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Abstract  

Large-scale   metagenome   assemblies   of   human   microbiomes   have   produced   a  
vast   catalogue   of   previously   unseen   microbial   genomes;   however,   comparatively   few  
microbial   genomes   derive   from   other   vertebrates.   Here,   we   generated   4374  
metagenome   assembled   genomes   (MAGs)   from   gut   samples   of   180   predominantly   wild  
animal   species   representing   5   classes.   Combined   with   existing   datasets,   we   produced  
5596   non-redundant,   quality   MAGs   and   1522   species-level   genome   bins   (SGBs).   Most  
SGBs   were   novel   at   the   species,   genus,   or   family   levels,   and   the   majority   were   enriched  
in   host   versus   environment   metagenomes.   Many   traits   distinguished   SGBs   enriched   in  
host   or   environmental   biomes,   including   the   number   of   antimicrobial   resistance   genes.  
We   identified   1986   diverse   and   largely   novel   biosynthetic   gene   clusters.   Gene-based  
assembly   revealed   tremendous   gene   diversity,   much   of   it   host   or   environment   specific.  
Our   MAG   and   gene   datasets   greatly   expand   the   microbial   genome   repertoire   and  
provide   a   broad   view   of   microbial   adaptations   to   life   within   a   living   host.  

Introduction  

The   vertebrate   gut   microbiome   comprises   a   vast   amount   of   genetic   diversity,   yet  
even   for   the   most   well-studied   species   such   as   humans,   the   number   of   microbial  
species   lacking   a   reference   genome   was   recently   estimated   to   be   40-50% 1 .   Uncovering  
this   “microbial   dark   matter”   is   essential   to   understanding   the   roles   of   individual  
microbes,   their   intra-   and   inter-species   diversity   within   and   across   host   populations,   and  
how   each   microbe   interacts   with   each   other   and   the   host   to   mediate   host   physiology   in  
a   myriad   number   of   ways 2 .   On   a   more   applied   level,   characterizing   novel   gut   microbial  
diversity   aids   in   bioprospecting   of   novel   bioactive   natural   products,   catalytic   and  
carbohydrate-binding   enzymes,   probiotics,   etc.,   along   with   aiding   in   the   discovery   and  
tracking   of   novel   pathogens   and   antimicrobial   resistance   (AMR) 3 .  

Recent   advances   in   culturomic   approaches   have   generated   thousands   of   novel  
microbial   genomes 4–6 ,   but   the   throughput   is   currently   far   outpaced   by   metagenome  
assembly   approaches 7 .   However,   such   large-scale   metagenome   assembly-based  
approaches   have   not   been   as   extensively   applied   to   most   non-human   vertebrates.   The  
low   amount   of   metagenome   reads   classified   in   some   recent   studies   of   the   rhinoceros,  
chicken,   cod,   and   cow   gut/rumen   microbiome   suggests   that   databases   lack   much   of   the  
genomic   diversity   in   less-studied   vertebrates 8–11 .   Indeed,   the   limited   number   of   studies  
incorporating   metagenome   assembly   hint   at   the   extensive   amounts   of   as-of-yet   novel  
microbial   diversity   across   the   >66,000   vertebrate   species   on   our   planet.   

Here,   we   developed   an   extensive   metagenome   assembly   pipeline   and   applied   it  
to   a   multi-species   dataset   of    microbiome   diversity   across   vertebrate   species   comprising  
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5   classes:   Mammalia,   Aves,   Reptilia,   Amphibia,   and   Actinopterygii,   with   >80%   of  
samples   obtained   from   wild   individuals 12    combined   with   data   from   
14   published   animal   gut   metagenomes.   Moreover,   we   also   applied   a   recently   developed  
gene-based   metagenome   assembly   pipeline   to   the   entire   dataset   in   order   to   obtain  
gene-level   diversity   for   rarer   taxa   that   would   otherwise   be   missed   by   genome-base  
assembly 13,14 .   Our   assembly   approaches   yielded   a   great   deal   of   novel   genetic   diversity,  
which   we   found   to   be   largely   enriched   in   animals   versus   the   environment,   and   to   some  
degree,   enriched   in   particular   animal   clades.  

Methods  

Sample   collection   

     Sample   collection   was   as   described   in   Youngblut   and   colleagues 12 .   Table   S1   shows  
the   dates,   locations,   and   additional   metadata   of   all   samples   collected.   All   fecal   samples  
were   collected   in   sterile   sampling   vials,   transported   to   a   laboratory   and   frozen   within   8  
hours.   DNA   extraction   was   performed   with   the   PowerSoil   DNA   Isolation   Kit   (MoBio  
Laboratories,   Carlsbad,   USA).  

“multi-species”   vertebrate   gut   metagenomes  

Metagenome   libraries   were   prepared   as   described   by   Karasov   and   colleagues 15 .  
Briefly,   1   ng   of   input   gDNA   was   used   for   Nextera   Tn5   tagmentation.   A   BluePippin   was  
used   to   restrict   fragment   sizes   to   400-700   bp.   Barcoded   samples   were   pooled   and  
sequenced   on   an   Illumina   HiSeq3000   with   2x150   paired-end   sequencing.   Read   quality  
control   (QC)   is   described   in   the   Supplemental   Methods.  

