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Abstract 36 

During the last sixty years, mammalian hibernation (i.e., seasonal torpor) has been interpreted 37 

as a physiological adaptation for energy economy. However -and crucially for validating this 38 

idea - direct field comparisons of energy expenditure in hibernating and active free-ranging 39 

animals are scarce. Using replicated mesocosms and a combination of energy budgeting 40 

approaches (i.e., doubly labelled water, rates of CO2 production and food intake), we 41 

experimentally manipulated energy availability and quantified net energy costs of 42 

hibernation in a marsupial. We hypothesized that, when facing chronic caloric restriction 43 

(CCR), a hibernator should maximize torpor use for compensating the energetic deficit, 44 

compared to ad libitum fed individuals (=controls). However, intensifying torpor duration at 45 

low temperatures could increase other burdens (e.g., cost of rewarming, freezing risk). In 46 

order to explore this trade-off, we followed the complete hibernation cycle of the relict 47 

marsupial Dromiciops gliroides, and estimated its total energy requirements, and compared 48 

this with a control condition. Our results revealed: (1) that energy restricted animals, instead 49 

of promoting heat conservation strategies during hibernation (e.g., social clustering and 50 

thermoregulation), maximized torpor use and saved just enough energy to cover the deficit, 51 

and (2) that hibernation represents a net energy saving of 51% compared with animals that 52 

remained active. This work provides compelling evidence of a fine-tuning use of hibernation 53 

in response to food availability and presents the first direct estimation of energy savings by 54 

hibernation encompassing the total hibernation cycle. 55 

 56 

Key words: behavioral thermoregulation, chronic caloric restriction, daily energy 57 

expenditure, doubly labelled water, energy budget, hibernation, marsupial, social 58 

clustering.  59 
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Introduction 60 

The countless ways natural selection shapes organismal design and function has always 61 

intrigued biologists, particularly in ecosystems where energy availability is diluted, 62 

temporally or spatially variable (Mueller and Diamond 2001, Ferguson 2002, Nie et al. 2015). 63 

In this scenario, energy flow is often explained by the allocation principle, where energy 64 

from food passes through several sequential bottlenecks (e.g., foraging, digestion, 65 

assimilation), and must be allocated to different functions in parallel (e.g., growth, 66 

maintenance, and reproduction) (Weiner 1992). From this perspective, nature’s economy 67 

would be defined by austerity, for which ectotherms provide the best fit to the rule, as they 68 

minimize maintenance costs when activity is low (Pough 1980, Artacho and Nespolo 2009). 69 

Endotherms (birds and mammals) on the opposite have a wasteful lifestyle, a counter-70 

intuitive solution for any idea of nature’s economy (an “extravagant economy” sensu (Hayes 71 

and Garland 1995, Koteja 2004). However, some endotherms experience transient periods of 72 

ectothermy or torpor (=heterothermy, hereafter), as putative adaptations to seasonal or 73 

unpredictable reductions in environmental productivity. For the case of hibernation (i.e., 74 

seasonal multi-day episodes of torpor)(Geiser and Ruf 1995b), animals experience drops in 75 

body temperature and a general reduction in metabolism lasting several days or weeks, where 76 

body temperature is maintained a few degrees above ambient temperature. During these 77 

episodes, maintenance costs fall to a fraction of normal values, with significant energy 78 

savings (Geiser 2004), a “logical” solution for animals that cannot migrate to better 79 

environments (Schmidt-Nielsen 1979). Thus, hibernators would have the long-term benefits 80 

of endothermy, together with the short-term benefits of ectothermy.  81 

Contrarily with daily torpor, where metabolic depression occurs during a few hours, 82 

hibernation is characterized by torpor events that increase in duration and frequency as the 83 

cold season progresses {Geiser, 2013 #10429}. Thus, animals modulate the frequency of 84 

such events depending on the cold, photoperiod and the amount of fat reserves, the latter 85 

being determinant on predicting hibernation survival (Humphries et al. 2002, Humphries et 86 

al. 2003a, Humphries et al. 2003b). But how much energy, exactly, is saved during a 87 

complete hibernation cycle, compared to a situation without hibernation? Do hibernating 88 

animals regulate torpor frequency “wisely” as food availability varies? Although hundreds 89 

of laboratory experiments have provided partial answers to these questions, only a handful 90 
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of experimental manipulations of food availability have demonstrated a link between energy 91 

availability, torpor frequency and fat reserves in hibernation (reviewed in (Vuarin and Henry 92 

2014).  93 

According to Boyles et al. (Boyles et al. 2020), to compensate for reduced energy 94 

availability, a hibernator that perceives an energetic bottleneck in the environment should 95 

experience longer and deeper torpor bouts and select sites with low temperatures for 96 

hibernating (Song et al. 2000). However, this has a limit imposed by several costs (e.g., 97 

prolonged inactivity, freezing mortality, decreasing immune function and sleep deprivation, 98 

see Humphries et al. 2003b, Boyles et al. 2020), which furnishes a “hibernation trade-off” 99 

where an optimum (minimum) hibernation temperature is defined {Humphries, 2002 100 

