistic perspective as animals progress along the wildlife supply 408 

chain, opportunity for human contact increases, including close direct contact with traders, 409 

butchers, cooks, and consumers [40]. The combination of increased coronavirus prevalence in 410 

traded wildlife and greater opportunity for human-wildlife contact as well as intra- and inter-411 

species contact in trade systems is likely to increase the risk of zoonotic transmission of 412 

coronaviruses in wildlife markets, restaurants, and other trade interfaces.  413 

Viral sharing or environmental mixing 414 

We detected avian and bat coronaviruses in wildlife farm rodents, including Malayan 415 

porcupines and bamboo rats, but we did not detect rodent-associated coronaviruses. The only 416 

previously published coronavirus testing of Malayan porcupine samples carried out in China 417 

were negative [41]. It is unclear if the Malayan porcupine samples from animals screened in this 418 

study were infected with the avian or bat viruses or if environmental contamination or mixing 419 

occurred with avian and bat guano. Chickens were present at the two sites where the IBV-420 

positive rodents were detected, and bats fly and potentially roost overhead at most farms. 421 

‘Artificial market’ studies of influenza A viruses have found cage-stacking of species on top of 422 

other species and shared water sources facilitate viral transmission [42,43]. Nevertheless, viral 423 

sharing between species and environmental contamination or mixing (i.e. bat/bird guano landing 424 
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on rat feces) are two equally likely explanations for the presence of bat and avian coronaviruses 425 

detected in rodent fecal and environmental samples.  426 

The field rats were co-infected with the Longquan aa coronavirus and the murine 427 

coronaviruses, both of which are from the Lineage A (Embecovirus) Betacoronavirus genus. Co-428 

infections with multiple coronaviruses deserve particular attention as this co-occurrence may 429 

facilitate viral recombination leading to the emergence of new viruses [44,45].  430 

At the very least, we conclude that rodents in the field and farmed rodent supply chains 431 

are being exposed to coronaviruses from rodents, bats, and birds and perhaps creating 432 

opportunities for coronavirus recombination events, which may lead to viruses that could spill 433 

over into humans [46]. Repeated and more direct individual sampling of these species at these 434 

interfaces would be useful to determine if viral sharing was occurring versus environmental 435 

contamination of samples. 436 

Bat guano farms  437 

The high proportion of positive bat feces at bat guano farms indicates the potential risk of 438 

bat guano farmers, their families, and their animals being exposed to bat coronaviruses. The 439 

overall proportion of positives (74.8%) was higher than previous studies using similar testing 440 

methods targeting bats in Viet Nam (22%), Thailand (7.6%), Lao PDR (6.5%), and Cambodia 441 

(4.85%) [27,47,48]. In this region of Viet Nam, artificial roosts are typically erected in backyard 442 

family owned plots that incorporate a mosaic of duck, goat, or pig production and crops such as 443 

guava tress or other fruit trees and large scale kitchen gardens. 444 

Bats have been shown to be an important evolutionary hosts of coronaviruses, including 445 

those infecting humans [7,49–52]. Both PREDICT_CoV-17 and PREDICT_CoV-35 have been 446 

detected previously in the Pteropus and Microchiroptera bats in Viet Nam, Cambodia, and 447 
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Nepal, which confirms that coronaviruses are capable of infecting distantly related hosts [7]. The 448 

finding of the same virus in different bat species raises the question of whether they co-roost 449 

and/or share viruses through contact during other activities. Utilizing shared resources such as 450 

water or feeding on and around crops and fruit could lead to contact and facilitate a host jump. 451 

The presence of the same virus in bat species in multiple neighboring countries supports the 452 

suggestion by others that virus distribution coincides with their bat host distribution [7,53,54]. 453 