Post-QC   reads   were   taxonomically   profiled   with   Kraken2   and   Bracken   v.2.2 16  
against   the   Struo-generated   GTDB-r89   Kraken2   and   Bracken   databases 17 .   HUMAnN2  
v.0.11.2 18    was   used   to   profile   genes   and   pathways   against   the   Struo-generated  
HUMAnN2   database   created   from   GTDB-r89.  

Publicly   available   animal   gut   metagenomes  

Published   animal   gut   metagenome   reads   were   downloaded   from   the   Sequence  
Read   Archive   (SRA)   between   May   and   August   of   2019.   Table   S2   lists   all   included  
studies.   We   selected   studies   with   Illumina   paired-end   metagenomes   from   gut   contents  
or   feces.   MGnify   samples   were   downloaded   from   the   SRA   in   Oct   2019   (Table   S3).   Read  
quality   control   is   described   in   the   Supplemental   Methods.  

2  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.05.135962doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.135962
http://creativecommons.org/licenses/by-nc/4.0/


/

85

86

87

88

89
90

91

92

93

94

95

96
97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Metagenome   assembly   of   genomes   pipeline  

Assemblies   were   performed   on   a   per-sample   basis,   with   reads   subsampled   via  
seqtk   v.1.3   to   ≤20   million   read   pairs.   The   details   of   the   assembly   pipeline   are   described  
in   the   Supplemental   Methods.   

A   multi-locus   phylogeny   of   all   SGB   representatives   was   inferred   with   PhyloPhlan  
v.0.41 19 .   Secondary   metabolites   were   identified   with   AntiSMASH   v.5.1.1 20    and  
DeepBGC   v.0.1.18 21    and   then   characterized   with   BiGSCAPE 22 .   Abricate   was   used   to  
identify   antimicrobial   resistance   genes.   We   used   Krakenuniq   v.0.5.8 23    for   estimating  
abundance   of   MAGs   in   metagenome   samples.   Details   can   be   found   in   the  
Supplemental   Methods.  

Metagenome   assembly   of   genes   pipeline  

Assemblies   performed   on   a   per-sample   basis,   with   reads   subsampled   via   seqtk  
v.1.3   to   ≤20   million   pairs.   We   used   PLASS   v.2.c7e35 14    and   Linclust   (mmseqs  
v.10.6d92c) 13    to   assemble   and   cluster   contigs.   A   full   description   is   in   the   Supplemental  
Methods.   DESeq2 24    was   used   to   estimate   enrichment   of   MAGs   and   gene   clusters   in  
metagenomes   from   host   and   environment   biomes.  

Data   availability  

The   raw   sequence   data   are   available   from   the   European   Nucleotide   Archive  
(ENA)   under   the   study   accession   number   PRJEB38078.   Fasta   files   for   the   5596  
non-redundant   MAGs,   1522   SGBs,   and   gene   clusters   (50,   90,   and   100%   sequence  
identity   clustering)   can   be   found   at  
http://ftp.tue.mpg.de/ebio/projects/animal_gut_metagenome_assembly/ .   Code   used   for  
processing   the   data   can   be   found   at  
https://github.com/leylabmpi/animal_gut_metagenome_assembly .   

Results  

Animal   gut   metagenomes   from   a   highly   diverse   collection   of   animals  

We   generated   animal   gut   metagenomes   from   a   breadth   of   vertebrate   diversity  
spanning   five   classes:   Mammalia,   Aves,   Reptilia,   Amphibia,   and   Actinopterygii   (the  
“multi-species”   dataset;   Figure   1).   In   total,   289   samples   passed   our   read   quality   control,  
with   3.4e6   ±   5e6   s.d.   paired-end   reads   per   sample,   resulting   in   a   mean   estimated  
coverage   of   0.54   ±   0.14   s.d.   (Figure   S1).   180   animal   species   were   represented,   with   up  
to   6   individuals   per   species   (mean   of   1.6).   Most   individuals   were   wild   (81%).  
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Our   read-quality   control   pipeline   included   stringent   filtering   of   host   reads;   some  
samples   contained   high   amounts   of   reads   mapping   to   vertebrate   genomes   (up   to   74%;  
6   ±   17%   s.d.;   Figure   1).   Gut   content   samples   contained   a   significantly   higher   amount   of  
host   reads   (13.5   ±   21.6%   s.d.)   versus   feces   metagenomes   (4.7   ±   12.7%   s.d.;   Wilcox,    P  
<   1.8e-7;   Table   S1).   We   mapped   all   remaining   reads   to   a   custom   comprehensive  
Kraken2   database   built   from   the   GTDB   (Release   89).   Still,   many   samples   had   a   low  
percentage   of   mapped   reads   (43   ±   22   s.d.;   Figure   1),   with   29%   of   the   samples   having  
<20%   mapped   reads.  