#10368}. Above this temperature, energy saved by hibernation is maximized and below this 101 

temperature, hibernation costs are maximized. In nature, a range of responses have been 102 

observed. For instance, passerine birds (Wojciechowski et al. 2011, Douglas et al. 2017), 103 

mice (Eto et al. 2015) and Siberian hamsters (Jefimow et al. 2011) minimize heat loss during 104 

daily torpor, whereas non-migrating bats (Ryan et al. 2019) and sugar gliders (Nowack and 105 

Geiser 2016) minimize body temperature during multi-day hibernation.  106 

Here we explored the hibernation trade-off on the social Microbiotheriid marsupial 107 

Dromiciops gliroides (Hershkovitz 1999) using a mesocosm setup for tracking animals 108 

during a complete hibernation cycle. Specifically, we manipulated food by applying a chronic 109 

caloric restriction treatment (CCR) and we measured total energy requirements for wintering 110 

using gross energy intake  (=daily food consumption) and CO2 production, using the doubly 111 

labelled method. Specifically, we predicted that CCR animals (compared with ad libitum fed 112 

animals) will either intensify torpor use in order to maximize energy savings and compensate 113 

for the energy restriction they will avoid risks by using heat conservation strategies (e.g., 114 

social clustering and hibernacula use). 115 

 116 

Methods 117 

Animals 118 

Dromiciops gliroides (Thomas 1894) is the only living species of Microbiotheria; the 119 

ancestral group of Australian marsupials. D. gliroides is a small arboreal marsupial inhabiting 120 

the temperate rainforests of southern South America, living in native forest stands dominated 121 
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by Nothofagus spp. and Araucaria araucana trees (Hershkovitz 1999, Fonturbel et al. 2012). 122 

This marsupial is known to be the sole disperser of several endemic plant species, thus being 123 

intimately associated with the temperate rainforest (Amico et al. 2009), where this 124 

experiment was performed. We installed the mesocosm in Estación Experimental Fundo San 125 

Martin (SM), a property of Universidad Austral de Chile (39º 41’S 73º 18’W), whichh is 126 

within the typical habitat of Dromiciops gliroides. In this paper we refer to “hibernation” as 127 

the multiday torpor bouts lasting several days, in contrast to daily heterotherms that a 128 

experiences torpor bouts of 3-12 hours (Geiser and Ruf 1995a). No previous monitoring of 129 

the whole hibernation period of D. gliroides is available, which was estimated to extend from 130 

May to September (Hershkovitz 1999, Muñoz-Pedreros et al. 2005). Thus, we started the 131 

experiment in April, and finished data gathering in December. We captured 40 individuals 132 

from different sites within SM during the austral summer, which were were live-captured 133 

using Tomahawk-like traps baited with banana and attached to the trees, 2 m above the 134 

ground (Fonturbel 2010). Traps were located 300 m apart from the enclosure site, in four 135 

different patches of forest, each on a sampling grid. Each individual was marked using PIT-136 

tag (BTS-ID, Sweden) subcutaneous mark, and transported to the laboratory inmmediately 137 

after capture for feeding and rehydration. 138 

 139 

Outdoor enclosures 140 

To characterize simultaneosly physiological and thermoregulatory responses of 141 

hibernating D. gliroides, we built eight cylindric enclosures (Fig. 1), which were distributed 142 

within the forest and separated about 5 m from each other, covering a total area of about 80 143 

m2 (see Supplementary Material). Each enclosure had a internal volume of 2 m3, and was 144 

manufactured in zinc with a large 1.8m-diameter cylinder buried 10 cm in the ground, which 145 

gave a 0.8 m height above ground. Each enclosure had a data logger installed for continuous 146 

measurement of air temperature (HOBO ®). Initially, four enclosures were assigned to a 147 

control treatment (”control”, hereafter) and the other four were assigned to a caloric 148 

restriction treatment (”CCR”, hereafter; see below). Five unrelated animals (i.e., from 149 

different sites to avoid kinship effects) (Franco et al. 2011) were released in each enclosure, 150 

on April 1st (autumn). Unfortunatelly, one of the CCR enclosures was destroyed by a tree 151 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 8, 2020. ; https://doi.org/10.1101/2020.06.05.136028doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.136028


 7 

falling during winter (animals escaped), which left us with an unbalanced design with 35 152 

animals across 7 enclosures (4 controls and 3 CCR).  153 

 154 

Experimental energy manipulation 155 

To explore how constant food shortage induce compensatory responses during 156 

hibernation, we applied a chronic caloric restriction treatment to three enclosures. Then, we 157 

offered the equivalent of 165 kJ ind-1d-1 for the control enclosures and provided to the CCR 158 

animals, 60% of this value (95 kJ ind-1d-1). The food was provided in equal volumes every 159 

day, but once a week we provided a fresh weighed amount (± 0.01 g) to each enclosure and 160 

weighed the fresh weight of the leftovers for drying to constant weight (60ºC). With this, we 161 

estimated the water content of the diets for estimating average energy intake. Using weekly 162 

values of energy consumption, we calculated the (per capita) total hibernation energy 163 