While there has been no testing of the pathogenicity of these bat coronaviruses in humans or 454 

animals, they are found at close contact bat-human interfaces and further characterization is 455 

needed to understand their host range and potential for spillover. Any general persecution of bats 456 

because of zoonotic viruses they may carry can actually increase the number of susceptible bats 457 

and increase transmission risk to people [56], and would interfere with the important ecosystem 458 

services that bats provide, such as controlling insect pests of rice fields [55], plant pollination, 459 

and seed dispersal.  460 

 461 

Capacity building and outreach 462 

Beyond the viral findings, this work represented an important opportunity for capacity 463 

development in field, laboratory, and scientific disciplines, as well as opportunities for social 464 

engagement and education of high-risk communities on zoonotic disease threats. The consensus 465 

PCR approach for viral detection provides a cost-effective tool to detect emerging viruses in low-466 

resource settings. Our work adds to the growing body of research demonstrating the utility of this 467 

approach to detect both known and novel viruses and co-infections in a variety of taxa, sample 468 

types, and interfaces. In Viet Nam, the direct result is an enhanced One Health surveillance 469 

capacity to detect important emerging or unknown viruses in humans, wildlife, and livestock. In 470 
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the communities with which we partnered, strong engagement enabled teams to sample a wide 471 

diversity of wild animals at high-risk interfaces. Importantly, we have returned to these same 472 

communities to share the viral findings and to educate participants with an outreach program on 473 

how to live safely with bats [57]. 474 

 475 

Conclusions 476 

Large percentages of coronaviruses were detected at high risk interfaces in bats and 477 

rodents, which is of concern when assessing the potential for human exposure and spillover. The 478 

observed viral amplification along the wildlife trade supply chain for human consumption likely 479 

resulted from the mixing and close confinement of stressed live animals, such as field rats, and 480 

sheds light on the potential for coronavirus shedding in other wildlife supply chains (e.g., civets, 481 

pangolins) where similarly large numbers of animals are collected, transported, and confined. 482 

Livestock and people living in close contact with rodents, bats, and birds shedding coronaviruses 483 

provides opportunities for intra- and inter-species transmission and potential recombination of 484 

coronaviruses.   485 

Human behavior is facilitating the spillover of viruses, such as coronavirus, from animals 486 

to people. The wildlife trade supply chain from the field to the restaurant provides multiple 487 

opportunities for such spillover events to occur [1]. To minimize the public health risks of viral 488 

disease emergence from wildlife and to safeguard livestock-based production systems, we 489 

recommend precautionary measures that restrict the killing, commercial breeding, transport, 490 

buying, selling, storage, processing and consuming of wild animals. The emergence of SARS-491 

CoV, MERS-CoV, and now SARS-CoV-2 highlight the importance of the coronavirus viral 492 
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family to affect global public health. The world must increase vigilance through building and 493 

improving detection capacity; actively conducting surveillance to detect and characterize 494 

coronaviruses in humans, wildlife, and livestock; and to inform human behaviors in order to 495 

reduce zoonotic viral transmission to humans. 496 
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Supporting information  

S1 Table. Summary of all testing results by genus, interface, sub-interface, sample types, 
sites, percentage of samples testing positive, and viral species. 

S2 Table: Multivariate mixed effect logistic regression showing the association between 
season and interface with coronavirus positives in field rats in the rodent trade. 

S3 Table: GenBank accession numbers for coronavirus sequences detected in this study 
and for reference sequences  

S1 Data. Data required for all analysis and metadata for each parameter is available at 
(pending DOI processing): https://doi.org/10.5061/dryad.7h44j0zrj OR 
https://datadryad.org/stash/share/pk3wVUxFNzTuCYZ9t8haKRPmx7V8YhTDBuHpG8JJ
9kU 

S1 R Code. Code used to conduct the analysis described.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.05.098590doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.098590


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.05.098590doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.098590


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.05.098590doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.098590


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.05.098590doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.098590


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.05.098590doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.098590


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.05.098590doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.098590


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.05.098590doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.098590


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.05.098590doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.098590