 
 

 
 
Figure   1.    A   large   percentage   of   unmapped   reads,   even   when   using   multiple   comprehensive   metagenome  
profiling   databases.   The   dated   host   species   phylogeny   was   obtained   from   http://timetree.org,   with  
branches   colored   by   host   class.   From   inner   to   outer,   the   data   mapped   onto   the   tree   is   host   diet,   host  
captive/wild   status,   and   the   mean   number   of   metagenome   reads   mapped   to   various   host-specific,  
non-microbial,   and   microbial   databases.   Note   that   captive/wild   status   sometimes   differs   among   individuals  
of   the   same   species.   The   databases   are   i)   a   representative   of   each   publicly   available   genome   from   the  
host   species   or   sister   species   ("vertebrata   host   genome"),    ii)   all   entries   in   the   NCBI   nt   database   with  
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taxonomy   IDs   matching   host   species   ("vertebrata   host   nt"),   iii)   as   the   previous,   but   all   vertebrata  
sequences   included,   iv)   the   kraken2   "plant"   database,   v)   the   kraken2   "fungi”   database,   vi)   the   kraken2  
"protozoa"   database,   vii)   a   custom   bacteria   and   archaea   database   created   from   the   Genome   Taxonomy  
Database,   Release   89   ("GTDB-r89").   Reads   were   mapped   iteratively   to   each   database   in   the   order  
shown   in   the   legend   (top   to   bottom),   with   only   unmapped   reads   included   in   the   next   iteration.  
"unclassified"   reads   did   not   map   to   any   database,   which   were   used   along   with   reads   mapping   to  
GTDB-r89   for   downstream   analyses   ("microbial   +   unclassified").   

Discovery   of   novel   diversity   by   large-scale   metagenome   assembly  

Our   comprehensive   metagenome   assembly   pipeline   generated   4374  
non-redundant   MAGs.   After   filtering   to   just   “quality”   MAGs   (see   Methods),   296   MAGs  
remained,   with   a   mean   percent   completeness   and   contamination   of   84   ±   14   and   1.5   ±  
1.2   s.d.,   respectively.   The   MAGs   consisted   of   11   bacterial   and   1   archaeal   phylum,   as  
determined   via   GTDB-Tk 25 .   The   majority   of   MAGs   belonged   to   the   classes   Clostridia   ( n  
=   95;   Firmicutes_A   phylum)   and   Bacteroidia   ( n    =   74;   Bacteroidota   phylum;   Figure   S2).  
De-replicating   MAGs   at   95%   ANI   produced   248   species-level   genome   bins   (SGBs).   Of  
the   SGBs,   196   (79%)   had   <95%   ANI   to   every   genome   in   the   GTDB-r89   database,   and  
51   (21%)   lacked   a   genus-level   match.   These   findings   indicated   that   the   MAG   dataset  
contained   a   substantial   amount   of   novel   diversity.  

We   expanded   our   MAG   dataset   by   applying   our   assembly   pipeline   to   14  
publically   available   animal   gut   metagenome   datasets   in   which   no   MAGs   have   been  
generated   by    de   novo    metagenome   assembly   (Table   S2).   Our   metagenome   selection  
included   554   samples   from   members   of   Mammalia   (dogs,   cats,   woodrats,   pigs,   whales,  
rhinoceroses,   pangolins,   and   non-human   primates),   Aves   (geese,   kakapos,   and  
chickens),   and   Actinopterygii   (cod).   We   applied   our   assembly   pipeline   to   each   individual  
dataset   and   generated   a   total   of   5301   quality   MAGs   (Figure   S3).   As   with   the  
multi-species   metagenome   assemblies,   MAG   quality   was   high,   with   a   mean  
completeness   and   contamination   of   85   ±   13   and   1.1   ±   1.1   s.d.,   respectively.   The  
taxonomic   diversity   was   also   quite   high,   with   2   archaeal   and   25   bacterial   phyla  
represented   (Figure   S3).   De-replicating   MAGs   at   95%   ANI   produced   1308   SGBs.   Of  
these,   1001   lacked   a   ≥95%   ANI   match   to   the   GTDB-r89,   216   lacked   a   genus-level  
match,   and   6   lacked   even   a   family-level   match.  

We   combined   all   quality   MAGs   and   de-replicated   at   99.9   and   95%   ANI   to  
produce   5596   non-redundant   MAGs   and   1522   species-level   genome   bins   (SGBs),  
respectively   (Tables   S4   &   S5).   Of   the   5596   MAGs,   2773   (50%)   had   a   completeness   of  
≥90%.   Of   the   1522   SGBs,   1184   (78%)   lacked   a   ≥95%   ANI   match   to   the   GTDB-r89,   266  
(17%)   lacked   a   genus-level   match,   and   6   lacked   a   family-level   match   (Figures   2   &   S4).  
Mapping   taxonomic   novelty   onto   a   multi-locus   phylogeny   of   all   1522   SGBs   revealed   that  
novel   taxa   were   rather   dispersed   across   the   phylogeny   (Figure   2).  
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We   assessed   the   novelty   of   our   SGBs   relative   to   UHGG,   a   comprehensive  
human   gut   genome   database,   and   found   that   only   31%   of   our   SGBs   had   ≥95%   ANI   to  
any   of   the   4644   UHGG   representatives,   and   this   overlap   only   increased   to   34%   at   a  
90%   ANI   cutoff.  

Integrating   the   1522   SGBs   into   our   custom   GTDB   Kraken2   database   significantly  
increased   the   percent   reads   mapped   (t-test,    P    <   0.005;   Figure   S5).   The   percent  
increase   varied   from   <1   to   62.8%   (mean   of   5.3   ±   6.7   s.d.)   among   animal   species   but   did  
not   appear   biased   to   just   pigs,   dogs,   or   other   vertebrate   species   in   the   14   public  
metagenome   datasets   that   we   incorporated   (Figure   S6).  
 