requirements (kJ per individual). 164 

 165 

Torpor thermoregulation and daily energy expenditure 166 

Weekly, we took digital thermographic images to clustered torpid individuals in order to 167 

estimate the thermal differential between animals and substrate and to relate this to the caloric 168 

restriction treatment (Fig 1a). We also recorded cluster sizes and whether animals were 169 

within or outside the hibernaculum (see Supplementary Material). To determine direct daily 170 

energy expenditure (DEE, kJ/day), we applied the doubly labelled water technique (Lifson 171 

and McClintock 1966, Butler et al. 2004)(see Supplementary Material) on 24 captive 172 

individuals before the release on enclosures (week zero, in summer, indicated in Fig 2a), we 173 

successfully repeated these determinations in 16 animals at week 18 of the experiment (late 174 

winter; eight individuals from the CCR treatment and eight from the control treatment), thus 175 

giving an average DEE for 48 hours. Basal metabolic rate (BMR) was determined from the 176 

rate of CO2 production in these same animals measured in the laboratory using standard 177 

respirometry techniques (Nespolo et al. 2010, Contreras et al. 2014).  178 

 179 

Statistical analysis 180 
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We used a combination of generalized linear mixed models and standard parametric analyses 181 

such as ANCOVA, ANOVA and linear regressions when justified. Detailed descriptions of 182 

statistical analyses are provided in Supplementary Material. 183 

All procedures presented in this study were approved by the Chilean Agriculture and 184 

Livestock Bureau (SAG) permits No 4371/2019 and 3393/2019, and by the Bioethics 185 

Committee of the Austral University of Chile, resolution 313/2018 annex 2019.  186 

 187 

Results 188 

The main outcome of this experiment supports the idea that hibernating D. gliroides 189 

modulated torpor use for saving energy and cover the energetic deficit imposed by caloric 190 

restriction (results summarized in Fig. 2 and Supplementary Table 2). Indeed, animals under 191 

CCR (n= 15) consumed similar amounts of food as controls initially, but approximately at 192 

the eleventh week they consumed significantly less food than controls (n=20)(Fig 2b). CCR 193 

animals did not prefer to cluster in larger groups or use hibernacula for heat maintenance, 194 

and no statistical differences in any thermoregulatory aspect of the comparison of CCR and 195 

controls groups were observed (see Figs S2 and S3 in Supplementary Material). Moreover, 196 

those individuals experienced a constant reduction of body mass (MB); to become significant 197 

at the 20th week (Fig. 2a). At week 23, however, CCR animals started to recover MB and 198 

were not significantly different from controls by week 25 (two-tailed t-tests, p<0.001; Fig. 199 

2a), thus suggesting that they, without access to extra food, managed their energy budget 200 

more efficiently. This is confirmed by measurements of per-capita energy consumption, 201 

which shows CCR animals consistently ingested less food than controls, until the rise in 202 

ambient temperatures during the austral spring (Fig. 2b-c). Then, energy intake became 203 

significantly higher in control individuals compared to CCR individuals at week 10 until 204 

week 24 (two-tailed t-tests, p < 0.01; Fig 2b). This is explained by a higher incidence in 205 

torpor use in CCR animals compared to controls, a difference that was the largest during 206 

August, which suggests that the main trigger of torpor was body condition rather than 207 

immediate food availability (Fig. 2c). Control animals attained a maximum weight loss of 208 

13.2 ± 5.1% (mean ± sem) by week 19, whereas CCR animals reached a weigh loss of 34.8 209 

± 3.1% by week 20. Also, daily energy intake was significantly correlated with air 210 

temperature in CCR animals (p<0.01, n=432) whereas this correlation was non-significant 211 
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for control animals (p=0.08, n=652; Fig 3). Thus, although CCR animals had access to 95 kJ 212 

ind-1per day, they reduced energy consumption to about half of this value (=47.7 ± 3.9 kJ 213 

day-1 ind-1, week 8-18, n= 3 enclosures), which was significantly lower than that in controls 214 

(96.7 ± 7.3 kJ day-1 ind-1, week 8-18, n= 4 enclosures)(p << 0.001, t-test). This allowed them 215 

to reduce total winter energy requirements (i.e., per capita, Ew) to 46% of the controls 216 

(control: Ew = 10,066 ± 593.9 kJ ind-1, n= 4 enclosures; CCR: Ew = 4,583.8 ± 113.6 kJ ind-217 
1, n=3 enclosures;  p << 0.001, t-test).  218 

During the winter period (i.e., between weeks 8 to 18), animals exhibited an 219 

approximately constant negative slope in body mass (see Fig 2a). On average, each animal 220 

lost 3.0g (control) and 5.5g (CCR) in 70 days (i.e., 0.042 and 0.079 g day-1ind-1, respectively), 221 

which can be assumed to be 60% body fat (Mitchell et al. 2015). Thus, with an energy content 222 

of 39.7 kJ g-1 for fat (Walsberg and Wolf 1995), this gives 1.0 and 1.9 kJ day-1 ind-1, for each 223 

condition respectively. Thus, daily energy expenditure from food and body fat consumption 224 

can then be calculated as DEE = Ew + EFAT in each case (being DEECONTROL = Ew-control + 225 