 
Figure   2 .   A   phylogeny   of   all   1522   SGBs.   From   innermost   to   outermost,   the   data   mapped   onto   the  
phylogeny   is:   GTDB   phylum-level   taxonomic   classifications,   class-level   taxonomies   for   Actinobacteriota,  
class-level   taxonomies   for   Firmicutes,   class-level   taxonomies   for   Proteobacteria,   taxonomic   novelty,  
significant   enrichment   in   host   gut   or   environmental   metagenomes,   and   significant   enrichment   in   Mammals  
or   other   animals   in   our   multi-species   gut   metagenome   dataset.   The   phylogeny   was   inferred   from   multiple  
conserved   loci   via   PhyloPhlAn.   Orange   dots   on   the   phylogeny   denote   bootstrap   values   in   the   range   of   0.7  
to   1.   The   phylogeny   is   rooted   on   the   last   common   ancestor   of   Archaea   and   Bacteria.   The   tree   scale   unit  
is   substitutions   per   site.  
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Enrichment   of   SGBs   among   animal   clades   

While   the   MAGs   generated   here   derive   from   animal   gut   metagenomes,   many   of  
these   taxa   might   be   transient   in   the   host   and   actually   more   prevalent   in   the  
environment.   We   tested   this   by   generating   a   “host-environment”   metagenome   dataset  
comprising   283   samples   from   30   BioProjects   (17   environmental   and   13   host-associated;  
Figure   3A).   We   found   932   of   the   1522   SGBs   (61%)   to   be   significantly   enriched   in   the  
host   metagenomes   (DESeq2,    adj.   P    <   0.01;   Figure   3B).   The   host-enriched   SGBs  
(host-SGBs)   were   taxonomically   diverse,   comprising   22   phyla.   In   contrast,   only   15  
SGBs   (1%)   were   environment-enriched   (env-SGBs),   which   all   belonged   to   either  
Actinobacteriota   or   Proteobacteria   (Figure   3B).   The   only   SGBs   that   were   not  
significantly   enriched   in   either   group   belonged   to   Actinobacteriota   or   Proteobacteria,  
along   with   two   SGBs   from   the   Firmicutes_A   phylum.   Mapping   these   data   onto   the   SGB  
phylogeny   revealed   phylogenetic   clustering   of   the   environment-enriched   SGBs   (Figure  
2).  

We   investigated   the   traits   of   the   host-   and   environment-enriched   SGBs   and  
found   many   predicted   phenotypes   to   be   more   prevalent   in   one   or   the   other   group  
(Figure   3C).   Almost   all   env-SGBs   were   aerobes   (93%),   which   may   aid   in   transmission  
between   the   environment   and   host   biomes.   In   contrast,   87%   of   host-SGBs   were  
anaerobes.   Furthermore,   all   env-SGBs   could   generate   catalase   and   were   bile  
susceptible,   while   both   phenotypes   were   sparse   in   host-SGBs   (Figure   3C).  
Carbohydrate   metabolism   also   differed,   with   most   host-SGBs   predicted   to   consume  
various   tri-,   di-,   and   mono-saccharides.   In   contrast,   env-SGBs   were   enriched   in  
phenotypes   associated   with   motility,   nitrogen   metabolism,   and   breakdown   of  
heterogeneous   substrates   ( e.g.,    cellobiose   metabolism).   

We   also   compared   SGB   enrichment   in   mammals   versus   non-mammals   in   our  
“multi-species”   metagenome   dataset   and   found   361   SGBs   (24%)   to   be   significantly  
enriched   in   mammals,   while   22   (1%)   were   enriched   in   non-mammals   (DESeq2,    adj.   P    <  
0.01;   Figure   S7A).   Interestingly,   100%   of   SGBs   in   the   two   archaeal   phyla   (Halobacteria  
and   Euryarchaeota)   were   enriched   in   mammals.   Also   of   note,   most   of   the  
Verrucomicrobiota   SGBs   (87%)   were   enriched   in   mammals.   The   only   2   phyla   with   >10%  
of   SGBs   enriched   in   non-mammals   were   Proteobacteria   (29%)   and   Campylobacteria  
(25%).  

In   contrast   to   our   assessment   of   phenotypes   distinct   to   host-   or   env-SGBs,   we  
did   not   observe   such   a   distinction   of   phenotypes   among   SGBs   enriched   in   Mammalia   or  
non-mammal   gut   metagenomes   (Figure   S7B).   Certain   phenotypes   such   as   anaerobic  
growth   and   lactose   consumption   were   more   prevalent   among   mammal   species,   but   they  
were   not   found   to   significantly   enriched   relative   to   the   null   model.  
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Little   is   known   about   the   distribution   of   antimicrobial   resistance   genes   in   the   gut  
microbiomes   of   most   vertebrate   species 26 ;   therefore,   we   investigated   the   distribution   of  
AMR   genes   among   MAGs   enriched   in   the   environment   versus   host   biomes.   We   found   a  
mean   of   35   ±   26   s.d.   AMR   markers   per   genome   (Figure   S8A).   The   high   average   was  
largely   driven   by   Proteobacteria   and   Campylobacter   genomes,   which   had   a   mean   of  
387   and   161   AMR   markers   per   genome,   respectively.   The   5   most   abundant   markers  
were   ruvB,   galE,   tupC,   fabL   (ygaA),   and   arsT   (Figure   S8A).   The   more   abundant  
markers   predominantly   belonged   to   Firmicutes_A,   while   Proteobacteria   comprised  
larger   fractions   of   the   less   abundant   markers.   Environment-enriched   taxa   contained  
substantially   more   AMR   genes   than   host-enriched   taxa,   and   the   same   was   true   for  
non-Mammalia   versus   Mammalia-enriched   taxa   (Figure   S8B   &   S8C).  