EFATcontrol  and DEECCR = Ew-ccr + EFATccr). This gives: DEECONTROL =98.6 kJ day-1ind-1 and 226 

DEECCR = 48.7 kJ day-1ind-1. Thus, control animals, which were active at the moment of 227 

sampling, spent on average twice the amount of energy of CCR animals, which were in deep 228 

torpor.  229 

 The doubly labelled water measurements show that summer animals had a DEE of 230 

44.9±2.2 kJ day-1 ind-1 (n=24) which is 58% of the expected DEE for mammals (Nagy 2005). 231 

This increased significantly in winter to 47.3 ± 5.6 kJ day-1 ind-1  (n=8) (82% of the expected 232 

value) in CCR animals and 88.0 ± 5.8 kJ day-1 ind-1 (n=8) in controls (117% of the expected 233 

value)(F1,11=8.92, P=0.012, ANCOVA)(Fig 4a). There were no significant differences in 234 

basal metabolic rate (BMR) across seasons and treatments (Fig 4b), but the factorial scope 235 

for DEE (DEE/BMR), a measure of the aerobic work capacity, resulted significantly different 236 

across seasons and treatments, where in winter control animals had 62% higher value 237 

compared with CCR animals (6.45 ± 0.58 over 4.04 ± 0.45, Fig 4c; F1,11=5.37, P=0.040, 238 

ANOVA)(Fig 4c). Body mass was significantly reduced in CCR animals by 70% during 239 

winter compared with their summer values, whereas control individuals did not show 240 

seasonal differences (Fig 4d). Summer (pooled: control and CCRs) DEEs were significantly 241 

correlated with body mass (R2=0.61, P=0.039, n=24, Fig 4d-e), which was maintained in 242 
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winter, with a difference in intercepts between control and CCR animals (Fig 4f, F1,13=8.32, 243 

P=0.013, ANCOVA). 244 

 245 

Discussion 246 

Several authors have calculated the amount of energy saved by specific sections of 247 

the hibernation cycle, frequently in a single torpor-arousal cycle and sometimes during 248 

multiple events (Geiser 1988, Holloway and Geiser 1995, Schmid and Speakman 2000, 249 

Bozinovic et al. 2007, Nespolo et al. 2010, Geiser 2013). These values vary from 99% in 250 

single torpor bouts compared with normothermic values, to 15% for multi-day torpor bouts 251 

in some hibernators, including the costs of arousals (Wang 1978, Geiser 2004, 2013). 252 

However, establishing the precise impact of hibernation on the energy budget of free ranging 253 

animals is especially difficult, since a control condition (i.e., a situation without hibernation, 254 

keeping all else equal) is hard to obtain. To the best of our knowledge, this has been 255 

calculated indirectly on laboratory animals, once in eutherians, the Richarson’s ground 256 

squirrel (Urocitellus richardsonii, (Wang 1978) and once in a marsupial, in pygmy-possum 257 

(Cercartetus nannus; (Geiser 2007). Both estimations indicate enormous energy savings by 258 

hibernation: 87.7% and 97.5%, respectively, after comparing hibernation energy expenditure 259 

with the predicted metabolism of active animals. Our results of daily energy expenditure 260 

(DEE) in energy restricted animals and controls provide a direct estimation of this value, with 261 

the caveat that during the coldest months (July-October) on average only 69% of CCR 262 

animals were in torpor and 25% of controls were in a similar condition. However, these 263 

values coincide well with the doubly labelled water method (DLW) estimations, for which 264 

all CCR animals were torpid at the moment of sampling, and all control animals were active 265 

at this moment. Recalling from Results, DEECONTROL-FOOD = 98.6 kJ day-1ind-1 and 266 

DEECONTROL-DLW = 88.0 kJ day-1 ind-1, and averaging, gives DEECONTROL = 93.3 kJ day-1 ind-267 
1. On the other hand, DEECCR-FOOD = 48.7 kJ day-1ind-1 and DEECCR-DLW = 47.3 kJ day-1 ind-268 
1, gives an average DEEHIBERNATION = 48.0 kJ day-1 ind-1. This reveals a net hibernation 269 

savings of 51.4% (=DEEHIBERNATION / DEECONTROL). This smaller value, compared with 270 

Belding’s ground squirrel and pigmy possums can be explained by the fact that our 271 

Dromiciops were experiencing outdoor/field conditions, which includes the thermal impact 272 

of natural thermal variations and spontaneous activity bursts during interbout arousals. 273 
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According to Humphries et al. (2002)(Humphries et al. 2002) (see also: (French 274 

1985), fat reserves predict wintering hibernation survival, because when “the size of the 275 

reserve is less than the rate of depletion times the length of the winter, the hibernator will not 276 

survive”. This assertion is true assuming that animals don’t ingest food during hibernation 277 

(but see Fig 3). Without eating, a hibernating D. gliroides spending 48 kJ day-1 ind-1 will 278 

need 4,320 grams of fat to survive a winter of 90 days (energy content of fat: 39.7 kJg-279 
1)(Walsberg and Wolf 1995), which is unrealistic for a 40g animal. It is clear then, that 280 

animals regulate food ingestion during interbout arousals, in some way “calculating” torpor 281 

incidence for energy management.  282 

Basal metabolic rate (BMR), which is one of the most measured variable in 283 

physiological ecology, representing maintenance costs in endotherms (Konarzewski and 284 

Diamond 1995, Ricklefs et al. 1996, White and Seymour 2003, McKechnie et al. 2006, 285 

Clarke et al. 2010), surprisingly did not vary between seasons or treatments. Instead, the 286 

scope for aerobic activity (DEE/BMR), a measure of how hard animals are working when 287 

active, showed a significant 89% increase from summer to winter in control animals, but a 288 

modest 37.9% increase in CCR animals (from Fig 4d). Thus, CCR animals, in addition of 289 

saving energy by hibernation maintained a lower aerobic capacity probably by reducing the 290 

amount of metabolically active tissues (Bozinovic et al. 1990, Campbell and MacArthur 291 

1998, Nespolo et al. 2002). 292 

Mueller and Diamond (2001)(Mueller and Diamond 2001) postulated food 293 

availability (or net primary productivity) as a unifying factor for explaining adaptive 294 

variation in energy expenditure across species, ecosystems, latitude, temperature or rainfall. 295 

This idea is related to the more general “pace-of-life” theory of metabolism and life histories, 296 

which proposes that populations evolving for a long time at low productivity also evolve low 297 

levels of energy expenditure (Wikelski et al. 2003, Careau et al. 2010, Le Galliard et al. 2013, 298 

Londono et al. 2015, Pettersen et al. 2016). Our results support the idea that hibernation 299 

represents a “pace-of-life” adaptation to environments characterized by seasonal reductions 300 

of primary productivity (i.e., characteristics of temperate regions), where hibernation acts a 301 

physiologically regulated metabolic switch-off coupled with the period of low primary 302 

productivity (winter){Turbill, 2011 #3341}. In this sense, the fact that hibernation is present 303 

in several unrelated species living in the same environments supports the view of hibernation 304 
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as a convergent feature of mammals (Boyles et al. 2013). In fact, D. gliroides, the only South 305 

American (SA) mammal described as a hibernator (Bozinovic et al. 2004),  has a distribution 306 

range in South America between 35º and 45º S, a narrow latitudinal strip that in the Southern 307 

hemisphere includes a few landmasses (the tip of South Africa, Southern Australia including 308 

Tasmania and most part of New Zealand). This contrasts with the vast extensions of 309 

territories included in this range at the Northern hemisphere, from which almost all 310 

hibernating species have been identified (Humphries et al. 2002, Boyles et al. 2008, Ruf and 311 

Geiser 2015). Perhaps the right terrestrial environment at the Southern hemisphere simply 312 

did not provide enough land area for hibernation to evolve more frequently. 313 

Mesocosm studies (i.e., outdoor experiments examining natural environments under 314 

controlled conditions) provide a fundamental link between field surveys and laboratory 315 

experiments (Kennedy 1995, Verdier et al. 2014, Kurz et al. 2017, Maugendre et al. 2017, 316 

Scharfenberger et al. 2019). However, they are particularly scarce in ecological physiology 317 

(however, see references (Merritt et al. 2001, Levy et al. 2012, Gao et al. 2015), a field with 318 

a long tradition on laboratory work (see ref (Humphries et al. 2003b) and cited references). 319 

We encourage more of such experiments. Researchers will surprise how simple and cost-320 

effective they are, as one single long-term experiment could replace many small laboratory 321 

trials. 322 
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Figure Captions 591 

 592 

Fig 1a) Digital photographs and thermographs of clustered hibernating D. gliroides, at 593 

different cluster sizes. The average temperature of each picture is 10°C, approximately. b) 594 

Photographs of the enclosures (c), enclosure opening showing the reproduced forest 595 

environment, (d) female Dromiciops within the enclosure, (e) a male with the food feeders, 596 

(f) a cluster of hibernating animals after removing the hibernaculum, (g) a close-up of a 597 

cluster of 5 hibernating animals (h) a torpid female of the control treatment. Red arrows 598 

indicate the moment of daily energy expenditure and basal metabolic rate measurements. 599 

 600 

Fig 2. a) Weekly body masses (mean±sem) of individuals of D. gliroides either receiving 601 

food ad libitum or exposed daily to a chronic energetic restriction, CCR, since week 0 (April, 602 

15th, autumn), in a semi-natural experiment (enclosures). Comparisons between CCR (n=15) 603 

and control (n=22) individuals were significant between week 20 and week 25 (t-tests, 604 

p<0.05); b) Per-capita energy consumption (dry mass) showing control (offered: 165 kJ ind-605 
1 day-1) and CCR (offered: 95 =kJ ind-1 day-1; indicated by horizontal dotted lines); c) Torpor 606 

incidence in CCR and control individuals (bars) and weekly minimum ambient temperature 607 