 

 
Figure   3.    A)   Summary   of   the   number   of   samples   per   biome   for   our   multi-environment   metagenome  
dataset   selected   from   the   MGnify   database.   B)   Number   of   SGBs   found   to   be   significantly   enriched   in   host  
versus   (positive   log 2    fold   change;   “l2fc”)   environmental   metagenomes   (negative   l2fc).   Values   shown   are  
the   number   of   MAGs   significantly   enriched   (blue)   in   either   biome   or   not   found   to   be   significant   (red).   C)  
Host-   and   environment-enriched   SGBs   have   distinct   traits.   Predicted   phenotypes   are   summarized   for   the  
SGBs   significantly   enriched   in   host   or   environmental   metagenomes   (DESeq2    Adj.   P    <   0.01)   or   neither  
biome   (“Neither”   in   the   x-axis   facet).   Note   the   difference   in   x-axis   scale.   Asterisks   denote   phenotypes  
significantly   more   prevalent   in   SGBs   of   the   particular   biome   versus   a   null   model   of   1000   permutations   in  
which   biome   labels   were   shuffled   among   SGBs.  
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MAGs   reveal   novel   secondary   metabolite   diversity  

We   identified   1986   biosynthetic   gene   clusters   (BGCs)   among   all   1522   SGBs.   A  
total   of   28   different   products   were   predicted,   with   the   most   abundant   being  
non-ribosomal   peptide   synthetases   (NPRS;    n    =   473),   sactipeptides   ( n    =   307),   and  
arylpolyenes   ( n    =   291;   Figure   S9).   BGCs   were   identified   in   2   archaeal   and   18   bacterial  
phyla.   MAGs   in   the   Firmicutes_A   phylum   contained   the   most   BGCs   ( n    =   764;   38%),  
while   Bacteroidota   and   Actinobacteriota   phyla   possessed   381   (19%)   and   272   (14%),  
respectively   (Figure   S9).   Still,   Actinobacteriota   SGBs   did   possess   the   highest   average  
number   of   BGCs   per   genome   (16.3),   followed   by   Eremiobacterota   (9),   Proteobacteria  
(7.7),   and   Halobacterota   (5.1).  

Clustering   all   1986   BGCs   by   BiGSCAPE   generated   1764   families   and   1305  
clans.   BGCs   from   the   MIBiG   database   only   clustered   with   8   clans,   suggesting   a   high  
degree   of   novelty   (Figure   S10).   Mapping   the   BGCs   on   a   genome   phylogeny   of   all  
species   containing   ≥3   BGCs   (233   SGBs)   revealed   that   the   number   of   BGCs   per  
genome   was   somewhat   phylogenetically   clustered:   the   five   genomes   with   the   most  
BGCs   belonged   either   to   the   Actinobacteria   or   Gammaproteobacteria   (Figure   4).  
Notably,   these   clades   contained   a   high   number   of   host-SGBs.   Of   these   233   SGBs,   the  
majority   were   taxonomically   novel,   with   62%   lacking   a   species-level   match   to  
GTDB-r89,   and   18%   lacking   a   genus-level   match   (Figure   4).   To   determine   which   of   the  
BGCs   are   most   prevalent   across   animal   hosts,   we   quantified   the   prevalence   of   each  
BGC   family   across   our   multi-species   metagenome   dataset   and   mapped   it   to   the  
genome   phylogeny   (Figures   4   &   S11).   Of   the   1543   BGC   families,   83   were   present   in  
≥25%   of   the   animal   metagenomes,   with   ribosomally   synthesized   and   post-translationally  
modified   peptides   (RIPPs)   being   by   far   the   most   prevalent   (up   to   98%   prevalence   of  
individual   BGC   families)   and   also   found   in   species   from   a   number   of   phyla.  
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Figure   4.    Phylogeny   of   all   SGBs   with   ≥3   BGCs   identified   by   AntiSMASH.   From   innermost   to   outermost,  
the   data   mapped   onto   the   phylogeny   is:   1)   GTDB   phylum-level   taxonomic   classifications,   2)   taxonomic  
novelty,   3)   significant   enrichment   in   host   or   environmental   metagenomes,   4)   the   prevalence   of   BGC  
families   across   the   multi-species   metagenome   dataset,   and   5)   the   number   of   BGCs   identified   in   the   MAG.  
Prevalence   is   the   maximum   of   any   BGC   family   for   that   BGC   type,   and   only   BGC   families   with   a  
prevalence   of   ≥25%   are   shown.   The   phylogeny   is   a   pruned   version   of   that   shown   in    Figure   2 .  