(line).  608 

 609 

Fig 3. Daily energy intake estimated from food consumption in function of air temperature 610 

during the experimental period. 611 

 612 

Fig 4. a) Daily energy expenditure (DEE) in summer and winter D. gliroides under the CCR 613 

and control conditions; b) basal metabolic rate; c) DEE aerobic scope; d) body masses, e) 614 

scaling of summer animals for both CCR and control groups pooled; d) scaling of winter 615 

animals. Significance (P<0.05) is denoted after a repeated measures ANOVA.  616 
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 617 
Fig 1. Nespolo et al. 618 
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 620 
Fig 2. Nespolo et al. 621 
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 625 

 626 

Fig 3. Nespolo et al. 627 
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 629 

Fig 4. Nespolo et al.  630 
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Supplementary Material and Methods 640 
 641 
Enclosures 642 
Each enclosure had a internal volume of 2 m3, and was manufactured in zinc by a large 1.8-643 
diameter cylinder buried 10 cm in the ground, which gave a 0.8 m height above ground. 644 
Each ceiling was framed in timber, and had a mesh that allowed the entrance of light and 645 
humidity, but avoided the escape of the animals or predator’s attack. Then we included a 646 
tri-dimensional arrangement of Nothofagus twigs and logs, native bamboo (Chusquea 647 
quila) in each enclosure, and the floor was covered by mosses and bamboo leaves, which 648 
are known to be essential for D. gliroides nests building (Hershkovitz 1999, Honorato et al. 649 
2016), resembling forest conditions (see Fig 1b-d in main text). We also included one 650 
removable hibernaculum per enclosure, which consisted in a hollowed log of about 651 
30x10x15 cm, cut longitudinally that was put over the ground in a way that allowed 652 
animals to enter, cluster, rest, or hibernate. Each hibernaculum was sealed at each end by a 653 
timber cover with a small hole in the middle, to allow animal entrance. In each enclosure, 654 
we also put one max/min thermometer, one temperature data logger (HOBO®) for 655 
continous TºC recording and water ad libitum. 656 
 657 
Diet preparations 658 
D. gliroides is an omnivorous marsupial with well-known dietary preferences (Cortes et al. 659 
2011, Rodriguez-Cabal and Branch 2011, Contreras et al. 2014), thus we offered three 660 
dietary items to them in separate plates: apple compote, canned tuna (in water) and blend 661 
(i.e., equal parts mix between berry jam and baby cereals plus 50% of water) (Contreras et 662 
al. 2014))(see Fig 1e in main text). We also added a polyvitamin mixture in the diets (0.3 663 
mg kg-1 inveade®). The apple compote and the tuna were offered as they are obtained from 664 
the commercial suppliers. We always used the same commercial suppliers. Three samples 665 
of each diet were dried and calorimetrically analyzed in a Parr calorimeter (Illinois, USA), 666 
showing similar energy contents (dry weight)(tuna: 23.04 ± 3.4 kJg-1; blend: 17.90 ± 0.12 667 
kJg-1; apple compote: 15.89 ± 0.48 kJg-1)(see details in Table S1). We calculated food 668 
consumption using marsupial allometric equations (Nagy 2001) and considering a 669 
maximum energy expenditure that is six times basal metabolic rate (Bozinovic et al. 2004, 670 
Nespolo et al. 2010, Franco et al. 2012). 671 
 672 
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Table S1. Nutrient content of the experimental diets provided to the enclosures. Each 673 
enclosure received three dietary items: (1) a homogenized blend of jam and cereal diluted 674 
in 50% water, (2) a weighed amount of tuna and (3) a weighed amount of apple compote 675 
from a commercial supply (see methods for details).  676 
 677 

 
Commercial label 

 
Jam  

 
Cereal 

Canned 
tuna  

Apple 
compote 

 
Calories (KJ/100g) 887 1,564.8 280.3 281.2 
Protein (%) 0.3 9 15 0.3 
Total fat (%) 0.2 1.8 0.4 0.3 
Total Carbohydrate (%) 52.2 80.5 0.5 16 
Total sugars (%) 51.7 26.0 0.5 16 
Sodium (mg/100g) 
 

13 80 314 4 

 678 
  679 
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Thermographic imaging 680 
For characterizing thermoregulatory abilities of hibernating D. gliroides, we visited the 681 
enclosures every week, uncovered each hibernaculum, took a digital photo and an infra-red 682 
photograph of clustered torpid individuals using a thermograph (FLIR systems, Oregon, 683 
USA) set for an emissivity of 0.98 (Fig. 1f-g, total images: 328). This infrared imaging 684 
permitted us to measure in situ external body temperatures (TTORPID), by averaging the 685 
temperature of a polygon drawn of the image of each animal using the FLIR tools software. 686 
We also measured the mean temperature of the substrate 10 cm apart of the cluster 687 
(TSUBSTR). With this information, we calculated the thermal differential (TDIFF = TTORPID - 688 
TSUBSTR) for each animal, which is a measure of heat conservation in torpor. After recording 689 
these images, we measured cloacal temperature on each animal, using a Cole-Parmer 690 
copper-constantan thermocouple inserted 1 cm in the cloaca. This record was obtained 691 
within a few minutes after taking the images (otherwise it was discarded). Cloacal 692 
temperature was correlated with TTORPID (R2 = 0.68; P < 0.01; Fig. S1, n= 410). Finally, 693 
each torpid animal was weighed and released back in the hibernaculum. We also recorded 694 
the size of the cluster and whether they were found within the hibernaculum. We also 695 
classified each animal as torpid or active by visual inspection (see Fig 1h in main text). 696 