Large-scale   gene-based   metagenome   assembly   reveals   novel   diversity  

We   applied   gene-based   assembly   methods   to   our   combined   metagenome  
dataset 14 ,   which   generated   a   total   of   150,718,125   non-redundant   coding   sequences  
(average   length   of   179   amino   acids).   Clustering   at   90   and   50%   sequence   identity  
resulted   in   140,225,322   and   6,391,861   clusters,   respectively.   Only   16.9   and   11.3%   of  
each   respective   cluster   set   mapped   to   the   UniRef50   database,   indicating   that   most  
coding   sequences   were   novel.   The   clusters   comprised   88   bacterial   and   11   archaeal  
phyla;   80   of   which   were   represented   by   <100   clusters,   and   60   lacking   a   cultured  
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representative.   Proteobacteria   (mostly   Gammaproteobacteria),   Firmicutes,   and  
Bacteroidetes   made   up   92.2%   of   all   clusters   (Figure   5A).   The   proportion   of   clusters  
belonging   to   each   COG   functional   category   was   largely   the   same   for   the   more   abundant  
bacterial   phyla   (Figure   5B),   while   more   variation   was   seen   among   Euryarchaeota  
(Figure   5C).   The   dominant   7   phyla   showed   substantial   variation   in   the   number   of  
clusters   associated   with   various   KEGG   pathway   categories   (Figure   S13).   For   instance,  
a   high   proportion   of   Fusobacteria   and   Tenericutes   clusters   were   associated   with   the  
“nucleotide   metabolism”,   “replication   and   repair”,   and   “translation”   categories.   A   total   of  
87,573   clusters   were   annotated   as   CAZy   families,   with   GT51,   GH13,   GH18,   GT02,   and  
GT04   representing   48%   of   all   CAZy-annotated   clusters   (Figure   5E).   Of   the   12   phyla   with  
the   most   CAZy   family   clusters,   there   were   substantial   differences   in   proportions   of  
clusters   falling   into   each   family   (Figure   5F).  

 

 
Figure   5 .   A   summary   of   the   50%   sequence   identity   clusters   generated   from   the   gene-based   metagenome  
assembly   of   the   combined   dataset.   A)   The   total   number   of   gene   clusters   per   phylum.   For   clarity,   only  
phyla   with   ≥100   clusters   are   shown.   Labels   on   each   bar   list   the   number   of   clusters   (and   percent   of   the  
total).   B)   The   number   of   bacterial   gene   clusters   per   phylum   and   COG   category.   The   “P”   facet   label   refers  
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to   “poorly   characterized”.   C)   The   number   of   archaeal   gene   clusters   per   class   (all   belonging   to  
Euryarchaeota)   and   COG   category.   D)   The   number   of   viral   gene   clusters   per   COG   category.   E)   The  
number   clusters   annotated   as   each   CAZy   family.   For   clarity,   only   phyla   with   ≥100   clusters   are   shown.  
Labels   next   to   each   bar   denote   the   number   of   clusters.   F)   The   number   of   clusters   per   CAZy   family,  
broken   down   by   phylum.   CAZy   families   and   phyla   are   ordered   by   most   to   least   number   of   clusters.   For  
clarity,   only   CAZy   families   and   phyla   with   ≥100   total   clusters   are   shown.   

Biome   enrichment   of   gene   clusters   from   specific   phyla  

We   mapped   reads   from   our   host-environment   metagenome   dataset   to   each  
cluster   and   used   DESeq2   to   identify   those   significantly   enriched   ( adj.   P    <   1e-5)   in   each  
biome.   Most   strikingly,   the   same   functional   groups   were   enriched   in   both   biomes,  
regardless   of   the   grouping   ( i.e.,    COG   functional   category,   KEGG   pathway,   or   CAZy  
family);   however,   the   gene   clusters   belonged   to   different   microbial   phyla   (Figure   6;  
Supplemental   Results).   For   instance,   nearly   all   COG   categories   for   gene   clusters  
belonging   to   Proteobacteria   were   environment-enriched,   while   the   same   COG  
categories   for   clusters   belonging   to   Firmicutes   and   Bacteroidetes   were   host-enriched.   In  
contrast,   functional   groups   of   certain   phyla   were   enriched   in   one   biome,   while   different  
groups   were   enriched   in   the   other,   indicating   within-phylum   differences   in   functional  
content   and   habitat   distributions.   For   instance,   Fusobacteria   KEGG   pathways   were  
predominantly   host-enriched,   but   protein   export,   bacteria   secretion   system,   and  
aminoacyl-tRNA   biosynthesis   were   environment-enriched,   indicating   that   these   3  
pathways   were   more   predominant   in   environment-enriched   members   of   Fusobacteria  
(Figure   6B).   Overall,   these   results   suggest   that   both   biomes   select   for   these   same  
microbial   functions,   but   the   microbes   involved   often   differ   at   coarse   taxonomic   scales.   

We   also   assessed   gene   cluster   enrichment   in   Mammalia   versus   non-Mammalia  
and   found   fewer   significantly   enriched   features,   which   may   be   due   to   the   smaller  
metagenome   sample   size   or   less   pronounced   partitioning   of   functional   groups   among  
biomes   (Figure   S14;   Supplemental   Results).   Still,   we   again   observed   that   both   biomes  
enriched   for   the   same   microbial   functions,   but   these   belonged   to   different   coarse  
taxonomic   groups.  
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Figure   6.    Enrichment   of   gene   clusters   grouped   by   phylum   and   A)   COG   category   B)   KEGG   pathway   or   C)  
CAZy   family.   Only   groupings   significantly   enriched   in   abundance   (DESeq2,    adj.   P    <   1e-5)   in   either   biome  
are   shown.   Only   gene   clusters   observed   in   at   least   25%   of   the   metagenomes   were   included.   For   clarity,  
only   KEGG   pathways   enriched   in   >7   phyla   are   shown,   and   only   CAZy   families   enriched   in   >1   phylum   are  
shown.   Note   that   the   axes   are   flipped   in   B)   relative   to   A)   and   C).  