 697 
Fig S1. Bivariate relationship between surface skin temperature measured by 698 
thermographic images and cloacal temperature, measured by a copper-constantant 699 
thermocouple, in each animal. 700 
  701 
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Doubly labelled water  702 
This method has been previously validated by comparison to indirect calorimetry in a range 703 
of small mammals (e.g. Speakman and Krol, 2005). A weighed amount of DLW was injected 704 
intraperitoneally into each individual. A blood sample (100ul) was collected from the tail 705 
vein into glass capillaries and flame sealed 1 and 48 hours later. Background samples were 706 
collected from some individuals prior to dosing. Analysis of the isotopic enrichment of blood 707 
was performed blind using a Liquid Isotope Water Analyser (Los Gatos Research, USA) 708 
(Berman et al. 2012). Initially the blood encapsulated in the capillaries was vacuum distilled 709 
(Nagy 1983), and the resulting distillate was used. Samples were run alongside three lab 710 
standards for each isotope and International standards to correct delta values to ppm. 711 
Equation 7·17 of Speakman (1997)(Speakman 1997) assuming a single-pool model was used 712 
to calculate rates of CO2 production as recommended for use in animals less than 1 kg in 713 
body mass (Speakman 1997). There are several approaches for the treatment of evaporative 714 
water loss in the calculation (Visser and Schekkerman 1999). We assumed evaporation of 715 
25% of the water flux (equation 7.17: Speakman 1997) which minimizes error in a range of 716 
conditions (Visser and Schekkerman 1999, Van Trigt et al. 2002). CO2 production was 717 
converted to DEE using the Weir equation (Weir 1990). 718 
 719 
Basal metabolic rate 720 
Briefly, metabolic rate was recorded using a LiCor 6251 CO2 analyzer in a 1L metabolic 721 
chamber and a flow rate of 1,000 ml min-1, after scrubbing water and CO2 from the incoming 722 
air. The metabolic chamber was located in an incubator, and ambient temperature was set to 723 
thermoneutrality (30ºC) which was continuously recorded by a thermocouple located inside 724 
the incubator. These measurements were completed after a day of acclimation to the 725 
laboratory and after food had been removed for 8 hrs. Metabolic trials all took place during 726 
the typical rest phase of the animals (between 8am and 7pm). Each measurement had a 727 
duration of three hours and most animals slept  after the first hour in the chamber, which was 728 
checked by visual inspection though a small window in the incubator. BMR (mlCO2 h-1) was 729 
calculated from the three lowest steady-state values during the last 30 min of recording, and 730 
converted to kJ assuming an RQ=0.71 (Walsberg and Wolf 1995). 731 
 732 
Statistical analyses 733 
We fitted Mixed-Effects Generalized Linear Models (GLMM) with a gaussian error 734 
distribution and an ‘identity’ link function on the previously defined variables. We included 735 
individual ID, enclosure, and sampling week as random effects to account for inter-736 
individual and inter-enclosure variability, along with the repeated measures in time (Zuur et 737 
al. 2009). To estimate the best explanatory variables for torpor occurrence, we fitted a 738 
GLMM with a binomial error distribution and a ‘logit’ link function (Beckerman et al. 739 
2017), including treatment, body mass, and group size as predictors (fixed effects) and 740 
individual ID, enclosure and sampling week as random effects, as described above. To 741 
explore the factors that influence heat conservation in torpid animals, we fitted additional 742 
models using the same parameters on a subset of data of torpid animals. Then, we fitted one 743 
more GLMM to assess the factors determining TDIFF, using CCR treatment, body mass, and 744 
group size as predictors (fixed effects) and individual ID, enclosure and sampling week as 745 
random effects, as previously described. We estimated GLMM parameters and their 746 
significance using a restricted maximum likelihood approach with a Kenward-Roger 747 
approximation to estimate degrees of freedom (Halekoh and Hojsgaard 2014). We 748 
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performed all analyses using R 3.6.0 (Team 2019), with the packages mgcv (Wood 2011), 749 
lme4 (Bates et al. 2013), lmerTest (Kusnetzova et al. 2015), pbkrtest (Halekoh and 750 
Hojsgaard 2014), and ggplot2 (Wickham 2016).  751 
 752 
Supplementary Results 753 
Thermoregulation during torpor 754 
As soon as ambient temperature fell below ~12ºC, we observed packed clusters of torpid 755 
animals, sometimes within a compact nest of interwoven leaves of native bamboo 756 
(Chusquea quila) and mosses, or sometimes just buried in the ground. However, 757 
thermoregulatory adjustments during hibernation between CCR and control animals were 758 
not different, as revealed by thermographic images (summarized in Fig. S2 and Table S2, 759 
n= 328), and by the frequency of clustering or hibernacula use (summarized in Fig. S3, 760 
n=530 and 618, respectively). Although the GLMM model using torpor occurrence as a 761 
binomial variable showed several significant effects of the CCR treatment, indicating 762 
complex interaction among food deprivation, cluster size and body mass (Table S2), there 763 
were non-significant effects of these variables on the thermal differential between animals 764 
and substrate, estimated by the analysis of TDIFF (Table S3). Thermoregulatory variables 765 
such as the TB/TA slope comparison between control and CCR (Fig. S2a-c) and the 766 
comparison of slopes of the logistic regression of torpid and active animals (Fig. S2d; 767 
n=795 and 342, control and CCR respectively) were non-significant. Also, the most 768 
frequent substrate temperature for torpor in control individuals (median=10.05, min=4.8, 769 
max=16.2ºC, n=130) was nearly identical with CCR individuals (median=10.1, min=4.2, 770 
max=15.9ºC, n=148, Fig. S2e-f, non-significant differences after a median test). Behavioral 771 
strategies for heat conservation such as clustering (control animals formed small groups 772 
during torpor, whereas CCR animals did not show any trend, Fig. S3a-b), and hibernacula 773 
use (control animals were preferably found within hibernacula, both active and torpid, Fig. 774 
S3c-d) indicated absence of behavioral strategies for heat conservation in CCR. In other 775 
words, ad libitum fed animals preferred hibernacula irrespectively of being active or torpid. 776 
 777 
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 778 
 779 
Fig S2. Thermal physiology of D. gliroides under control and energy restricted conditions. 780 
Linear regressions (a: control; b: treatment) between ambient temperature and body 781 
temperature measured weekly as cloacal temperature in a semi-natural experiment of 782 
chronic caloric restriction. Figure S2c shows a comparison of the TA/TB slopes (A: active; 783 
B: torpid) calculated above, showing significant differences only for torpid and active 784 
individuals: comparisons either within control (F1,263=19.9; P=0.018; ANCOVA 785 
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homogeneity of slopes model) or within energy restricted animals (F1,387=19.7; P=0.018; 786 
ANCOVA homogeneity of slopes model). Non-significant differences were found for 787 
control/treatment comparisons within torpid or within active animals (indicated). Figure 788 
S2d) logistic regression between body temperature and probability of being active, showing 789 
a rewarming threshold in TB of about 22ºC, but it was non-significant for energy restricted 790 
animals. Figure S2e and f) shows substrate preferred temperatures in control and energy 791 
restricted individuals. Both distributions have identical medians (=10.1ºC). 792 
 793 

 794 
 795 
 796 
Fig S3. Frequency distributions of animals forming groups or using hibernacula during the 797 
CCR experiment. a) torpor incidence in function of cluster size; b) total frequency of cluster 798 
size; c) hibernacula use in active animals and d) hibernacula use in torpid animals. 799 
Significant values indicating different frequencies across categories, are indicated after a 800 
chi-square contingency table (indicated in the figure) and Fisher exact test (*P<0.001).  801 
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Table S2. Results of a generalized linear mixed model fit by restricted maximum likelihood, 802 
for the binomial response variable “status” (active/torpid) using the logit link (n= 795). The 803 
model was: status ~ treatment (restricted/control) + body mass (MB) + cluster size (1-5 804 
individuals) + enclosure (random factor) + ID (random factor) + week (random factor). The 805 
model included all possible interactions. 806 
 807 

Variable Estimate SE z-value P-value 
(Intercept) 10.220 4.169 2.451 0.014 

caloric restriction treatment -21.469 6.640 -3.234 0.001 
mass -0.485 0.134 -3.621 <0.001 

group.size -1.889 0.842 -2.243 0.025 
dietTreatment:mass 0.652 0.202 3.225 0.001 

dietTreatment:group.size 3.092 1.468 2.106 0.035 
mass:group.size 0.091 0.027 3.301 0.001 

dietTreatment:mass:group.size -0.114 0.046 -2.496 0.013 
 808 
 809 
 810 
Table S3. Results of a generalized linear mixed model fit by restricted maximum likelihood, 811 
for the response variable “TDIFF” (thermal differential), obtained using thermographic 812 
pictures in clustered hibernating animals (n= 328). The model was: TDIFF ~ treatment 813 
(restricted/control) + body mass (MB) + cluster size (1-5 individuals) + enclosure (random 814 
factor) + ID (random factor) + week (random factor). The model included all possible 815 
interactions. 816 
 817 

 818 

Variable Estimate SE df t-value Pr(>|t|)    
(Intercept) 5.840e-01 1.898e-01 8.272e+01 3.077 0.00283** 
dietTreatment -1.676e-02 6.980e-02 6.183e+00 -0.240 0.81804 
mass -2.189e-04 4.004e-03 6.031e+01 -0.055 0.95658 
group.size 2.508e-02 2.456e-02 2.688e+02 1.021 0.30809 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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