Functional   metagenome   profiling   benefits   from   our   gene   catalogue   

Lastly,   We   created   a   custom   gene-level   metagenome   profiling   database   for   the  
HUMAnN2   pipeline   by   merging   our   coding   sequence   catalogue   with   our   previously  
constructed   custom   GTDB-r89   database   for   HUMAnN2 17 .   We   mapped   our   multi-species  
metagenomes   to   each   database   via   the   HUMAnN2   pipeline   and   compared   the   percent  
reads   mapped.   Due   to   the   constraint   of   HUMAnN2   that   all   references   must   have   a  
UniRef   ID,   we   could   only   use   11.3%   ( n    =   722   795)   of   our   gene   clusters.   Still,   we   found  
that   including   these   clusters   increased   the   mappability   by   4   ±   5%   s.d.   (Figure   S15).  
Mammalia   species   benefited   the   most,   but   at   least   one   species   from   each   class   showed  
a   mappability   increase   of   >10%   (Figure   S15B).  

Discussion  

Our   multi-species   gut   metagenome   dataset,   derived   from   >80%   wild   species  
from   five   vertebrate   taxonomic   classes,   greatly   helps   to   expand   the   breadth   of  
cross-species   gut   metagenome   comparisons   (Figure   1).   By   assembling   the  
metagenomes   of   our   multi-species   dataset   together   with   14   other   animal   gut  
metagenome   datasets   from   understudied   host   species,   we   have   produced   an   extensive  
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MAG   collection   that   includes   1184,   266,   and   6   genomes   from   novel   species,   genera,  
and   families,   respectively   (Figures   2   &   S4).   Moreover,   we   found   little   overlap   (31%)  
between   our   MAG   collection   and   the   extensive   human   microbiome   genome   catalogue  
comprising   the   UHGG,   which   underscores   its   taxonomic   novelty.   Our   MAG   collection,  
once   combined   with   the   GTDB 27 ,   improved   our   ability   to   classify   reads   in   our  
multi-species   metagenome   dataset   (Figure   S5),   which   is   critical   for   accurately  
assessing   gut   microbiome   diversity   across   vertebrates.   

We   investigated   the   distribution   of   our   MAGs   across   environment   and   host  
biomes   to   elucidate   the   diversity   of   host-microbe   symbiosis   in   the   vertebrate   gut.  
Microbe-host   coevolution   spans   the   continuum   from   free-living   microbes   that   can   simply  
survive   passage   through   the   host   gut,   to   obligate   symbioses 28 .   Therefore,   MAGs  
enriched   in   the   environment   versus   the   host   would   indicate   a   weak   association,   while  
the   opposite   enrichment   would   suggest   a   more   obligate   symbiosis.   We   provide  
evidence   of   host   specificity   for   the   majority   of   SGBs,   while   a   few   Proteobacteria   and  
Actinobacteria   SGBs   were   environment-enriched.   When   just   considering  
host-associated   metagenomes,   these   env-SGBs   were   generally   enriched   in  
non-mammals   (Figures   2,   3,   &   S7).   This   is   consistent   with   the   hypothesis   that  
mixed-mode   transmission,   especially   between   environmental   sources   and   hosts,   is  
more   commonplace   in   non-mammalian   gut   microbiome   community   assembly   versus   in  
mammals 29 .  

Our   trait-based   analysis   of   SGBs   supports   the   notion   that   host-enriched   taxa   are  
adapted   for   a   symbiotic   lifestyle,   while   environment-enriched   taxa   are   adapted   for   a  
free-living   or   facultative   symbiosis   lifestyle   (Figure   3).   For   instance,   anaerobes  
comprised   almost   all   host-enriched   SGBs,   while   environment-enriched   SGBs   were  
aerobes   or   facultative   anaerobes   and   generally   motile,   which   could   be   highly   beneficial  
for   transmission   between   the   environment   and   gut   biomes.   Indeed,   a   recent   directed  
evolution   experiment   showed   that   selecting   for   inter-host   migration   can   generate  
bacterial   strains   with   increased   motility 30 .  

By   assessing   SGB   enrichment   in   Mammalia   versus   non-mammalian  
metagenomes,   we   elucidated   the   specificity   of   host-microbe   symbioses   in   the   gut  
across   large   evolutionary   distances.   More   SGBs   were   enriched   in   mammals   versus  
non-mammals   (Figures   2   &   S7),   as   we   observed   in   our   previous   16S   rRNA   assessment  
of   these   vertebrate   clades 12 .   Few   traits   differed   among   SGBs   enriched   in   either   biome  
(Figure   S7),   which   may   indicate   that   the   traits   assessed   are   similarly   required   for  
adaptation   to   each   host   clade,   even   at   this   coarse   evolutionary   scale.  

Vertebrates   both   play   a   critical   role   in   the   spread   of   antimicrobial   resistance   and  
also   have   been   sources   of   novel   antibiotics   and   other   natural   products 26,31 .   We  
investigated   BGC   and   AMR   diversity   in   our   MAG   collection   and   observed   a   high  
diversity   of   BGC   products,   but   very   few   of   the   BGCs   clustered   into   families   with  
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experimentally   characterized   BGCs   from   the   MIBiG   database   (Figures   S8    &   S9 ).   This  
contrasts   with   findings   that   only   ~10%   of   BGCs   in   the   human   microbiome   are  
uncharacterized 32 ,   which   likely   reflects   the   limited   study   of   natural   products   in   the   gut  
microbiome   of   non-human   vertebrates 33,34 .   Our   findings   indicate   that   the   AMR   reservoir  
may   be   greater   for   free-living   and   facultatively   symbiotic   taxa   relative   to   microbes   with  
stronger   host   associations.   Our   findings   also   indicate   that   AMR   may   be   more   prevalent  
in   the   guts   of   non-mammalian   hosts   (Figure   S8).  

While   MAGs   provide   a   powerful   means   of   investigating   species   and   strain-level  
diversity   within   the   vertebrate   gut   microbiome,   the   approach   is   limited   to   only   relatively  
abundant   taxa   with   enough   coverage   to   reach   adequate   assembly   contiguity 35 .   Our  
gene-based   assembly   approach   allowed   us   to   greatly   expand   the   known   gene  
catalogue   of   the   vertebrate   gut   microbiome   beyond   just   the   abundant   taxa,   with   a   total  
of   >150   million   non-redundant   coding   sequences   generated,   comprising   88   bacterial  
and   11   archaeal   phyla   (Figure   5).   In   comparison,   recent   large-scale   metagenome  
assemblies   of   the   gut   microbiome   from   chickens,   pigs,   rats,   and   dogs   have   generated  
7.7,   9.04,   7.7,   5.1,   and   1.25   million   non-redundant   coding   sequences,   respectively 8,36–38 .  
It   is   also   illustrative   to   consider   that   a   recent   large-scale   metagenome   assembly   of   cattle  
rumen   metagenomes   generated   69,678   non-redundant   genes   involved   in   carbohydrate  
metabolism 9 ,   while   our   gene   collection   comprised   substantially   more   CAZy-annotated  
gene   clusters   ( n    =   87,573),   even   after   collapsing   at   50%   sequence   identity.   The  
increased   mappability   that   we   achieved   across   all   5   vertebrate   clades   when  
incorporating   our   gene   catalogue   in   our   functional   metagenome   profiling   pipeline  
demonstrates   how   our   gene   collection   will   likely   aid   future   vertebrate   gut   metagenome  
studies   (Figure   S15).  

Our   assessment   of   gene   cluster   abundances   in   metagenomes   from   environment  
and   host-associated   biomes   illuminates   how   microbiome   functioning   and   taxonomy   is  
distributed   across   the   free-living   to   obligate   symbiont   spectrum.   Most   notably,   nearly   all  
prominent   functional   groups   were   enriched   in   both   the   environment   and   host-associated  
biomes,   but   the   specific   gene   clusters   belonged   to   different   taxonomic   groups   in   each  
biome   (Figure   6).   For   instance,   almost   all   abundant   CAZy   families   were   enriched   in   both  
the   environment   and   host   biomes,   but   the   environment   was   dominated   by  
Proteobacteria,   while   Firmicutes,   Bacteroidetes,   and   Actinobacteria   gene   clusters  
comprised   most   host-enriched   CAZy   families.   This   suggests   the   same   coarse-level  
functional   groups   are   present   across   the   free-living   to   obligate   microbe-vertebrate  
symbiosis   lifestyles,   but   coarse-level   taxonomy   strongly   differs   across   this   spectrum.  
This   pattern   largely   remained   true   when   we   compared   enrichment   between   the  
Mammalia   and   non-mammals,   suggesting   that   taxonomic   differences   prevail   over  
functional   differences   in   regards   to   host   specificity,   at   least   over   broad-scale   vertebrate  
evolutionary   distances.  
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In   conclusion,   our   large-scale   metagenome   assembly   of   both   MAGs   and   coding  
sequences   from   a   highly   diverse   collection   of   vertebrates   greatly   expands   the   known  
taxonomic   and   functional   diversity   of   the   vertebrate   gut   microbiome.   We   have  
demonstrated   that   both   taxonomic   and   functional   metagenome   profiling   of   the  
vertebrate   gut   is   improved   by   our   MAG   and   gene   catalogues,   which   will   aid   future  
investigations   of   the   vertebrate   gut   microbiome.   Moreover,   our   collection   can   help   guide  
natural   product   discovery   and   bioprospecting   of   novel   carbohydrate-active   enzymes,  
along   with   modeling   AMR   transmission   among   reservoirs.   By   characterizing   the  
distribution   of   MAGs   and   microbial   genes   across   environment   and   host   biomes,   we  
gained   insight   into   how   taxonomy   and   function   differ   along   the   free-living   to   obligate  
symbiosis   lifestyle   spectrum.   We   must   note   that   our   metagenome   assembly   dataset   is  
biased   toward   certain   animal   clades,   which   likely   impacts   these   findings.   As  
metagenome   assembly   becomes   more   commonplace   for   studying   the   vertebrate   gut  
microbiome,   bias   toward   certain   vertebrates   ( e.g.,    humans)   will   decrease,   and   thus  
allow   for   a   more   comprehensive   reassessment   of   our   findings.  
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